宁夏南部西吉县劣质地下水形成机理及治理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宁夏南部西吉县水资源十分匮乏,然而该地区第三系含水层作为主要供水层却由于受到高含盐量沉积物的影响,地下水中劣质组分超标严重。部分地区地下水中TDS含量高达9000mg/L,并且均伴随氟离子含量超标的现象,严重危害了当地居民的用水安全。
     为了满足当地居民正常生活和生产的用水需求,本文针对该地区的水文地质条件及地下水化学组成特征,在对研究区劣质地下水分布规律及影响因素的分析基础上,结合水化学分析法、同位素分析法及反向水文地球化学模拟法,对研究区第三系劣质地下水的形成机理进行研究,并且针对该研究区地下水中不同成因造成高氟、高盐的情况,研制了羟基铝-镧复合改性材料的高性能除氟吸附剂,并将膜过滤的脱盐性能与改性除氟剂的除氟性能有机结合,形成了膜基脱盐-吸附除氟的组合工艺,研究出了高氟、高矿化度劣质地下水的经济有效的治理工艺。本论文主要成果如下:
     1、研究区劣质地下水的分布规律
     研究区内白垩系地下水水质最好,第四系地下水水质稍差,而本次研究目的层的第三系含水层地下水水质最差。除表现为TDS含量过高外,F~-、Cl~-、SO_4~(2-)离子也均超标严重。在第三系地下水运动的影响下,第三系地下水TDS含量受地下水径流控制,与水化学类型变化基本相一致,表现为由北向南TDS含量升高,水化学类型由HCO_3·SO_4·Cl-Na转变成SO_4·Cl-Na·Ca·Mg。
     2、劣质地下水形成机理
     西吉县第三系劣质地下水的水化学组分的形成,最主要是受溶滤作用的影响。其中,岩盐、芒硝、石膏的溶解对地下水化学组分影响最大,其次是白云石、钠长石等的溶解作用。阳离子交替吸附作用对地下水化学形成作用仅次于溶滤作用,大量岩盐及芒硝矿物的溶解使得地下水中N~+含量迅速升高,与Ca~(2+)发生了强烈的阳离子交替吸附作用。
     通过δ~(34)S_SO_4与SO_4~(2-)含量的分布规律可以看出,第三系地下水δ~(34)S_SO_4值总体表现为:随着SO_4~(2-)浓度的明显增加而增加,且位于硫酸盐矿物δ~(34)S_SO_4值范围内,由此说明第三系地下水SO_4~(2-)主要来源于硫酸盐矿物溶解。
     通过对研究区第三系典型地下水径流路径进行的反向水文地球化学模拟,发现这一路径上的地下水化学组分主要受岩盐、芒硝等矿物溶解的影响。随着地下水中的N~+浓度的迅速增大,N~+发生阳离子交替吸附作用的趋势也越来越显著,使得地下水中的N~+与Ca~(2+)发生了阳离子交替吸附;随着白云石、石膏等矿物的溶解及离子交换作用,地下水中Ca~(2+)浓度也迅速增加,使得方解石逐渐达到饱和,发生沉淀反应;而水流路径上F-浓度的增加则是因为萤石发生了溶解反应。
     3、羟基铝-镧复合改性除氟吸附剂的制备
     通过对大量吸附剂吸附性能的考察,遴选出具有较高改性价值的坡缕石、火山渣及粘土吸附材料。并将它们经硝酸镧、氢氧化铝改性,三种吸附材料的吸附能力明显提高。
     反复试验得出,改性除氟吸附剂的制备中,坡缕石、火山渣及粘土分别与硝酸镧、氢氧化铝发生改性反应的最佳质量比为1:6:1、1:2:1和1:2:1.5;最佳热处理温度均为300℃;此时饱和吸附量依次为0.159mg/L、0.128mg/L及0.155mg/L。
     由此确定了2.5%的KAl(SO_4)_2·12H_2O为最佳再生液。其中,吸附剂与再生液的质量体积比为1:7.5,再生时间为24h,经过6次再生试验,再生效果均在102%以上,验证了该吸附剂对氟离子的优越吸附性能。
     模拟实际场地的除氟装置运行,得出结论,复合改性氟离子吸附剂中改性坡缕石、火山渣、粘土的最佳质量比为0.5:1.5:1,该复配后氟离子吸附剂的动态吸附量为0.13mg/g。
     4、改性氟离子吸附剂的性能及吸附机理
     通过对选定的最佳改性坡缕石、火山渣、粘土吸附剂进行吸附动力学及吸附等温线的研究,发现改性坡缕石、火山渣、粘土吸附剂对水中氟离子的吸附动力学遵循准二级动力学方程模型;其等温吸附模式均符合Langmuir等温吸附模式,最大理论吸附量分别为0.51mg/g、0.39mg/g和0.61mg/g;
     通过XRD、SEM、EDX、XPS,对各改性吸附剂的物性表征和作用机理进行研究,证明了300℃的处理温度时,有大量的La-Al-O复合氧化物形成,实现了氟离子的最佳吸附去除目的;结合三种改性吸附剂的O1sBE值进行分析,发现它们均随着焙烧温度发生蓝移,说明300℃改性样品的成晶程度最佳,吸附后的谱图中均出现了F元素的特征峰,证明了吸附剂对氟离子的吸附去除作用。
     5、反渗透技术对地下水中盐类的治理
     通过反渗透工艺,对去除地下水中的Cl-和SO_4~(2-)进行了研究,考察了进水压力、进水TDS浓度等因素对处理效果的影响,证明了该工艺去除地下水中高浓度Cl-和SO_4~(2-)的同时,阳离子也能够得到很好的去除,进而达到水体软化的作用。反渗透过程中所需要的渗透压随着进水中TDS含量的升高而升高,若保持进水压力不变,则清水出水量减少,同时膜污染加重。因此实际应用的过程需控制操作压力和进水TDS含量。
     通过对低压反渗透膜组件的选取,得出在操作压力为0.65-0.7Mpa范围内,模拟研究场地劣质地下水中盐类的去除达到较好效果,该地区地下水均能符合我国饮用水标准。即使其对低浓度的Cl-离子去除效率相对较低,但也可达95%以上。而对SO_4~(2-)的去除效果显著,可达99%以上。
Xiji County in southern Ningxia, locates in Loess Plateau in NorthwesternChina. However, the Tertiary aquifer as the major water-supplying layer in thisregion is affected by the high-salinity sediment, which leads to seriously excessivepoor quality components in groundwater. There is even up to9000mg/L of totaldissolved solids (TDS) in groundwater in some regions, in which fluoride is alsoexcessive, which is very harmful to human health of local residents.
     With an aim to meet the normal demand of domestic and production water oflocal residents, according to the hydrogeological conditions and chemicalcomposition characteristics of groundwater in this region, the formation mechanismsof the poor quality groundwater in Tertiary aquifer in this researched region arestudied by the combination method with hydrochemical analysis, isotopic analysisand inverse hydrogeochemical modeling based on analysis of the distribution andinfluencing factors of poor quality groundwater in researched region; and accordingto the high fluoride and salinity in groundwater caused by different reasons, themodified hydroxy-aluminum lanthanum composite material as a high efficientadsorbent to fluoride is prepared, furthermore, the combined technology ofmembrane-desalination and adsorbent-defluorination is formed by combining thedesalination ability of membrane filter and the defluorination ability of modifieddefluorination adsorbents, finally the economic and effective removal technology isdeveloped for the poor quality groundwater with high fluoride and mineralization.
     The obtained results of this study as follows:
     1. Distribution of poor quality groundwater in researched region
     The best groundwater quality is corresponding to Cretaceous in this researched region, and the groundwater quality in Quaternary is a little worse,whereas the as the major studying Tertiary aquifer whose groundwater quality is theworst. All of the content of F-, Cl-and SO_4~(2-)is seriously excessive except for TDS.The content of TDS is controlled by groundwater flow due to the groundwatermovement effect in Tertiary, which is consistent with the basis phases ofhydrochemical type change, and the content of TDS increases from north to south,and the hydrochemical type change from HCO_3· SO_4· Cl-Na intoSO_4·Cl-Na·Ca·Mg.
     2. Formation mechanisms of poor quality groundwater
     The formation of hydrochemical components in Tertiary poor qualitygroundwater in Xiji County is mainly affected by lixiviation, on which the effect ofhalite, mirabilite and gypsum dissolution is the greatest, subsequently is the effect ofdissolution of dolomite, albite and so on. The influence of the exchange adsorptionof cation on the groundwater chemistry formation is next to lixiviation, and thecontent of N~+in groundwater increases rapidly because of a large amount of haliteand mirabilite dissolution, thereby cation exchange adsorbing strongest with Ca~(2+).
     The distribution of δ~(34)S_SO_4and SO_4~(2-)content shows that the value of δ~(34)S_SO_4inTertiary groundwater generally increases significantly with the concentration ofSO_4~(2-)increasing and within the range of sulfate mineral δ~(34)S_SO_4value, whichindicates SO_4~(2-)in Tertiary groundwater mainly sources from the dissolution ofsulfate minerals.
     It is found that the groundwater chemical components on this path are mainlyaffected by dissolution of halite, mirabilite and so on, and increase rapidly with N~+concentration increasing, and the tendency of the cation exchange adsorption of N~+is becoming more and more obvious, which leads to cation exchange adsorptionbetween N~+and Ca~(2+)by studying the inverse hydrogeochemical modeling of thetypical groundwater flow path in Tertiary; the concentration of Ca~(2+)in groundwaterincreases rapidly in the effect of dissolution of dolomite and gypsum and the ionexchange, which makes calcite be saturated to be precipitated; and the concentration of F-on this flow path increases because of dissolution reaction of fluorite.
     3. Preparation of modified hydroxy-aluminum lanthanum compositedefluorination adsorbent
     Palygorskite, scoria and clay with high modified values are selected to beadsorption materials based on comparing the performances of a large number ofadsorbents, whose adsorption abilities can be enhanced significantly after they aremodified by lanthanum nitrate and aluminum hydroxide.
     The best ratio of palygorskite, scoria, clay, and lanthanum nitrate, aluminumhydroxide is1:6:1,1:2:1and1:2:1.5; the best thermal treatment temperature is300℃; and the saturated adsorption amount is0.159,0.128and0.155mg/L at themoment, respectively.
     2.5%of the KAl(SO_4)2·12H_2O is determined the best regeneration fluid, andquality volume ratio between adsorbent and regeneration fluid is1:7.5, and theregeneration time is24h, and all of the regeneration efficiencies are above102%after six regeneration experiments, which would validate that the adsorbent has goodadsorption ability to fluoride.
     It can be concluded that the best quality ratio among modified palygorskite,scoria and clay in the modified composite fluoride adsorbent is0.5:1.5:1, andthe dynamic adsorption amount of the fluoride adsorbent after complexing is0.14mg/g by the operation of the defluoridation simulator of actual site.
     4. Performance of modified fluoride adsorbent and adsorption mechanisms
     It is found that the adsorption kinetics of modified palygorskite, scoria and clayadsorbents to fluoride in groundwater can be fitted to pseudo-second order kineticmodel by studying the adsorption kinetics and isotherms of the selected bestmodified palygorskite, scoria and clay adsorbents; their isotherm adsorption modelsall fits to Langmuir adsorption model, and the largest theoretical adsorption amountis0.51,0.39and0.61mg/g, respectrively.
     It is proved that a great number of La-Al-O composite oxides form at thetreatment temperature of300℃to remove fluoride most by studying the physical characterizations and mechanisms of the different modified adsorbents through XRD,SEM, EDX and XPS.
     5. Removal of salts in groundwater by reverse osmosis technology
     The effects of different inlet pressures, concentrations of TDS on the treatmentefficiency are investigated by studying removal of Cl-and SO_4~(2-)in groundwater withthe primary one-stage cycle reverse osmosis technology, it is proved that cation canbe removed well when the high concentrations of Cl-and SO_4~(2-)are removed ingroundwater simultaneously by the technology, thereby softening groundwater.
     The needed osmosis pressure in the reverse osmosis process increases withincrease of TDS content, if the inlet pressure is kept, the clean water effluent willdecrease and the membrane pollution increase, therefore the inlet pressure and TDScontent should be controlled in the actual operation process.
     The salts in poor quality groundwater in the researched simulation site areremoved well in the operating pressure range from0.65to0.7Mpa by selecting lowpressure reverse osmosis membrane components, and the groundwater quality in thisregion can accord with the national drinking water standard. Although the removalefficiency of low concentration of Cl-is relatively low, it still can be up to95%, butthe removal efficiency of SO_4~(2-)is significant that can be up to99%.
引文
1.王大纯,张人权,史毅虹,等.水文地质学基础[M].北京:地质出版社.
    2.章光新,邓伟,何岩, Ramsis Salama.中国东北松嫩平原地下水水化学特征与演变规律[J].水科学进展,2006,17(1):20-28。
    3. Eagleson P. S. Climate, soil, and vegetation[J].Water Resources Research.1978,14,705–776.
    4.滕彦国,左锐,王金生,林学钰.区域地下水演化的地球化学研究进展[J].水科学进展,2010,21(1):127-136
    5.陈瑾.甘肃省区域地下水的水化学特征研究[J].甘肃省水利水电技术,1999,3:34-38
    6. Bartarya, S. K. Hydrochemistry and rock weathering in a subtropical lesserHimalayan river basin in Kumaun, India[J].Journal of Hydrology,1993,146,149–174.
    7. Subba Rao, N. Geochemistry of groundwater in parts of Guntur district, AndhraPradesh, India[J].Environmental Geology,2002,41,552–562.
    8. Si J., Feng Q., Wen, X., Su Y., Xi H.,&Chang Z. Major ion chemistry ofgroundwater in the extreme arid region northwest China[J].EnvironmentalGeology,2009,57,1079–1087.
    9. Wen X. H., Wu Y. Q.,&Wu J. Hydrochemical characteristics of groundwater inthe Zhangye Basin, Northwestern China[J].Environmental Geology,2008,55,1713–1724.
    10.沈照理,朱宛华,等.水文地球化学基础[M].地质出版社
    11. Karro E, Marandi A, Vaikmae. The origin of increased salinity in theCambrian-Vendian aquif er system on the Kopli Peninsula, NorthernEstonia[J]. Hydrogeol. J.,2004,12:424-435.
    12.温小虎,仵彦卿,苏建平,张应华,刘发民.额济纳盆地地下水盐化特征及机理分析[J].中国沙漠,2006,26(5)836-841.
    13.高翠萍,杜新强,刘铁银,王子佳,雷玉德.黑龙江省桦南县城区地下水化学特征与成因分析[J].节水灌溉,2012,2:41-45.
    14. BATH A, R ICHARDS H, METCALFE R, et al.Geochem ical ind icators o fdeep g roundwa ter movements a t Sella field, UK [J].Journa l of GeochemicalExp loration,2006,90:24-441;
    15. BOUCHAOU L, M ICHELOT J L, VENGOSH A, et al, Application of multipleisotopic and geochemical tracers for investigation of recharge, salinization, andres idence time of water in the Souss-M assa aquifer, southwest of Morocco[J],Journal of Hydrology,2008,352:267-2871.
    16.赵敏,曾成,杨睿,刘再华.贵州普定灯盏河岩溶泉的硫同位素季节变化特征[J].地球科学与环境学报,2012,34(3):83-88.
    17.顾慰祖,林曾平,费光灿,郑平生.环境同位素硫在大同南寒武-奥陶系地下水资源研究中的应用[J].水科学进展,2000,11(1):14-20.
    18.王广才,卢晓霞,陶澍,王伟黎,李竞生.地球化学模型的应用现状及发展趋势[J].煤炭学报,1997,22(2):117-121.
    19.文冬光,沈照理,钟佐集.地球化学模拟及其在水文地质中的应用[J].地质科技情报,1995,14(1):99-104.
    20. Alley William M. Regional ground water quality. New York: Van NostrandReinhold,1994.199-225
    21.栾长青,唐益群,高文冰,夏岩,崔振东.鄂尔多斯白垩系环河含水岩组中的地球化学反向模拟[J].自然灾害学报,2007,16(4):169-173.
    22. Guidelines for Drinking-Water Quality Electronic Resource: IncorporatingFirst Addendum, in: W.H.O.(Ed.),2006, pp.375–377
    23.武毅,朱庆俊,李凤哲,李国占.劣质地下水区地球物理勘查技术模式探讨[J].地震地质,2010,32(3):500-507.
    24.郭建强,武毅,曹福祥,等.西北地区孔隙地下水矿化度评价的地球物理方法研究与应用[J].地球学报,2001,27(4):375-379.
    25. K. M. Popat, P. S. Anand, B. D. Dasare. Selective removal of fluoride ionsfrom water by the aluminium form of the aminomethylphosphonic acid-typeion exchanger, React. Polym.1994,23:23–32.
    26. F. Luo, K. Inoue, The removal of fluoride ion by using metal(III)-loadedamberlite resins, Solvent Extr. Ion Exch.22(2004)305–322.
    27. I. B. Solangi, S. Memon, M.I. Bhanger. Removal of fluoride from aqueousenvironment by modified Amberlite resin[J]. J. Hazard. Mater.2009,171,815–819.
    28. S. Meenakshi, N. Viswanathan. Identification of selective ion-exchange resinfor fluoride sorption[J]. J. Colloid Interface Sci.2007,308,438–450.
    29. N. Viswanathan, S. Meenakshi. Role of metal ion incorporation in ionexchange resin on the selectivity of fluoride, J. Hazard. Mater.2009,162,920–930.
    30. Arora, M., Maheshwari, R.C., Jain, S.K., Gupta, A. Use of membranetechnology for potable water production[J]. Desalination2004,170,105–112.
    31.Ndiaye, P. I., Moulin, P., Dominguez, L., Millet, J. C., Charbit, F. Removal offluoride from electronic industrial effluent by RO membrane separation[J].Desalination,2005,173,25–32.
    32. S. Ayoob, A. K. Gupta, V. T. Bhat. A conceptual overview on sustainabletechnologies for defluoridation of drinking water and removal mechanisms[J].Crit. Rev. Environ. Sci. Technol.2008,38,401–470.
    33. M. Mohapatra, S. Anand, B. K. Mishra, D.E. Giles, P. Singh, Review offluoride removal from drinking water[J]. J. Environ. Manage.2009,91,67–77.
    34. P. Miretzky, A. F. Cirelli. Fluoride removal from water by chitosan derivativesand composites: A review[J]. J. Fluorine Chem.2011,132,231–240.
    35. Biswas, K., Saha, S.K., Ghosh, U.C. Adsorption of fluoride from aqueoussolution by a synthetic iron(III)–aluminum(III) mixed oxide[J]. Ind. Eng.Chem. Res,2007,46,5346–5356.
    36. Jamode, A.V., Spakal, V.S., Jamode, V. S.. Defluoridation of water usinginexpensive adsorbents[J]. J. Chem. Eng. Sci.,2004,33,1097.。
    37. Das N., Pattanaik P., Das R. Defluoridation of drinking water using activatedtitanium rich bauxite[J]. J. Colloid Interface Sci.,2005,292,1–10.
    38. Lounici H., Addour L., Belhocine D., Grib H., Nicolas S., Bariou B., MameriN.[J].Study of a new technique for fluoride removal from water. Desalination1997,114,241–251.
    39. Mohapatra D., Mishra D., Mishra S. P., Chaudhury G. R., Das R. P. Use ofoxide minerals to abate fluoride from water[J]. J. Colloid Interface Sci.2004,275,355–359.
    40. Mohapatra D., Mishra D., Mishra S. P., Chaudhury G. R., Das R. P. Use ofoxide minerals to abate fluoride from water[J]. J. Colloid Interface Sci.,2004,275,355–359.
    41. Wasay S. A., Haron M. J., Tokunaga S., b. Adsorption of fluoride, phosphateand arsenateionson lanthanum impregnated silicael[J]. WaterEnviron.Res.1996,68,295–300.
    42. Yang M., Hashimoto M. T., Hoshi N., Myoga H. Fluoride removal in a fixedbed packed with granular calcite[J]. Water Res,1999,33,3395–3402.43Raichur A. M., Basu J. M. Adsorption of fluoride onto mixed rare earthoxides[J]. Sep. Purif. Technol.,2001,24,121–127.
    44. Agarwal M., Rai K., Shrivastav R., Dass S. Defluoridation of water usingamended clay[J]. J. Cleaner Produc.2003,11,439–444.
    45. Abe I., Iwasaki S., Tokimoto T., Kawasaki N., Nakamura T., Tanada S.Adsorption of fluoride ions onto carbonaceous materials[J]. J. Colloid InterfaceSci.2004,275,35–39.
    46. Li Y. H., Wang S. G., Zhang X. F., Wei J. Q., Xu C. L., Luan Z. K., Wu D. H.Adsorption of fluoride from water by aligned carbon nanotubes[J]. Mater. Res.Bull,2003,38,469–476.
    47. Li Y.H., Wang S., Zhang X., Wei J., Xu C., Luan Z., Wu D., Wei B. Removaloffluoride from water by carbon nanotube supported alumina[J]. Environ.Technol.2003,24,391–398.
    48. Cengeloglu Y., Kir E., Ersoz M. Removal of fluoride from aqueous solution byusing red mud[J]. Sep. Purif. Technol,2002,28,81–86.49Lai Y. D., Liu J. C.1Fluoride removal from water with spent catalyst[J]. Sep.Sci. Technol,1996,31,2791–2803.
    50. Piekos R., Paslawaska S. Fluoride uptake characteristic of fly ash[J]. Fluoride,1999,32,14–19.
    51. Chaturvedi A. K., Yadava K. P., Pathak K. C., Singh V. N. Defluoridation ofwater by adsorption on fly ash[J]. Water Air and Soil Pollut.1990,49,51–60.
    52. Pin o′n-Miramontes, M., Bautista-Margulis R.G., Pe′rez-Herna′ndeza, A.Removal of arsenic and fluoride from drinking water with cake alum and apolymeric anionic flocculent[J]. Fluoride2003,36,122–128.
    53. Jagtap S., Thakre D., Wanjari S., Kamble S., Labhsetwar N., Rayalu S. Newmodified chitosan-based adsorbent for defluoridation of water[J]. J. ColloidInterface Sci.2009,332,280–290.
    54. Rozic L., Novakovic T., Jovanovic N., Terlecki-Baricevic A., Grbavcic Z. Thekinetics of the partial dehydration of gibbsite to activated alumina in a reactorfor pneumatic transport[J]. J. Serb. Chem. Soc.2001,66,273–280.55Shimelis B., Zewge F., Chandravanshi B. S. Removal of excess fluoride fromwater by aluminum hydroxide[J]. Bull. Chem. Soc. Ethiopia,2006,20,17–34.
    56. Johnston R., Heijnen H. Safe Water Technology for Arsenic Removal. Report.World Health Organization (WHO).2002.
    57. Schoeman J. J., MacLeod H. The effect of particle size and interfering ions onfluoride removal by activated alumina[J]. Water SA.1987,13,229–234.
    58. Turner B. D., Binning P., Stipp S. L. S. Fluoride removal by calcite: evidencefor fluoride precipitation and surface adsorption[J]. Environ. Sci. Technol.2005,39,9561–9568.
    59.仇付国,王晓昌.活性氧化铝除氟吸附容量利用分析[J].西安建筑科技大学学报(自然科学版),2002,34(2):141~14.
    60.刘士荣,杨爱云.几类固体吸附剂的吸氟能力研究[J].水处理技术,1989,15(3):153~158.
    61.王东田,尹方平,杨兰.改性活性氧化铝的除氟效能及再生方法研究[J].工业水处理,2010,30(6):55-58.
    62. Maliyekkal S. M., Shukla S., Philip L., Indumathi M. N. Enhanced fluorideremoval from drinking water by magnesia-amended activated aluminagranules[J]. Chem. Eng. J.2008,140,183–192.
    63. Das N., Pattanaik P., Das R. Defluoridation of drinking water using activatedtitanium rich bauxite[J]. J. Colloid Interface Sci.2005,292,1–10
    64.苏馈足,徐得潜,唐德江,李洋.天然铝土矿物除氟剂吸附性能研究[J].合肥工业大学学报(自然科学版),2009,32(7):1042-1045.
    65.盛姣.粘土吸附水中氟离子的研究[J].环境科学导刊,2008,27(4):7-8.
    66.郭华明.用于降氟的亚粘土改性方法与吸附作用机理研究[J].环境化学,2000,19(5):426~429.
    67.孙成勋,杨晓瑛,朱宝余.改性粘土除氟剂硬度改善及再生性能研究[J].水处理技术,2011,37(9):37-40.
    68.王昶,季璇,徐永为,贾青竹,吕晓翠.改性粘土对氟的吸附研究[J].水处理技术,2010,36(10):48-56.
    69.王云波,谭万春,王晓昌,等.沸石、骨炭、活性氧化铝除氟效果研究[J].西安建筑科技大学学报(自然科学版),2002,34(4):325~328.
    70.李桂荣.新型降氟材料-活化沸石[J].水处理技术,1994,20(3):173~176.
    71.田作兴,孔雪艳.超强净水剂在农村饮用水除氟技术中的应用[J].吉林水利,2006,7(7):23~24.
    72.游新国,张晓宁.Al改性沸石的制备及对含氟水的处理效果[J].辽宁化工,2011,40(3):221-224.
    73.栾红,宋岸.除氟磷改性沸石活化条件研究[J].山西建筑,2010,36(31):168-169.
    74.潘博,冯启言,李向东.沸石处理高氟水实验研究[J].水资源保护,2010,26(6):89-92.
    75.田芳,毛旭辉,张学俊,林安,甘复兴.离子交换水解法制备纳米TiO2光催化剂[J].武汉大学学报(理学版),2006,52(4):444-448.
    76.万华,张正方,甄卫军,等.离子交换法吸附乙二醇-盐水体系中氯离子的研究[J].离子交换与吸附,2010,27(1):81~89.
    77.邹晓勇,匡远亮.离子交换法从硫酸锰溶液中吸附氯的实验研究[J].广州化工,2011,39(17):63-64.
    78.刘恒,李大成,陈朝珍.电渗析法除氯离子制高纯碳酸钙的研究[J].成都科技大学学报,1996,93(5):42-47.
    79.荆国林,于水利,韩强,赵方波,刘波.电渗析降低含聚污水矿化度的方法[J].大庆石油学院学报,2004,28(1):41-43.
    80.罗爱平,张启修.电渗析处理A P T结晶母液的研究[J].中南矿冶学院学报,1994,25(1):44-48.
    81.陆重业,章发明.用多级闪蒸法处理沙漠油田超高浓度苦咸水[J].石油机械,1991,19(3):34-39.
    82.朱玉兰.海水淡化技术的研究进展[J].能源研究与信息,2010,26(2):72-78.
    83.王立新,郭颜威,王秀明.苦咸水淡化处理方法探讨[J].安全与环境工程,2006,13(1):66-69.
    84.陆在宏,康兰英,冯秉中.应用反渗透法—RO组合净水器深度处理自来水中有害物质效果研究[J].Water and wastewater Engineering EditorialBoard,1995,3:37-40.
    85.魏新渝.高耐氯性复合反渗透膜的制备研究[D].2010
    86.赵显铭,段建兴,范青华.离子交换法除热法磷酸中硫酸根的研究[J].无机盐工业,1989,03:31-33.
    87.张坚,张素环.碳酸钡法除盐水中硫酸根[J].中国氯碱,2007,5(5):10-13.
    88.杜娟,袁建军,张爱群.硫酸钠型盐矿卤水冷冻法脱硫的研究[J].中国井矿盐,2008,5(3):10-12.
    89.张永锋,李春萍,杨伟,等.纳滤膜法脱除离子膜制碱系统淡盐水中硫酸根的研究[J].内蒙古工业大学学报(自然科学版),2011,30(3):237-242.
    90.西吉县支农找水小组.宁夏回族自治区西吉县人畜饮用农田灌溉供水水文地质勘查地面测绘报告[M].1978.12:34-42.
    91.吴春勇.鄂尔多斯白垩系盆地地下水水化学演化的同位素示踪研究[D].2011
    92. Dogramaci S S, Herczeg A L, Schiff S L. Controls on d34S and δ18O of dissolved sulfatein aquifers of Murray Basin[J]. Australia and their use as indicators of flow processes.Appl. Geochem.2001,16:475--488.
    93. Massmann G, Tichomirowa M, Merz C, Pekdeger A. Sulfide oxidation and sulfatereduction in a shallow groundwater system (Oderbruch Aquifer, Germany)[J].Journal ofHydroloay,2003,278:231-243.
    94. Yamanaka M, Nakano T, Tase N. Sulfate reduction and sulfide oxidation in the anoxicconfined aquifers in the northeastern Osaka Basin, Japan[J]. Journal of Hydrology,2007,335:55-67.
    95. Bottrell S H, Moncaster S J, Tellam J H, et al. Controls on bacterial sulphate reduction in adual porosity aquifer system: the Lincolnshire Limestone aquifer, England[J]. ChemicalGeology,2000,169:461-70.
    96. Tuttle, M. L. W., Breit G. N., Cozzarelli, I. M. Processes affecting δ34S and δ18O values ofdissolved sulfate in alluvium along the Canadian River, central Oklahoma, USA[J].Chemical Geology,2009.265:455-467.
    97. Clarke I D, Fritz P. Environmental Isotopes in Hydrogeology[M].New York, USA: Lewis,1997.
    98. Krouse H R. Sulphur isotopes in our environment. In: Fritz, P., Fontes, J.Ch.(Eds.),Handbook of Environmental Isotope Geochemistry. In Elsevier Scientific PublishingCompany, Amsterdam,1980.