低阻油层的主要成因机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以岩石物理研究为基础,采用实验分析与数值模拟相结合的方法,从地球物理测井响应特征研究入手,系统而较深入地研究了粘土附加导电作用和泥浆侵入作用所形成低阻油气层的成因机理,从而得出了如下的主要认识与创新点。
     1) 紧扣低阻油层成因分析的实质,紧紧围绕储层电阻增大率这一核心参数,分析粘土附加导电作用和泥浆侵入作用这两个产生低阻油层的主要成因的机理进行岩石物理研究与数值模拟分析。
     2) 通过阳离子交换容量、粘土的分布形式、地层水矿化度和地层温度等因素的岩石物理系统研究得出,粘土附加导电作用能力是它们的复元函数,应该通过多种因素综合分析,才能准确掌握粘土附加导电产生低阻的真正成因。由此得到:
     a) 由于成岩作用不同,粘土的分布形式呈多样化,如丝状和覆盖在骨架颗粒表面的粘土膜。由于其大大改善导电网络而大幅提高其附加导电能力,显著地降低储层的电阻率,即使没有其它因素的作用,油层也可以是低阻。
     b) 无论地层水矿化度高或低,粘土附加导电均可能造成油气层低阻。同等条件下,地层水矿化度愈低,附加导电作用愈强,愈容易形成低阻油层。
     c) 阳离子交换容量加大,电阻率测井值降低,两者间为指数关系。对于不同区块和不同层位的具体储层,它们间的变化规律一致,但具体的量化关系有所不同,这取决于储层的粘土类型及其相对含量方面的因素等。
     d) 阳离子交换容量较低时,电阻增大率随之增加而降低速率较大。在同等阳离子交换容量变化时,饱和高矿化度水的岩石电阻率降低值相对大。
     3) 本文较深入而全面地分析了淡水泥浆、盐水泥浆和饱和盐水泥浆侵入下电阻率测井的响应特征,从而明确了侵入作用下的低阻油层形成机理:
     a) 淡水泥浆侵入提高了水层和含油水层的双侧向电阻率,提高量与含水饱和度大小成正比;而降低油气层的双侧向电阻率,降低量与含油饱和度大小成正比,但降低的变化率较水层的增大率要低得多,从而减少它们间的电阻率差异而形成低阻油层。
     b) 淡水泥浆侵入能够提高水层和含油水层的双感应测井电阻率,但提高的幅度不大,而油层的双感应测井电阻率受侵入后降低幅度很大,降低量与含油饱和度成正比,从而减小油层、水层的电阻率差异而形成低阻油层。
     c) 盐水泥浆侵入水层时,双侧向测井的电阻率将降低,降低幅度正比于泥浆滤液与地层水矿化度之比(C_(mf)/C_w)。侵入油层时,双侧向测井的电阻率大为降低,其降低值正比于C_(mf)/C_w和含油饱和度越高。盐水泥浆侵入时,水层电阻率降低较小而油层电阻率大为降低,因此形成低阻油层。
In the article the genetic mechanism of low resistivity pay is studyed by the numbers and in-depth under the action of additional conductivity of clay and magmatic inrush at the base of rock physics research , which starts with the study of geophysics logging response characteristic and adopts the method of experiment analysis integrated with numerical simulation, and has some new cognitions and innovations as following.1) Holding the essential of analysing the causes of low resistivity pay and the principal parameter that is the rate of resistance augment, the action of additional conductivity of clay and magmatic inrush which maybe the main genetic mechanism of low resistivity pay are analysed by adopting the method of rock physics research integrated with numerical simulation.2) After a systematical rock physics research of the amount of cation exchange, the distributing shape of the clay, the salinity of stratum-water, the stratum temperature and so on, we will know that the ability of additional conductivity of clay is the function of the influence factors above. We can get the real reason that the additional conductivity of clay generates low resistance pays well and truly by analysing all kinds of factors synthetically. We can make several conclusions as following:a) The distributing shape is various because of different ore-forming processes.Silk clay film overlaying the framework grains inproves the the ability of the additional conductivity greatly through ameliorating the conduct meshwork enormously,and decreases the resistivity of the pays.So the resistance of oil layer maybe low even through there are no other influence factors.b) No matter what the salinity of stratum-water is high or low, the additional conductivity influence of clay may make pay have low resistance. In the same condition, the lower the salinity of stratum-water and the stronger the additional conductivity influence, the easier the make of low resistance oil layer.c) When the amount of cation exchange increases, the value of resistivity log reduces, and exponential relation is between them. The variable rule in them is consistent with idiographic reservoir in the different region and stratification pay, but the idiographic quantized relation has a few difference, which lies on the kind of reservoir's clay, the factor of its relative content aspects, and so on.d) In the regionality of the lower amount of cation exchange, the speed which the rate of resistance augment reduces with the increase of the amount of cation exchange is very fast.When the equal amount of cation exchange changes , the reduced value of the rock resistance which has high salinity water is big in contrast.3) This chapter studies response characteristic of resistivity log after the
    intrusion of fresh mud, salty mud, saturated salty mud deeply and thoroughly, then specify the genetic mechanism of low resistivity pay formed by magmatic intrusion as following:a) Intrusion of fresh mud will increase dual lateral resistivity of water layer and oil-water layer. The increment is proportional to the saturation of water. However, intrusion of fresh mud will reduce dual lateral resistivity of pay. The reduction is proportional to the saturation of oil. But the slope of reduction is much smaller than the slope of increment above. This will reduce the difference between the resistivity of water layer and the resistivity of oil layer ,and form a low resistivity oil layer.b) Intrusion of fresh mud will increase dual induction resistivity of water layer and oil-water layer, but the increment is not large. However, the dual induction resistivity of oil layer reduces greatly after intrusion. The reduction is proportional to the saturation of oil.This will reduce the difference between the resistivity of oil layer and the resistivity of water layer, and form a low resistivity oil layer.c) When salty mud intrudes into water layer, the dual lateral resistivity will reduce. The reduction is proportional to the ratio of the salinity of mud filtrate and that of strata water (Cmf/Cw). However, when salty mud intrudes into oil layer, the dual lateral resistivity reduces greatly. The reduction is not only proportional to Cmf/Cw, but also proportional to the saturation of oil. When salty mud intrudes into the layer, the reduction of water layer is small, but the reduction of oil layer is great. This will form a low resistivity oil layer.
引文
[1] 曾文冲.油气藏储层测井评价技术.北京,石油工业出版社.1991,183-401
    [2] 赵杏媛、张有瑜.粘土矿物与粘土矿物分析,北京,海洋出版社,1990,203~352
    [3] 毛志强等:塔里木盆地油气层地电阻率成因研究(1),测井技术,第23卷,1990 (4)
    [4] 欧阳健:径向电阻率分析方法的发展,《电测井在地质勘探中的应用》,北京,石油工业出版社,1988,117~195
    [5] 刘振华、胡启、张建华:时间推移双侧向测井响应特征及其变化规律,石油地球物理勘探,1996 (4) 31:535~540
    [6] 原海涵:阿尔奇公式中的M、A与渗透率的关系-毛管理论在岩石电阻率研究中的应用,地球物理测井,1990,14(5)
    [7] 林梁:电缆地层测试资料解释理论与地质应用,北京石油工业出版社,1994,226~269
    [8] 张庚骥:电法测井(上下册),石油工业出版社,1982,182~337
    [9] 李大潜等:有限元方法在电法测井中的应用,石油工业出版社,1980
    [10] 《测井学》编写组:测井学,北京:石油工业出版社,1998
    [11] 周凤鸣、马越蛟、王峰轩:冀东油田低电阻率油层测井解释方法研究,油田开发技术-冀东油田论文集,1999,北京:石油工业出版社
    [12] 姜恩承、王敬农、孙宝佃等:电化学测井理论研究及其应用的新进展(上下),测井技术,1999,23(4、5)
    [13] 姜恩承、曾花秀、孙宝佃:求解剩余饱和度的测井方法和解释技术,水驱油田开发测井(96) 国际学术讨论会论文集,北京:石油工业出版社,1996
    [14] 高楚桥,钟兴水,袁晓东等:测井信息识别低电阻率气层,江汉石油学院学报 1999年,21(4)
    [15] 刘双莲、梁巧峰、赵连水:低饱和度油层的测井解释分析,断块油气田,2000,7(5)
    [16] 沈平平:油层物理实验技术,北京,石油工业出版社,1995
    [17] 欧阳健:石油测井解释与储层描述,北京:石油工业出版社,1994
    [18] M.H.Waxman,L.J.M.Smites著,陈益鹏译:含油泥质砂岩电导率,泥质 砂岩评价—阳离子交换模型,中国石油天然气情报研究所,1989
    [19] 雍世和、张超谟:测井数字处理与综合解释,东营:石油大学出版社,1996
    [20] 赵旭东:石油数学地质概论,北京:石油工业出版社,1992
    [21] 欧阳健:应用电子计算机解释油(气)、水层,石油勘探与开发,1974,2(7),37~41
    [22] 赵国瑞、吴剑锋、陈学慧等:低电阻率油层的实验研究和解释方法,测井技术,2002,26(2)
    [23] 杨通佑、范尚炯等:石油与天然气储量计算方法,石油工业出版社,1998
    [24] 欧阳健、王贵文、吴继余等:测井地质分析与油气层定量评价,石油工业出版社,2001
    [25] 斯伦贝谢测井公司编,吴庆岩、张爱军译:测井解释常用岩石矿物手册,1998
    [26] 周灿灿、梁晶、李属珣等:柳东储层含油饱和度测井解释模型,油田开发技术—冀东油田科技论文集,石油工业出版社,2000
    [27] 雍世和、张超谟:测井数字处理与综合解释,东营,石油大学出版社,1996
    [28] 欧阳健、张建华等:渤海海湾水泥浆侵入油气层双侧向测井定量分析研究测井技术,1998,22:256~260
    [29] 陆大卫、汪国法:核磁共振测井理论与应用,石油工业出版社,1992
    [30] 石油测井情报协作组编:测井新技术应用,石油工业出版社,1998
    [31] 肖立志:核磁共振成像测井与岩石核磁共振及其应用,石油工业出版社,1998
    [32] 耿全喜、钟兴水:油田开发测井技术,石油大学出版社,1999
    [33] 王秀艳、王峰轩:RFT测井资料应用研究,油田开发技术—冀东油田科技论文集,石油工业出版社,1999
    [34] 中国石油天然气总公司编:测井新技术与油气层评价进展,石油工业出版社,1997
    [35] 周荣安、雷广才、李彩云:低电阻率油层解释方法,测井技术,2002,26(3)
    [36] 刘振华、胡启、张建华:时间推移双侧向测井响应特征及其变化规律,石油地球物理勘探,1996(4)
    [37] 欧阳健:渤海湾油区测井地电阻率油层勘探潜力分析,勘探家,1998,3,(4):37~42
    [38] 王群、宋延杰、张淑梅:含气饱和度新模型的探讨,大庆石油学院学报,2001,13(14)
    [39] Waxman,M.H., and L.JM.Smite, "Electrical Conductivities in oil-Bearing Shaly Sands, "Soc.Pet.Eng.J.,p107-122,June 1968.Presented as SPE Paper 1863-A at SPE 42nd Annual Fall Meeting,Houston, October 1-4, 1967
    [40] Waxman, M.W., and E.C Thomsas, "Electrical Conductivities in oil-Bearing Shaly Sands, -I.The Rralation Between Hydrocarbon Saturation and Resistivity Index; Ⅱ. The temperature Coefficient of Electrical Conductivity," SPE Journal, no.14,p213-225,February 1974
    [41] Leverett,M.C.," Capillary Behavior in Porous Solids", Trans.A.I.M.E., 1940,146:341-358
    [42] Winsauer, W.O.,ShearinJr., H. M. Masson, P.H.,and Willinams, M., Resisitivity of Brine-saurated Sands in Relation to Pore Geometry,Bulletin A.A.P.G, 1952, 36(2): 253~277
    [43] Rechard,J.etc., "Archie's Law for Rocks Modeled by Simple Networks", Journal of Geophysical Research, 1969, 74(8)
    [44] Katz,A.J. and thompson,A.H.,"fractal Sandstone Pores:Impolacations for Conductivity and Pore Formation", Physical Review Letters, 1985, 54(12): 1325~1328
    [45] Kerkpatrick,, S.,"Classical Transport in disorderded Media:Scaling ang Effeective-Medium Theories," Physical Review Letters 1977, 27(25): 1722~1728
    [46] 周灿灿等,冀东油田低阻油气层测井评价技术应用研究,2002,内部报告
    [47] 周明顺等,华北油田冀中坳陷低电阻油气层测井识别技术应用研究,2002,内部报告
    [48] 柳孟文等,辽河浅层低电阻率油气层测井识别与评价技术研究,2002,内部报告
    [49] 李国欣,刘国强:中国石油的测井技术的定位、需求与发展,2003,测井技术
    [50] 徐守余:S Q油田低阻油气层测井综合解释及评价,石油勘探与开发,2000,Vol.27.No.6
    [51] 赵永生、崔云江、韦忠花:渤海海域低电阻率油气层特征及其识别方法,中国海上油气(地质),2001年,第15卷,第6期
    [52] 钟兴水,袁晓东:测井信息识别低电阻率气层高楚桥,江汉石油学院学报,1999,第21卷,第4期
    [53] Bovan K George:泥浆滤液侵入与感应测井物理过程的综合研究.SPWLA,44th,2003
    [54] 王向公、王福国等:大港板桥地区低阻油层成因分析,江汉石油学院学报 2001年,第23卷,增刊
    [55] 回雪峰、吴锡令等:大港油田原始低电阻率油层地质成因分析,勘探地球物理进展,2003年,第26卷第4期
    [56] 卞应时,张凤敏等:大港油田中浅层低阻油气层成因分析及评价,特种油气藏,2002,第9卷第2期
    [57] 刘双莲、梁巧峰:低饱和度油层的测井解释分析,断块油气田,第7卷第5期
    [58] 刁刚田、杨元亮:低电阻率油层测井识别技术,特种油气藏,第10卷第2期
    [59] 苗大军、张海英:低电阻率油层在濮城油田的认识与应用研究,断块油气田,第9卷第2期
    [60] 谢然红:低电阻率油气层测井解释方法,测井技术,第25卷,第3期
    [61] 杨青山,艾尚君,钟淑敏:低电阻率油气层测井解释技术研究,大庆石油地质与开发,第19卷,第5期
    [62] 潘和平、黄坚,:低电阻率油气层测井评价,勘探地球物理进展,2002,第25卷第6期
    [63] 赵佐安、何绪全等:低电阻率油气层测井识别技术,天然气工业,2002年7月
    [64] 赵文杰、白全胜等:低电阻率油气层的测井解释,测井技术,第22卷,增刊
    [65] 张友生、魏斌:低阻油层双侧向测井的反演研究,地球物理学进展,第18卷,第1期
    [66] 李国政:对低阻油气层的成因探讨,新疆地质,2000年,3期
    [67] 李厚义、赵宇芳等:对低电阻率油层的一个误解及修正,测井技术,2002年,第26卷,第2期
    [68] 左银卿、周明顺等:高束缚水饱和度低阻油层测井解释技术,西南石油学院学报,2000年,第22卷,第2期
    [69] 吕新华:胡状集油田低电阻率油层形成的影响因素及其识别技术,油气地质与采收率,2002年,第9卷,第6期
    [70] 关振良:丘陵油田低阻油层成因及测井解释,新疆石油学院学报,2000年,第12苍,第3期
    [71] 张小莉:陕北三叠系延长组低阻油层特性及其形成机理分析,测井技术,第23卷,第4期
    [72] 李国政、李铁:塔里木盆地桑塔木油气田低阻油气层形成机理,新疆地质,1999年,第17卷,第1期
    [73] 冯琼,陈新民等:塔中4油田0油组高阻水层成因分析及油层解释方法研究,江汉石油学院学报,2001年,第23卷,增刊
    [74] Archie G.R., 1942, "The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics," Trans. A.I.M.E., Vol.146, p.54-56
    [75] Hill, H.J.,and J.D. Milburn, " Effect of Clay and Water Salinity on Electrochemical Behavior of Reservoir Rocks," Petroleum Transactions, AIME, vol.207, p65-72, 1950
    [76] 葛家理:现代油藏渗流力学原理,2003,石油工业出版社
    [77] 吕松常、王颖:C语言科学与工程程序库,1992,电子工业出版社
    [78] 王璞、伍渝江等译:数值方法大全—科学计算的艺术,1995,兰州大学出版社
    [79] 中国石油天然气集团公司油气勘探部:渤海湾地区低电阻油气层测井技术与解释方法,2000,石油工业出版社
    [80] Bovan K George:泥浆滤液侵入与感应测井物理过程的综合研究,SPWLA 44th.2003