基于遥感的长时间序列浮游植物的多尺度变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋生态系统与全球气候变化的相互关系是目前备受关注的热点问题。作为海洋生态系统主要生产者的浮游植物,一般被认为是表征海洋环境气候变化非常好的指标。长时间遥感数据集的累积为研究海洋对物理环境的多尺度生态响应提供了可靠的数据源。本论文综合利用多年的水色数据、微波数据以及实测数据,系统研究了西北太平洋和东北印度洋(10°S~60°N,75°E~160°E)浮游植物叶绿素a浓度以及藻华发生时间的多尺度变化特征,探讨了引起多尺度变化的因素,重点分析了短周期气候振荡对浮游植物的影响,深入理解了这些海域的生态系统及其与物理过程的耦合作用,为我们进一步认识全球变暖将如何在未来影响海洋生态系统打下基础。本文的主要研究内容和结论如下:
     (1)通过对叶绿素a浓度的季节、年际和趋势变化分析,发现东北印度洋的大部分区域和西北太平洋的副热带环流区叶绿素呈现显著的下降趋势,每年的平均下降速率在1%以内。而其他区域基本均呈现上升的趋势,黄海、渤海以及鄂霍次克海的大部分海域每年的上升速率较快,均超过了1%,甚至有些海域达到了4%以上。赤道印度洋、南海、西太暖池以及西北太平洋副热带环流区是年际变化显著的区域。短周期气候振荡是影响这些区域叶绿素a浓度年际变化的重要因素。ENSO以及IOD事件会引起经向风的改变,是控制赤道印度洋以及西太暖池海域叶绿素a浓度年际变化的关键因素。对于南海来说,El Nino年海表温度上升是导致叶绿素a浓度偏低的关键因素。但是,La Nina事件对南海海盆叶绿素a浓度年际变化的影响较小。而西北太平洋副热带环流区对ENSO的响应与其他海域相反,导致该区域叶绿素a浓度在El Nino年偏高,在La Nina年反而偏低。总体趋势上,叶绿素a浓度的变化主要与海表温度的变化有负相关的关系,而与海平面高度异常和海面风速关系不大。
     (2)通过对浮游植物藻华发生时间的季节和年际变化分析,发现中高纬藻华爆发时间基本在3-5月份,即为春季藻华。而20°N~30°N之间的西北太平洋副热带环流海域和南海北部藻华爆发事件基本在11-12月份,即为冬季藻华。而越南和斯里兰卡附近上升流海域藻华爆发时间基本在5-6月份,即为夏季藻华。中高纬区域藻华持续时间较短,不超过50天,而较低纬区域藻华持续时间较长,基本在100天以上,副热带环流区以及南海北部甚至超过200天。从年际变化上看,孟加拉湾西南部上升流区、日本海以及鄂霍次克海藻华发生时间变化较大,吕宋冷涡区和西北太平洋副热带环流区变化较小。西南季风的爆发时间和持续时间影响了斯里兰卡东南部海域藻华的爆发时间和持续时间。同时,ENSO事件导致的海表温度变化也会影响该区域藻华的爆发时间。对于日本海海域,一般藻华在El Nino年爆发较早,持续时间较长;在La Nina年藻华爆发较晚,持续时间较短。ENSO事件对该海域冬季海表温度和风场的调制作用是重要原因,但是La Nina事件的作用不如El Nino事件。2005年尽管是El Nino年,但藻华爆发较晚,主要是所有年份中2005年冬季平均风速最大,导致混合层较深引起的。
     (3)从季节内变化的角度研究了西北太平洋较低纬度海域近十年台风对初级生产力的贡献,,发现台风对南海(N4)初级生产力的贡献最大,平均每年的固碳量大约为0.56Mt,而对西北太平洋海洋沙漠区(W6)和东海陆架区(E2)初级生产力的贡献偏小,分别为0.26Mt和0.21Mt。另外,仅有西北太平洋海洋沙漠区台风的固碳量与短周期气候振荡有很好的对应关系,El Nino年台风的固碳量要相对较高,而La Nina年则偏低。
     (4)通过孟加拉湾的极值藻华事件综合分析了多尺度强迫对浮游植物藻华的影响,进一步深入分析了不同尺度强迫(短时间尺度事件台风、涡旋等以及气候事件ENSO、IOD等)对浮游植物的影响机制,可以作为将来类似事例分析的基础。
The relationship between marine ecosystem and climate change has received rising attention. As the main producer of marine ecosystem, phytoplankton is particularly good indicator of climate change in the marine environment. The accumulation of remote sensing data provides a reliable data source for studying the marine multi-scale ecological responses to marine environment. In this thesis, we study the multi-scale variations of chlorophyll a (Chl-a) concentration and timing of phytoplankton bloom in the Western North Pacific (WNP) and Eastern North Indian Ocean (ENIO)(10°S~60°N,75°E~160°E) and their relationship with multiple forcings by utilization of ocean color data, microwave data and in situ data. Specifically, the climatic forcing on the phytoplankton is the key issue that we are concerned about. The results let us futher understand the coupling effect between marine ecosystem and physical processes and provide evidence of how the global warming will change the marine ecosystem in the furture. The main contents and conclusions are as follows:
     (1) By analyzing the seasonal and interannual variability in Chl-a concentration, most regions of the ENIO and the WNP subtropical grye show a significant downward trend with the rate of less than1%/yr during September1997and December2011. All other regions show a significant upward trend. The annual rate is more than1%/yr in the Yellow Sea, the Bohai Sea and the Okhotsk Sea, even more than4%/yr in some regions. The regions with significant interannual variarion include the tropical Indian Ocean (TIO), the South China Sea (SCS). Pacific Warm Pool (PWP) and the subtropical grye in the Western North Pacific (SG). Short-term climate variability is an important factor that regulating the interannual variation of Chl-a concentration. During the event of El Nino-Southern Oscillation (ENSO) or Indian Ocen Dipole (IOD), the abnormal zonal wind controls the interannual variation of Chl-a concentration in the TIO and PWP. For the SCS, increasing SST during El Nino years induces the decrease of Chl-a concentration while it seems that La Nina events have less impact on the SCS Chl-a concentration. Contrary to the other regions'response to ENSO, the Chl-a concentration is high during El Nino years while low during La Nina years in the SG region. The trend of Chl-a concentration is mainly negatively related to the change of sea surface temperature while has little relationship with sea surface height anomaly and wind speed.
     (2) By analyzing the seasonal and interannual variability of the timing of phytoplankton bloom, the results show spring bloom starts during March to May and the duration is shorter than50d in the mid-high latitude.Winter bloom starts during Novermber to December and the duration is nearly200d in the subtropical grye in the WNP (20°N-30°N) and northern part of SCS. Summer bloom only occurs in the upwelling regions such as Vietnam and Sri Lanka and begins during May to June. The duration is more than100d. The interannual variability of the timing of phytoplankton bloom is significant in the regions of the Sri Lanka upwelling, the Japan Sea and the Okhotsk Sea but minor in the the subtropical grye in the WNP (20°N-30°N) and northern part of SCS. For the Sri Lanka upwelling region, the southwest monsoon is the main factor that influences the bloom timing and duration. At the same time, the bloom iniation time in this region is also impacted by SST. For the Japan Sea, the spring bloom starts earlier and lasts longer during El Nino years while the situation is contrary during La Nina years. The SST and wind speed modulated by ENSO envents are the driving forcings. However, the influence of La Nina events is weaker than that of El Nino events.The start time of phytoplankton in the El Nino year of2005is late due to the deep mixed layer depth induced by highest average wind speed of all years.
     (3) The total annual primary production enhancements induced by typhoons during the recent ten years are evaluated. The estimated annual mean carbon fixation in the SCS is0.54Mt while only0.26Mt in the ocean desert of the Western North Pacific and0.21Mt in the continental shelf of the East China Sea. However, only typhoon-forced primary production enhancement in the ocean desert of the Western North Pacific corresponds with climate variability. The contribution tends to be higher during El Nino years while lower during La Nina years.
     (4) We analyze the extreme phytoplankton blooms in the Bay of Bengal triggered by multiple forcings, which include short-term events such as typhoons and eddies as well as climatic events such as ENSO and IOD. The mechanisms between phytoplankton bloom and multiple forcings can be used as the basis of analysis of similar events in the future.
引文
[1]方长芳.全球变暖对北太平洋年代际变化的影响及可能机制研究:[博士论文].青岛:中国海洋大学,2010.
    [2]冯士筰,李凤岐,李少菁.海洋科学导论.北京:高等教育出版社,1999.
    [3]黄邦钦,胡俊,柳欣,王磊,张彩云,周理斌.全球气候变化背景下浮游植物群落结构的变动及其对生物泵效率的影响.厦门大学学报(自然科学版),2011,50(2):402-410.
    [4]林更铭,杨清良.全球气候变化背景下台湾海峡浮游植物的长期变化.应用与环境生物学报,2011,17(5):615-623.
    [5]刘听,王静,程旭华,闫桐.南海叶绿素浓度的时空变化特征分析.热带海洋学报,2012,31(4):42-48.
    [6]宋洪军,季如宝,王宗灵.近海浮游植物水华动力学和生物气候学研究综述.地球科学进展,2011,26(3):257-265.
    [7]赵辉,齐义泉,王东晓,王文质.南海叶绿素浓度空间变化及空间分布特征研究.海洋学报,2005,27(4):45-52.
    [8]闫桐,王静.基于HHT的吕宋岛西北海域叶绿素浓度极其相关物理环境要素的多时间尺度分析.热带海洋学报,2011,30(5):38-47.
    [9]Alvain S, Moulin C, Dandonneau Y, Breon F M. Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery. Deep Sea Research I,2005, 52:1989-2004.
    [10]Alvain S, Moulin C, Dandoneau Y, Loisel H. Seasonal distribution and succession of dominant phytoplankton groups in the global ocean; A satellite view. Global Biogeochemical Cycles,2008,22, GB3001.
    [11]Antonie D, Morel A, Gordon H R, Banzon V F, Evans R H. Bridging ocean color obervations of the 1980s and 2000s in search of long-term trend. Journal of Geophysical Research.2005.110. C06009.
    [12]Aristegui J, Tett P. Hernandez-Guerra A. Basterretxea G, Montero M F, Wild K. Sangra P. Hernandez-Leon S, Canton M, Garcia-Braun J A. Pacheco M. Barton E I). The influence of island-generated eddies on chlorophyll distribution:A study of mesoscale variation around Gran Canaria. Deep Sea Research I,1997,44(1):71-96.
    [13]Atlas R, Ardizzone J, Hoffman R N. Application of satellite surface wind data to ocean wind analysis. Proceedings of the SPIE 7087,2008,70870B-70870B-7.
    [14]Atlas R, Hoffman R N, Ardizzone J, Leidner S M, Jusem J C, Smith D K, Gombos D. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bulletin of the American Meteorological Society,2011,92(2):157-174.
    [15]Babin S M, Carton J A, Dickey T D, Wiggert J D. Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert. Journal of Geophysical Research,2004,109, C03043.
    [16]Behrenfeld M J, O'Malley R T, Siegel D A, McClain C R, Sarmiento J L, Feldman G C, Milligan A J, Falkowshi P G, Letelier R M, Boss E S. Climate-driven trends in contemporary ocean productivity. Nature,2006,444:752-755.
    [17]Boyce D G, Lewis M R, Worm B. Global phytoplankton decline over the past century. Nature,2010,46:591-596.
    [18]Bracher A, Vountas M, Dinter T, Buttows J P, Rottgers R, Peeken I. Quantitative observation of cyanobacteris and diatoms from space using phytoDOAS on SCIAMACHY data. Biogeosciences Discussions,2008,5:4559-4590.
    [19]Brewin R J W, Hirata T, Hardman-Mountford N J, Lavender S J, Sathyendranath S, Barlow R. The influence of the Indian Ocean Dipole on Interannual variations in phytoplankton size structure as revealed by Earth Observation. Deep Sea Research II, 2012,77-80:117-127.
    [20]Brown C W, Yoder J A. Coccolithophorid blooms in the global ocean. Journal of Geophysical Research,1994,99:7467-7482.
    [21]Brzezinski M, Villareal T A, Lipschultz F. Silia production and the contribution of diatoms to new and primary production in the central North Pacific. Marine Ecology Progress Series,1998,167:89-104.
    [22]Chavez F P. Ryan J, Lluch-Cota S E. Niquen M. From anchovies to sardines and back:Mutidecadal changes in the Pacific Ocean. Science,2003.299:217-221.
    [23]Chavez F P, Messie M, Pennington J T. Marine primary production in relation to climate variability and change. Annual Review of Marine Science,2011,3:227-260.
    [24]Chen C T A, Liu C T, Chuang W S, Chuang W S, Yang Y J, Shiah F K, Tang T Y, Chung S W. Enhanced buoyancy and hence upwelling of subsurface Kuroshio waters after a typhoon in the southern East China Sea. Journal of Marine Systems, 2003,42:65-79.
    [25]Chiba S, Aita M N, Tadokoro K, Saino T, Sugisaki H, Nakata K. From climate regime shifts to lower-trophic level phenology:Synthesis of recent progress in retrospective studies of the western North Pacific. Progress of Oceanography,2008, 77:112-126.
    [26]Cole H, Henson S, Martin A, Yool A. Mind the gap:The impact of missing data on the caculation of phytoplankton phenology metrics. Journal of Geophysical Research, 2012,117, C08030.
    [27]Cushing D. Fish stocks and the production cycles. UK:Cambridge University Press, 1975.
    [28]de Boyer Montegut C, Madec G, Fisher A S, Lazar A., ludicone D. Mixed layer depth over the global ocean:An examination of profile data and a profile-based climatology. Journal of Geophysical Research,2004,109, C12003.
    [29]Doney S C, Ruckelshaus M, Duffy J E, Barry J P, Chan F, English C A, Galindo H M, Grebmeier J M, Hollowed A B, Knowlton N, Polovina J, Rabalais N N, Sydeman W J, Talley L D. Climate change impacts on marine ecosystems. Annual Review of Marine Science,2012,4:11-37.
    [30]Djavidnia S, Melin F, Hoepffner. Comparison of global ocean colour data records. Ocean Science,2010,6:61-76.
    [31]Enriquez A G, Friehe C A. Effects of wind stress and wind stress curl variability on coastal upwelling. Journal of Physical Oceanography,1995,25(7):1651-1671.
    [32]Field C B, Behrenfeld M J. Randerson J T, Falkowshi P. Primary production of the biosphere:intergrating terrestrial and oceanic components. Science.1998.281: 237-240.
    [33]Follows M. Dutkiewicz S. Meteorological modulation of the North Atlantic spring bloom. Deep Sea Research Ⅱ,49:321-344.
    [34]Franz B A, Bailey S W, Werdell P J, McClain C R. Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry. Applied Optics,2007, 46(2):5068-5082.
    [35]Garcia H E, Locarnini R A, Boyer T P, Antonov J I, Zweng M M, Baranova O K, Johnson D R. World Ocean Atlas 2009, Volume 4:Nutrients (phosphate, nitrate, and silicate). in:Levitus S, Ed. NOAA Atlas NESDIS 71. Singapore:U.S. Government Printing Office, Washington, D.C.,2010.
    [36]Girishkumar M S, Ravichandran M, McPhaden M J, Rao R R. Intraseasonal variability in barrier layer thickness in the south central Bay of Bengal. Journal of Geophysical Research,2011,116, C03009.
    [37]Girishkumar M S, Ravichandran M, Pant V. Observed chlorophyll-a bloom in the southern Bay of Bengal during winter 2006-2007. International Journal of Remote Sensing,2012a,33(4):1264-1275.
    [38]Girishkumar M S, Ravichandran M. The influences of ENSO on tropical cyclone activity in the Bay of Bengal during October-December. Journal of Geophysical Research,2012b,117. C02033.
    [39]Gomes H R, Goes J I, Saino T. Influence of physical processes and freshwater discharge on the seasonality of phytoplankton regime in the Bay of Bengal. Continental Shelf Research,2000,20:313-330.
    [40]Gopalakrishna V V, Sastry J S. Surface circulation over the shelf off the coast of India during the southwest monsoon. Indian Journal of Marine Sciences,1985,14: 62-66.
    [41]Gregg W W. Decadal changes in globa ocean chlorophyll. Geophysical Research Letters,2002,29(15),10.1029/2002GL014689.
    [42]Gregg W W, Casey N W, McClain C R. Recent trends in global ocean chlorophyll. Geophysical Research Letters,2005,32, L03606.
    [43]Gregg W W. Casey N W. Samping biases in MODIS and SeaWiFS ocean chlorophyll data. Remote Sensing of Environment.2007.111:25-35.
    [44]Gregg W W, Casey N W. Improving the consistency of ocean color data:A step toward climate data records. Geophysical Research Letters,2010,37, L04605.
    [45]Gruber N, Lachkar Z, Frenzel H, Marchesiello P, Munnich M, McWilliams J C, Nagai T, Plattner G K. Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nature Geoscience,2011,4:787-792.
    [46]Han W, McCreary J P, Kohler K E. Influence of precipitation minus evaporation and Bay of Bengal rivers on dynamics, thermodynamics, and mixed layer physics in the upper Indian Ocean. Journal of Geophysical Research,2001,106(C4):6895-6916.
    [47]Hays G C, Richardson A J, Robinson C. Climate change and marine plankton. Trends in Ecology and Evolution,2005,20(6):337-344.
    [48]Henson S A, Robinson I, Allen J T, Waniek J J. Effect of meteorological conditions on Interannual variability in timing and magnitude of the spring bloom in the Irminger Basin, North Atlantic. Deep Sea Research I,2006,53(10):1601-1615.
    [49]Henson S A, Thomas A C. Interannual variability in timing of bloom initiation in the California Current System. Journal of Geophysical Research.2007,112, C08007.
    [50]Henson S A, Dunne J P, Sarmiento J L. Decadal variability in North Atlantic phytoplankton blooms. Journal of Geophysical Research,2009,114, C04013.
    [51]Henson S A, Sarmiento J L, Dunne J P, Bopp L, Lima I D, Doney S C. John J, Beaulieu C. Detection of antropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosiences,2010,7(2):621-640.
    [52]Hirsch R M, Slack J R, Smith R A. Techniques of trend analysis for monthly water quality data. Water resources research,1982,18(1):107-121.
    [53]Hjort J. Fluctuations in the great fisheries of northern Europe:Viewed in the light of biological research. Conseil permanent international pour I'exploration de la mer, 1914.
    [54]Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London.A,1998,454:903-995.
    [55]Huang N E, Wu Z. A review on Hilbert-huang transform:Method and its applications to geophysical studies. Review of Geophysics.2008.46.
    [56]IOGGC. Ocean-Colour data merging. Report of the international Ocean-Colour Coordinating Group,2007, Dartmouth, Canada.
    [57]Ji R B, Edwards M, Mackas D L, Runge J A, Thomas A C. Marine plankton phenology and life history in a changing climate:current research and future directions. Journal of Plankton Research,2010,32(10):1355-1368.
    [58]Lee H S, Yamashita T, Mishima T. Multi-decadal variations of ENSO, the Pacific Decadal Oscillation and tropical cyclones in the western North Pacific. Progress in Oceanography,2012,105:67-80.
    [59]Li G, Wu Y, Gao K. Effects of Typhoon Kaemi on coastal phytoplankton assemblages in the South China Sea, with special reference to the effects of solar UV radiation. Journal of Geophysical Research,2009,114, G04029.
    [60]Lin I, Liu W T, Wu C C, Wong G T F, Wu C, Chen Z, Liang W D, Yang Y, Liu K K. New evidence for enhanced ocean primary production triggerd by tropical cyclone. Geophysical Research Letters,2003,30,1718.
    [61]Lin 1, Wu C C, Pun I F. Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I:Ocean features and the category 5 typhoons' intensification.Monthly Weather Review,2008,136:3288-3306.
    [62]Lin I, Lien C C, Wu C R, Wong G T F, Huang C W, Chiang T L. Enhanced primary production in the oligotrophic South China Sea by eddy injection in Spring. Geophysical Research Letters,2010,37, L16602.
    [63]Lin I. Typhoon-induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean. Journal of Geophysical Research,2012, 117, C03039.
    [64]Liu F, Chen C, Zhan H. Decadal variability of chlorophyll a in the South China Sea: a possible mechanism. Chinese Journal of Oceanology and Limnology,2012,30(6): 1054-1062.
    [65]Longhurst A R. Ecological geography of the sea. Second edition. Sandiego: Academic Press,2007.
    [66]Kahru M, Mitchell B G. Ocean color reveals increased blooms in various parts of the world. Eos. Transactions American Geophysical Union.2008.89:170.
    [67]Kahru M. Gille S T. Murtugudde R. Strutton P (i Manzano-Sarabia M. Wang H. Mitchell B G. Global correlations between winds and ocean chlorophyll. Journal of Geophysical Research,2010,115, C12040.
    [68]Kahru M, Brotas V, Srabia M M, Mitchell B G. Are phytoplankton blooms occurring earlier in the Arctic. Global Change Biology,2011,17:1733-1739.
    [69]Kahru M, Kudela R M, Sarabia M M, Mitchell B G. Trends in the surface chlorophyll of the California Current:Merging data from multiple ocean color satellites. Deep Sea Research II.2012,77-80:89-98.
    [70]Koeller P, Fuentes-Yaco C, Platt T, Sathyendranath S, Richards A, Ouellet P, Orr D, Skuladottir U, Wieland K, Savard L Ashan M. Basin-scale coherence in phenology of shrimps and phytoplankton in the North Atlantic Ocean. Science,2009,324: 791-793.
    [71]Kostadinov T S, Siegel D A, Maritorena S. Global variability of phytoplankton functional types from space:assessment via the particle size distribution. Biogeosciences Discuss,2010,7:4295-4340.
    [72]Mackas D L. Does blending of chlorophyll data bias temporal trend?. Nature,472: E4-E5.
    [73]Maneesha K, Sarma V, Reddy P, Sadhuram Y, Murty T V R, Sarma V V. Kumar M D. Meso-scale atmosphere events promote phytoplankton blooms in the coastal Bay of Bengal. Journal of Earth System Science,2011,120(4):773-782.
    [74]Mantua N J, Hare S R, Zhang Y, Wallace J M, Francis R C. A pacific Interannual climate oscillation with impacts on Salmon production. Bulletin of the American Meteological Society,1997,78:1069-1079.
    [75]Maritorena S., d'Andon O H F, Mangin A, Siegel D A. Merged satellite ocean color data products using a bio-optical model:Characteristics benefits and issues. Remote Sensing of Environment,2010,114:1791-1804.
    [76]Martinez E, Antoine D, D'Ortenzio F, Gentili B. Climate-driven basin-scale decadal oscillations of oceanic phytoplankton. Science,326(5957):1253-1256.
    [77]Masotti I. Moulin C, Alvain S, Bopp L, Tagliabue A. Antoine I). Large-scale shifts in phytoplankton groups in the Equatorial Pacific during ENSO cycles. Biogeosciences 2011.8:539-550.
    [78]McClain C R. A decade of satellite ocean color observations. Annual Review of Marine Science,2009,1:19-42.
    [79]McCullagh P, Nelder J A. Generalized linear models. Second edition. London: Chapman and Hall,1989.
    [80]McGillicuddy D J. The internal weather of the sea and its influences on ocean biogeochemistry. Oceanography,2001,14:78—92.
    [81]McGillicuddy D J, Anderson L A, Bates N R, Bibby T, Buesseler K O, Carlson C A, Davis C S, Ewart C, Falkowsko P G, Goldthwait S A, Hansell D A, Jenkins W J, Johnson R, Kosnyrev V K, Ledwell J R, Li Q P, Siegel D A, Steinberg D K. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science, 2007,316:1021-1026.
    [82]McQuatters-Gollop A, Reid P C, Edwards M, Burkill P H, Castellani C, Batten S, Gieskes W, Beare D, Bidigare R R, Head E, Johnson R, Kahru M, Koslow J A, Pena A. Is there a decline in marine phytoplankton. Nature,472:E6-E7.
    [83]Mores J, Stuart V, Platt T, Sathyendranath S. Handbook of satellite remote sensing image interpretation:applications for marine living resources conservation and management. Cadana:EU PRESPO and IOCCG,2011.
    [84]Muraleedharan K R, Jasmine P, Achuthankutty C T, Revichandran C, Kumar P K D, Anand P, Rejomon G. Influence of basin-scale and mesoscale physical processes on biological productivity in the Bay of Bengal during the summer monsoon. Progress in Oceanography,2007,72:364-383.
    [85]Murtugudde R G. Signorini S R, Christian J R, Busalacchi A J, McClain C R, Picaut J. Ocean color variability of the tropical Indo-Pacific basin observed by SeaWiFS during 1997-1998. Journal of Geophysical Research,1999, 104(C8):18351-18366.
    [86]Murtugudde I, Beauchamp R J, McClain C R, Lewis M, Busalacchi A J. Effects of penetrative radiation on the upper tropical ocean circulation. Journal of Climate, 2002,15:470-486.
    [87]Nuncio M, Prasanna Kumar S. Life cycle of eddies along the western boundary of the Bay of Bengal and their implications. Journal of Marine Systems.2012.94: 9-17.
    [88]Oyama Y, Matsushita B, Fukushima T, Chen J, Nagai T, Imai A. Testing the spectral decomposition algorithm (SDA) for different phytoplankton species by a simulation based on tank experiments. International Journal of Remote Sensing,2010,31: 1605-1623.
    [89]Platt T, Fuentes-Yaco C, Frank K. T. Spring algal bloom and larval fish survival. Nature,2003,423:398-399.
    [90]Platt T, Sathyendranath S. Ecological indicators for the pelagic zone of the ocean from remote sensing. Remote Sensing of Environment,2008,112:3426-3426.
    [91]Platt T, White G N, Zhai L, Sathyendranath S, Roy S. The phenology of phytoplankton blooms:Ecosystem indicators from remoete sensing. Ecological Modelling,2009,220:3057-3069
    [92]Platt T, Sathyendranath S, White G N, Yaco C F, Zhai L, Devred E, Tang C Diagnostic properties of phytoplankton time series from remote sensing. Estuaries and Coasts,2010,33:428-439.
    [93]Prasad T G. Annual and seasonal mean buoyancy fluxes for the tropical Indian Ocean. Current Science,1997,738:667-674.
    [94]Prasanna Kumar S, Muraleedharan P M, Prasad T G, Gauns M, Ramaiah N, de Souza S N, Sardesau S, Madhupratap M. Why is the Bay of Bengal less productive during the summer monsoon compared to the Arabian Sea? Geophysical Research Letters,2002,29(24):88-1-88-2.
    [95]Prasanna Kumar S, Nuncio M, Narvekar J. Are eddies nature's trigger to enhance biological productivity in the Bay of Bengal? Geophysical Research Letters,2004, 31,L07309.
    [96]Prasanna Kumar S, Nuncio M, Ramaiah N, Sardesai S, Narvekar J, Fernandes V, Paul J T. Eddy-mediated biological productivity in the Bay of Bengal during fall and spring intermonsoons. Deep Sea Research I,2007,54:1619-1640.
    [97]Prasanna Kumar S, Nuncio M, Narvekar J, Ramaiah N, Sardessai S, Gauns M, Fernandes V, Paul J T, Jyothibabu R, Jayaraj K A. Seasonal cycle of physical forcing and biological response in the Bay of Bengal. Indian Journal of Marine Sciences.2010.39(3):388-405.
    [98]Price J F. Upper ocean response to a hurricane. Journal of Physical Oceanography, 1981,11:153-175.
    [99]Qasim S Z. Biological productivity of the Indian Ocean. Indian Journal of Marine Sciences,1977,6:122-137.
    [100]Racault M F, Le Quere C, Buirenhuis E, Sathyendranath S, Platt T. Phytoplankton phenology in the global ocean. Ecological Indicators,2012,14:152-163.
    [101]Rao R R, Sivakumar R. Seasonal variability of sea surface salinity and salt budget of the mixed layer of the north Indian Ocean. Journal of Geophysical Research,2003, 108(C1):9-1-9-14.
    [102]Rao K H, Smitha A, Ali M M. A study on cyclone induced productivity in south-western Bay of Bengal during November-December 2000 using MODIS (SST and chlorophyll-a) and altimeter sea surface height observations. Indian Journal of Marine Sciences,2006,32(2):153-160.
    [103]Rao R R, Girish Kumar M S, Ravichandran M, Rao A R, Gopalakrishna V V, Thadathil P. Interannual variability of Kelvin wave propagation in the wave guides of the equatorial Indian Ocean, the coastal Bay of Bengal and the southeastern Arabian Sea during 1993-2006. Deep Sea Research I,2010,57:1-13.
    [104]Reddy P, Salvekar P S, Nayak S. Super cyclone induces a mesoscale phytoplankton bloom in the Bay of Bengal. Geoscience and Remote Sensing Letters,2008a,5(4); 588-592.
    [105]Reddy P. Salvekar P S. Phytoplankton blooms induced/sustained by cyclonic eddies during the Indian Ocean dipole event of 1997 along the southern coasts of Java and Sumatra. Biogeosciences Discuss,2008b,5:3905-3918.
    [106]Rykaczewki R, Dunne J P. A measured look at ocean chlorophyll trends. Nature,472: E5-E6.
    [107]Saji N H, Goswami B N, Vinayachandran P N, Yamagata T. A dipole mode in the tropical Indian Ocean. Nature.1999,401:360-363.
    [108]Sapiano MRP, Brown C W, Schollaert Uz S, Vargas M. Establishing a global climatology of marine phytoplankton phenological characteristics. Journal of Geophysical Research.2012.117. C08026.
    [109]Sasaoka K, Chiba S, Saino T. Climatic forcing and phytoplankton phenology over the subarctic North Pacific from 1998 to 2006, as observed from ocean color data. Geophysical Research Letters,2011,38, L15609.
    [110]Sieburth J M, Smetacek V, Lenz J. Pelagic ecosystem structure:heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnology and Oceanography,1978,23:1256-1263.
    [111]Siegel D A, Doney S C, Yoder J A. The North Atlantic spring phytoplankton bloom and Sverdrup's critical depth hypothesis. Science,2002,296:730-733.
    [112]Siswanto E, Ishizaka J, Yokouchi K, Tanaka K. Estimation of Interannual and interdecadal variations of typhoon-induced primary production:A case study for the outer shelf of the East China Sea. Geophysical Research Letters,2007,34, L03604.
    [113]Siswanto E, Morimoto A, Kojima S. Enhancement of phytoplankton primary productivity in the southern East China Sea following episodic typhoon passage. Geophysical Research Letters,2009,36, L11603.
    [114]Sharpies J, Ross O N, Scott B E, Greenstreet S P R, Fraser H. Inter-annual variability in the timing of stratification and the spring bloom in the North-western North Sea. Continental Shelf Research,2006,26:733-751.
    [115]Shetye S R, Gouveia A D, Shenoi S S C, Sundar D, Michael G S, Nampoothiri G. The western boundary current of the seasonal subtropical gyre in the Bay of Bengal. Journal of Geophysical Research,1993,98:945-954.
    [116]Shi W, Wang M. Observations of a Hurricane Katrina-induced phytoplankton bloom in the Gulf of Mexico. Geophysical Research Letters,2007,34, L11607.
    [117]Sole J, Turiel A, Llebot J E. Using empirical mode decomposition to correlate paleclimate time-series. Natural Hazards and Earth System Sciences,2007,7: 299-307.
    [118]Somayajulu Y K, Murty V S N, Sarma Y V B. Seasonal and inter-annual variability of surface circulation in the Bay of Bengal from TOPEX/Poseidon altimetry. Deep Sea Research II,2003.50:867-880.
    [119]Song H J, Ji R B, Stock C, Wang Z. Phenology of phytoplankton blooms in the Nova Scotian Shelf-Gulf of Marine region:Remote sensing and modeling analysis. Journal of Plankton Research,2010,32:1485-1499.
    [120]Sreenivas P, Gnanaseelan C, Prasad K V S R. Influence of El Nino and Indian Ocean dipole on sea level variability in the Bay of Bengal. Global and Planetary Change, 2012,80-81:215-225.
    [121]Subramaniam A, Brown C W, Hood R R, Carpenter E J, Capone D G. Detecting Trichodesmium blooms in SeaWiFS imagery. Deep Sea Research Ⅱ,2002,49: 107-121.
    [122]Sverdrup H U. On conditions for the vernal blooming of phytoplankton. Journal du Conseil International pour l'Exploration de la Mer,1953,18:287-295.
    [123]Thadathil P, Muraleedharan P M, Rao R R, Somayajulu Y K, Reddy G V, Revichandran C. Observed seasonal variability of barrier layer in the Bay of Bengal. Journal of Geophysical Research,2007,112, C02009.
    [124]Thomas A C, Stub P T, Weatherbee R A, James C. Satellite views of Pacific chlorophyll variability:Comparisons to physical variability, local versus nonlocal influences and links to climate indices. Deep Sea Research Ⅱ,2012,77-80:99-116.
    [125]Tummala S K, Mupparthy R S, Nagaraja Kumar M, Nayak S R. Phytoplankton bloom due to Cyclone Sidr in the central Bay of Bengal. Journal of Applied Remote Sensing,2009,3,033547.
    [126]Ueyama R, Monger B C. Wind-induced modulation of seasonal phytoplankton blooms in the North Atlantic derived from satellite observations. Limnology and Oceanography,2005,50(6):1820-1829.
    [127]Uitz J, Claustre H, Morel A, Hooker S B. Vertical distribution of phytoplankton communities in open ocean:an assessment based on surface chlorophyll. Journal of Geophysical Research,2006,111, C08005.
    [128]Vantrepotte V, Melin F. Temporal variability of 10-year global SeaWiFS time-series of phytoplankton chlorophyll a concentration. ICES Journal of Marine Science,2009, 66(7):1547-1556.
    [129]Vantrepotte V, Melin F. Inter-annual variations in the SeaWiFS global chlorophyll a concentration(1997-2007). Deep Sea Research Ⅰ,2011,58:429-441.
    [130]Vargas M, Brown C W, Sapiano M R P. Phenology of marine phytoplankton from satellite ocean color measurements. Geophysical Research Letters,2009,36, L01608.
    [131]Vinayachandran P N, Mathew S. Phytoplankton bloom in the Bay of Bengal during the northeast monsoon and its intensification by cylones. Geophysical Research Letters,2003,30(11):26-1-26-4.
    [132]Vinayachandran P N, Chauhan P, Mohan M, Nayak S. Biological response of the sea around Sri Lanka to summer monsoon. Geophysical Research Letters,2004,31, L01302.
    [133]Vinayachandran P N, Julian P, McCreary J P, Hood R R, Kohler K E. A numerical investigation of the phytoplankton bloom in the Bay of Bengal during Northeast Monsoon. Journal of Geophysical Research,2005,110, C12001.
    [134]Vinayachandran P N, Kurian J, Neema C P. Indian Ocean response to anomalous conditions in 2006. Geophysical Research Letters,2007,34, L15602.
    [135]Vinayachandran P N, Francis P A, Rao S A. Indian Ocean dipole:Processes and impacts. Current Trends in Science,2009,569-589.
    [136]Vountas M, Dinter T, Bracher A, Burrows J P, Sierk B. Spectral studies of ocean water with space-borne sensor SCIAMACHY using differential optical absorption spectroscopy (DOAS). Ocean Science,2007,3:429-440.
    [137]Webster P J, Holland G J, Curry J A, Chang H R. Changes in tropical cyclone number, duration and intensity in a warming environment. Science,2005,309: 1844-1846.
    [138]Williams R G, Follows M J. Eddies make ocean deserts bloom. Nature.1998,394: 228-229.
    [139]Wolter K, Timlin M S. Monitoring ENSO in COADS with a seasonally adjusted principal component index. Proceedings of the 17th Climate Dianostics Workshop, 1993, Norman,52-57.
    [140]Wolter K, Timlin M S. El Nino/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). International of Journal of Climatology.2011.31:1074-1087.
    [141]Wu Z, Huang N E. A study of the characteristics of white noise using the empirical mode decomposition method. Proceedings of the Royal Society of London.A,2004, 460:1597-1611.
    [142]Yamada K, Ishizaka J, Yoo S, Kim H, Chiba S. Seasonal and Interannual variability of sea surface chlorophyll a concentration in the Japan/East Sea (JES). Progress of Oceanography,2004,61:193-211.
    [143]Yamada K, Ishizak J. Estimation of intedecadal change of spring bloom timing, in the case of the Japan Sea. Geophysical Research Letters,2006,33, L02608.
    [144]Yoo S, Batchelder H P, Peterson W T, Sydeman W J. Seasonal, Interannual and event scale variation in North Pacific ecosystems. Progress in Oceanography,2008,77: 155-181.
    [145]Zhai L, Platt T, Tang C, Sathyendranath S, Walls R H. Phytoplankton phenology on the Scotian Shelf. ICES Journal of marine Science,2011,68(4):781-791.
    [146]Zhai L, Gudmundsson K, Miller P, Peng W, Guofinnsson H, Debes H, Hatun H, White G N, Walls R H, Sathyendranath S, Platt T. Phytoplankton phenology and production around Iceland and Faroes. Continental Shelf Research,2012,37:15-25.
    [147]Zhao H, Tang D, Wang D. Phytoplankton blooms near the Pearl River Estuary induced by Typhoon Nuri. Journal of Geophysical Research,2009,114, C12027.
    [148]Zheng Z W, Ho C R, Zheng Q, Lo Y T, Kuo N J, Gopalakrishnan G. Effects of preexisting cyclonic eddies on upper ocean responses to Category 5 typhoons in the western North Pacific. Journal of Geophysical Research,2010,115(C9):C09013.