大面积场坪下深厚软土桩—网复合地基承载性状研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国铁路正在实现跨越式发展,在软基上修建高速铁路,将面临地基稳定及大变形等问题,特别是对于高速铁路路基工程而言,不仅要求路堤保持稳定性,而且要严格控制工后不均匀沉降。桩-网复合地基是一种能有效控制沉降的新型复合地基,从目前的研究现状来看,前人的研究主要针对公路、铁路路堤等较小范围的软土路基作用性状,且多集中在地基表面以上,如路堤填土、加筋垫层、桩土应力等,而本文研究桩-网复合地基用于高速铁路超大面积场坪区海相沉积深厚软土地基的处理,采用现场实测与三维数值模拟相结合的方法,对超大面积场坪下桩-网复合地基承载性状与沉降变形机理进行研究,取得的主要成果有:
     1.根据潮汕车站超大面积深厚软土地基地层的具体分布特性、物理力学性质及指标,分析了潮汕车站超大面积深厚软土地基三个主要特性(流变特性、触变特性、有机质含量高),并分析了其对路基沉降控制的影响。分析了现场试验断面的地层分布情况及软土特性,分析潮汕车站软土的物理力学性质及软土特性的工程意义,详细介绍现场试验断面地层分布及各断面软土特性,最后提出潮汕车站软土地基沉降控制工程概况。
     2.结合潮汕车站软基处理段,设置监测断面,布设相关监测仪器:分层沉降管、测斜管、土压力盒、柔性位移计、布置于管桩内部的钢筋应力计以及孔隙水压力计。对管桩沉桩过程、上部路堤填土施工过程中孔隙水压力、地表沉降、深部分层沉降、深部水平位移、桩顶应力、桩间上应力等的变化进行观测,分析路堤下管桩复合地基的沉降特性、应力分布及桩土应力分担比,进而检验管桩对软弱地基的加固效果。
     3.通过对现场数据的整理、分析,得出以下结论:①在加载初期,桩间土和桩顶土应力都出现了一个迅速增大的过程,但是桩顶土应力要比桩间土应力增加得快,并且在填土高度达到一定高度时,桩间土应力出现了极值。桩土应力比也随着填土的增加而增加,并且在后期出现了波动,是褥垫层的调节荷载的作用。②孔隙水压力随填土高度的增加上升得并不明显,因为桩间土承担的荷载较小,大部分的荷载由管桩来承担。③管桩的轴力、摩阻力和地层情况密切相关,其中淤泥质黏土强度低,管桩受到的摩阻力小,轴力传递快,其他地层如细砂等层内,管桩受到的摩阻力较大,轴力传递较慢。④分层沉降的速率和填土速率大致呈正相关,在填土间歇期甚至出现了沉降回弹的现象;在沉降数值上,和地层深度有关,深度越深沉降量越小,越靠近地表沉降量越大。⑤加筋体拉伸位移量随着填土高度的增加而增加,并且位于桩间上位置的加筋体拉伸量大于位于桩顶处的加筋体拉伸量;此外,桩间土处的加筋体表现出滞后效应。⑥侧向位移大致呈现出随着深度的加深而减小的趋势,但是总体的水平位移不大;地层的侧向位移也与地层土类有关,淤泥质黏土中的水平位移较大,特别是靠近底部的地层分界线或附近的位置,水平位移较大。
     4.运用拉格朗日有限元三维计算方法FLAC3D,对试验段监测断面进行全断面数值模拟,分析研究桩体轴力、剪力、弯矩、侧摩阻力、桩顶和桩间土压力、孔隙水压力和桩土应力比的变化规律,研究了负摩阻力与填土高度、桩土沉降差、桩土应力比、桩长和下卧层的关系,中性点深度与桩间距、桩帽尺寸、褥垫层弹性模量、填土内摩擦角、桩长和下卧层的关系,论述了负摩阻力对沉降变形及桩承载能力的影响,尔后分析研究了流固耦合作用下桩间上表面沉降、桩顶沉降、桩土沉降差和侧向位移的变化规律,最后通过提取监测断面在现场工况条件下附加荷载阶段及软土流变阶段中心处桩间土沉降、桩顶沉降和路堤表面沉降数据,进行沉降预测。
The construction of subgrade in high-speed railway resting on soft ground requires not only the stability of embankment, but also the strictly control for the post-construction settlement. The geogrid-reinforced and pile-supported embankment (herein after for GRPSE) is a new type of composite foundation to control the settlement, and the current researches are basically focused on normal embankments with a relatively small cross section resting on a specific commonplace soil foundation. The GRPSE used to support a station yard of a high-speed railway resting on oversize-deep-soft soil have never been studied, and no relevant research or engineering principles can be used for reference. In this dissertation, a construction section with relatively deep soft layers and a large cross section was chosen as the testing site, and the corresponding data is analyzed in detail to investigate the bearing behavior and settlement mechanism of GRPSE resting on oversize-soft-soil by using field test and three-dimensional numerical simulation methods. The main results obtained are listed below.
     1. Based on the specific strata distribution of oversize-deep-soft soil in the Chaoshan station and physical and mechanical properties of soil, the three corresponding main characteristics (rheological properties, thixotropic properties and high organic matter content) and their impact on the control of subgrade settlement are analyzed in detail. The stratigraphic distribution of the field test section and the soft soil characteristics, and the engineering significance are investigated specifically. Furthermore, the physical and mechanical properties of soft soil, details of sections stratigraphic distribution and cross section of field test section are introduced.
     2. According to the in-situ soft soil handling segment of Chaoshan station, a monitoring section are selected, and the corresponding monitoring instruments consists of layered deposition tubes, inclinometer tubes, earth pressure cells, flexible displacement sensors, stress gauges and pore water pressure gauges are arranged. The process of pore water pressure in the upper part of the embankment during construction period, the surface subsidence, the deep part of layered settlement, the horizontal displacement, the stress on the top of piles and soil among piles and so on are under observation to process the analysis of the settlement characteristics of the composite foundation, stress distribution and the pile-soil stress ratio. So that the reinforced effect of tube pile on soft ground can be estimated and verified.
     3. By regulating and analyzing the monitoring data, the following conclusions can be drawn:①In the early stage of filling, the earth pressure on the soil between the piles and the top of the pile increase drastically, however the rate of change of the earth pressure on the top of the pile is larger than that in the soil between the piles. When the filling reaches a certain value, the maximum earth pressure occurs in the soil between the piles. The pile-soil stress ratio increases with time and loading, and it fluctuates under the constant adjustment of the cushion.②The pore water pressure increases slightly with the filling height because the load borne by the soil between the piles is relatively small.③Both the axial force and the skin friction of the piles increase with time and with load. In addition, the force and the friction are closely related to the properties of the soil layers. In the silt layer and the silty soil layer with low strength, the skin friction is relatively small, and the axial force can be quickly transferred.④The rate of change of the layered settlement is directly proportional to the filling speed. The settlement increases abruptly when filling is conducted in a short time; the settlement then develops gradually and decreases after a certain time period.⑤The stretching of the geogrid increases with the filling height, and the stretching in the soil between the piles is larger than that on the top of the pile. The stretch rate and tension of the geogrid located in the soil between the piles are both larger than the corresponding values on the top of the pile.⑥As the fill height and the consolidation of soil gradually increase, the lateral displacement of the embankment increases accordingly. The rate of change of the lateral displacement during the filling period is larger than that during the stable period after filling. The lateral displacement of the embankments varies in different soil layers under loading, and the lateral displacement of the embankment in soft soil layers is relatively large.
     4. Using the finite difference three-dimensional software of FLAC3D, the full monitoring sections are simulated to analyze the axial force, shear, bending moment, skin friction of piles as well as soil pressure on the top and the bottom of the pile body, the variation properties of pore water pressure and pile-soil stress ratio. The relationship of negative skin friction from the filling height, the pile-soil differential settlement, the pile-soil stress ratio, the length of pile and the distributions of underlying soil layers are investigated, and the connection between the location of neutral point and the pile spacing, the size of pile cap, the elastic modulus of the cushion and so on are discussed correspondingly. Furthermore, the influence of the negative skin friction on the settlement and deformation of embankment and the bearing capacity of piles are studied. In addition, under consideration fluid-solid interaction, the variation law of the surface subsidence of soil among piles, the settlement of pile top, the differential pile-soil settlement and the lateral displacement are analyzed. At last, by extracting the monitoring data from the center pile-soil subsidence, settlement of pile top and embankment surface settlement considering the additional loading stage and the rheological phase of soft soil, a relevant settlement prediction is made.
引文
[1]陈善雄,宋剑,周全能,李明领.高速铁路沉降变形观测评估.北京:中国铁道出版社,2010.
    [2]饶为国.桩-网复合地基原理及实践.北京:中国水利水电出版社,2004.
    [3]Abusharar Sari W, Zheng Jun-Jie, Chen Bao-Guo, Yin Jian-Hua. A simplified method for analysis of a piled embankment reinforced with geosynthetics. Geotextiles and Geomembranes,2009,27(1):39-52.
    [4]Abusharar Sari W, Zheng Jun-Jie, Chen Bao-Guo, Yin Jian-Hua. A simplified method for analysis of a piled embankment reinforced with geosynthetics. Geotextiles and Geomembranes,2009,27(1):39-52.
    [5]Graeme D. Skinnera, R. Kerry Rowe. Design and behaviour of a geosynthetic reinforced retaining wall and bridge abutment on a yielding foundation. Geotexiles and Geomembranes,2005,23(3):234-260.
    [6]Kang Gi-Chun, Song Young-Suk, Kim Tae-Hyung. Behavior and stability of a large-scale cut slope considering reinforcement stages. Landslides,2009,6(3): 263-272.
    [7]Helwany SMB, Wu JTH, Froessl B. GRS bridge abutments-an effective means to alleviate bridge approach settlement. Geotextiles and Geomembranes,2003,21(3): 177-196.
    [8]Huang J, Han J, Collin JG. Geogrid-reinforced pile-supported railway embankments-A three-dimensional numerical analysis. Transportation Research Record,2005, (1936): 211-229.
    [9]戴洪军,刘欣良,任治军等.圆形煤场中桩-网复合地基原体试验研究[J].岩土力学,2011,32(02):487-454
    [10]肖宏.高速铁路无碴轨道桩网结构路基研究.博士学位论文,成都:西南交通大学,2007
    [11]Gangakhedkar Rutugandha. Geosynthetic Reinforced Pile Supported Embankments [D]. Florida:University of Florida,2004
    [12]连峰.桩网复合地基承载机理及设计方法[D].博士学位论文,杭州:浙江大学,2009
    [13]Alzamora, D., Wayne, M. H., Han,J., Performance of SRW supported by geogrids and jet grout columns[A]. Proceedings of ASCE Specialty Conference on Performance Confirmation of Constructed Geotechnical Facilities[C]. USA:ASCE,2000 (94): 456-466
    [14]Han J., Akins K. Case studies of geogrid-reinforced and pile-supported earth structures on weak foundation soils [A]. Proceeding of International Deep Foundation Congress, Geotechnical Special Publication No.116—Deep Foundations 2002[C], Orlando, ASCE,2002:668-679
    [15]牛建东.高速铁路桩-网复合地基性状及设计方法研究[D].博士学位论文,长沙:中南大学,2006
    [16]徐立新.桩承式加筋路堤的设计计算方法研究[D].博士学位论文,杭州:浙江大学,2007
    [17]Han, J., Porbaha,A., Huang,J..2D numerical modeling of a constructed geosynthetic-reinforced embankment over deep mixed columns[C]//Proceedings of Contemporary Issues in Foundation Engineering. New York:ASCE Publications, 2005:52-62
    [18]Young In Oh, Eun Chul Shin. Reinforcement and arching effect of geogrid reinforced and pile-supported embankment on marine soft ground[J]. Marine Georesources and Geotechnology,2007,25 (02):97-118
    [19]F. Wang, J. Han, L.-C. Miao, A. Bhandari.. Numerical analysis of geosynthetic-bridged and drilled shafts-supported embankments over large sinkholes[J]. Geosynthetics International,2009,16 (06):408-419
    [20]Kousik Deb. A mathematical model to study the soil arching effect in stone column supported embankment resting on soft foundation soil[J]. Applied Mathematical Modelling,2010 (34):3871-3883
    [21]郑忠勤,谭祖保,胡汉忠.用粉喷桩土工格网加固永丰营车站深层软土路基的施工技术[J].路基工程,2000(03):58-61
    [22]周续业,胡涛.CFG桩的基本原理及其在公路软基处理上的应用[J].西部探矿工程,2003(03):151-153
    [23]孙宏林,王祥,李丹.土工材料与高速铁路路基工后沉降控制[J].铁道勘察,2005(01):36-39
    [24]汤晓光,赵双林,郑文军.武广客运专线CFG桩施工方法试验研究[J].路基工程,2007(04):117-118
    [25]张栋樑.深厚层软土路基桩网复合结构地基沉降机理及计算方法研究[D].博士学位论文,上海:同济大学,2007
    [26]苏维,杨怀志,马建林等.高速铁路深厚松软土层CFG桩桩筏和桩网复合地基沉降特性的试验研究[J].铁道建筑,2009(07):66-68
    [27]李洪涛.遂渝铁路无碴轨道路基施工技术研究[D].硕士学位论文,上海:上海交通大学,2010
    [28]谢大伟,黄志军,王旭等.CFG桩网结构在高速铁路软基处理中的应用[J].淮阴工学院学报,2010,19(01):77-80
    [29]王亮亮.客运专线红黏土地基固结变形及桩网加固机理现场试验[D].硕士学位论文,长沙:中南大学,2010
    [30]叶卓棋,强小俊.桩网工法处理城市快速路的现场测试与分析探讨[J].中外公路,2010,30(04):82-86
    [31]戴洪军,刘欣良,任治军等.圆形煤场中桩-网复合地基原体试验研究[J].岩土力学,2011,32(02):487-454
    [32]Jones C J, Lawson C R, Ayres D J. Geotextile reinforced piled embankment. In Geotextile Gemembranes and Related Products. Balkema, Rotterdam,1990, Pages 155-159.
    [33]Terzaghi, K. Theoretical soil mechanics, Wiley, New York,1943.
    [34]Low B K, Tang S K, and Choa V. Arching in piled embankment. Journal of Geotechnical Engineering.1994,120(11):1917-1938.
    [35]British Standard 8006. Code of Practice for strengthened/reinforced clays and other fills, British Standards Institute.1995.
    [36]饶为国.桩-网复合地基沉降机理及设计方法研究.岩石力学与工程学报,2004,23(5):881-881.
    [37]雷金波,姜弘道,郑云扬等.带帽桩复合地基复合桩土应力比的计算及影响因素分析[J].岩土工程学报,2005,27(11):1300-1305
    [38]朱奎.刚-柔性桩复合地基特性研究[D].博士学位论文,杭州:浙江大学,2006
    [39]Chen R.P., Chen Y.M., Z.Z. Xu. A theoretical solution for pile-supported embankments on soft soils under one-dimensional compression. Canadian Geotechnical Journal, 2008,45(5):611-623.
    [40]曹卫平,陈云敏,陈仁朋.考虑路堤填筑过程与地基土固结相耦合的桩承式路堤土拱效应分析[J].岩石力学与工程学报,2008,27(08):1610-1617
    [41]左威龙,王磊.路堤荷载下带桩帽刚性桩复合地基桩土应力比分析[J].防灾减灾工程学报,2009,29(03):295-299
    [42]张栋樑,臧延伟.桩-网复合结构桩间土应力计算方法研究[J].铁道工程学报,2009(07):25-28
    [43]Deb Kousik. A mathematical model to study the soil arching effect in stone column-supported embankment resting on soft foundation soil. Applied Mathematical Modeling,2010,34(12):3871-3883.
    [44]高胜利,魏宏,刘天福.路堤荷载下带帽桩-网复合地基桩土应力比研究[J].铁道建筑,2010(12):63-65
    [45]Bergado D.T., Teerawattanasuk C., Youwai S., etc. Finite element modeling of hexagonal wire reinforced embankment on soft clay. Canadian Geotechnical Journal, 2000,37(6):1209-1226.
    [46]张建勋,陈福全,简洪钰.被动桩中土拱效应问题的数值分析[J].岩土力学,2004,25(02):174-179
    [47]陈凯杰.桩-网复合地基工作性状的研究[D].硕士学位论文,武汉:武汉科技大学,2005
    [48]苪瑞.刚性桩加固软土地基的路堤荷载传递机理与优化研究[D].博士学位论文,武汉:武汉理工大学,2007
    [49]贺种,楼晓明,熊巨华.桩承式路堤土拱效应有限元研究[J].岩土力学,2008,29(06):1466-1470
    [50]徐正中.桩承式路堤固结性状试验与理论研究[D].博士学位论文,杭州:浙江大学,2009
    [51]余闯,刘松玉,杜广印等.桩承式路堤土拱效应的三维数值模拟[J].东南大学学报(自然科学版),2009,39(01):58-62
    [52]周志军.路堤下复合地基承载机理与数值模拟研究[D].博士学位论文,长沙:湖南大学,2010
    [53]Borges Jose Leitao, Marques Daniela Oliveira. Geosynthetic-reinforced and jet grout column-supported embankments on soft soils:Numerical analysis and parametric study. Computers and Geotechnics,2011,38(7):883-896.
    [54]蒋关鲁,刘先锋,张建文等.高速铁路液化土地基加固的振动台试验研究.西南交通大学学报,2006,41(2):190-196.
    [55]陈艳平,赵明华,陈昌富等.土工格室碎石垫层-碎石桩复合地基相似模型试验[J].中国公路学报,2006,19(01):17-25
    [56]白顺果,侯永峰,张鸿儒.循环荷载作用下水泥土桩复合地基的临界循环应力比和永久变形分析[J].岩土工程学报,2006,28(01):84-87
    [57]Hong Won Pyo, Lee Jae Ho, Lee Kwang Wu. Load transfer by soil arching in pile-supported embankments. Soils and Foundations,2007,47(5):833-843.
    [58]曹卫平,陈仁朋,陈云敏.桩承式加筋路堤土拱效应试验研究[J].岩土工程学报,2007,29(03):436-441
    [59]Chen Yun-Min, Cao Wei-Ping, Chen Ren-Peng. An experimental investigation of soil arching within basal reinforced and unreinforced piled embankments. Geotextiles and Geomembranes,2008,26(2):164-174.
    [60]王长丹,王炳龙,王旭,周顺华.湿陷性黄土桩网复合地基沉降控制离心模型试验.铁道学报,2011,33(4):85-92.
    [61]何良德,陈志芳,徐泽中.带帽PTC单桩和复合地基承载特性试验研究[J].岩土力学,2006,27(03):435-441
    [62]H. L. Liu, Charles W. W. Ng, K. Fei. Performance of a Geogrid-Reinforced and Pile-Supported Highway Embankment over Soft Clay:Case Study. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(12):1483-1493.
    [63]Le Hello B, Villard P. Embankments reinforced by piles and geosynthetics-Numerical and experimental studies dealing with the transfer of load on the soil embankment. Engineering Geology,2009,106(1-2):78-91.
    [64]连峰,龚晓南,崔诗才.桩-网复合地基承载性状现场试验研究.岩土力学,2009,30(4):1057-1062.
    [65]彭涛.高速铁路桩-筏(网)复合地基荷载分担现场测试与分析[D].硕士学位论文,长沙:中南大学,2010
    [66]R. P. Chen, Z. Z. Xu, Y. M. Chen, etc. Field Tests on Pile-Supported Embankments over Soft Ground. Journal of Geotechnical and Geoenvironmental Engineering,2010, 136(6):777-785.
    [67]杨果林,黄向京,赵伟.红粘土桩-网复合地基现场试验研究[J].水文地质工程地质,2010,37(01):85-89
    [68]张良,罗强,刘潇潇等.基于现场试验的桩网复合地基垫层效应分析[J].西南交通大学学报,2010,45(05):787-793
    [69]Giroud, J.P., Han, J. Design method for geogrid-reinforced unpaved roads-Part I: theoretical development[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2004,130(08),776-786
    [70]Giroud, J.P., Han, J. Design method for geogrid-reinforced unpaved roads-Part Ⅱ: calibration and verification[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2004,130(08),787-797
    [71]Bergado, D.T., Long, P.V., Murthy, B.R.S.. A case study of geotextile-reinforced embankment on soft ground[J]. Geotextiles and Geomembranes,2002,20(06): 343-365
    [72]Gabr, M. A., Han, J.. Numerical analysis of geosynthetic-reinforced and Pile-supported earth platforms over soft soil[J]. Journal of Geotechnical and Geoenvironmental Engineering.2002,128(01):44-53
    [73]Andre R. S. Fahel, Ennio M. Palmeira, J. A. R. Ortigao. Behaviour of Geogrid Reinforced Abutments on Soft Soil in the BR 101-SC Highway, Brazil[A]. GeoDenver 2000, Advances in Transportation and Geoenvironmental Systems Using Geosynthetics, Denver, USA:257-270.
    [74]Graeme D. Skinner, R. Kerry Rowe. Design and behaviour of a geosynthetic reinforced retaining wall and bridge abutment on a yielding foundation[J]. Geotextiles and Geomembranes,2005,23 (03):234-260
    [75]Jie Han, Anil Bhandari. Evaluation of Geogrid-Reinforced Pile-Supported Embankments under Cyclic Loading using Discrete Element Method[A]. Advances in Ground Improvement:Research to Practice in the United States and China,2009: 73-82
    [76]Sam M.B. Helwany, Jonathan T.H. Wu, Burkhard Froessl. GRS bridge abutments—an effective means to alleviate bridge approach settlement[J]. Geotextiles and Geomembranes,2003,21(03):177-196
    [77]马学宁,杨有海,梁波.土工格栅砂垫层与碎石桩复合地基承载试验研究[J].兰州交通大学学报(自然科学版),2005,24(04):24-27
    [78]黄广军,张千里,俞锡健等.加筋垫层对地基沉降控制效果的多方案比较[J].岩土工程学报,2001,23(05):598-601
    [79]李宁,韩煊.褥垫层对复合地基承载机理的影响[J].土木工程学报,2001,34(02):68-73
    [80]费康,刘汉龙,高玉峰.路堤下现浇薄壁管桩复合地基工作特性分析[J].岩土力学,2004,25(09):1390-1396
    [81]晏莉,阳军生,韩杰.桩承土工合成材料加筋垫层复合地基作用原理及应用[J].岩土力学,2005,26(05):821-826
    [82]顾长存,杨庆刚,张铮.土工格栅加筋软土路堤的数值分析[J].河海大学学报,2005,33(06):677-680
    [83]贾宁,高文龙.桩承式加筋路堤格栅分析[J].岩土工程技术,2006,20(02):103-106
    [84]Shailendra N. Endley, Ph.D., P.E., Wayne Dunlap, Ph.D., P.E., David Knuckey, P.E., Jeffrey Allen, P.E., Karun Sreerama, Ph.D., P.E. Settlement of Pile Supported Mat Foundations [A]. Performance Confirmation of Constructed Facilities,1994. pp: 84-97.
    [85]饶为国,赵成刚.复合地基工后沉降的薄板变形模拟[J].应用力学学报,2002,19(02):133-136
    [86]李海芳.路堤荷载下复合地基沉降计算方法研究[D].博士学位论文,杭州:浙江大学,2004
    [87]徐洋.复合地基固结与变形机理的计算理论及数值分析[D].博士学位论文,杭州:浙江大学,2004
    [88]王炳龙,杨龙才,周顺华等.CFG桩控制深厚层软土地基沉降的试验研究[J].铁道学报,2006,28(06):112-116
    [89]陈仁朋,徐正中,陈云敏.桩承式加筋路堤关键问题研究[J].中国公路学报,2007,20(02):7-12
    [90]张明,肖昭然,饶为国.桩-网复合路基变形机理的数值分析[J].公路交通科技,2008,25(09):37-41
    [91]薛新华,魏永幸,杨兴国.桩-网结构复合地基沉降计算研究[J].水利与建筑工程学报,2010,8(06):42-45
    [92]Lambe, T. W.. Method of Estimating settlement[J]. Proc. ASCE. JSMFD,1964,90 (04):915-926
    [93]周珊珊.高速公路软土路基沉降影响因素研究及灰色预测[D].硕士学位论文,北京:中国地质大学,2007
    [94]金鑫.软土路基沉降预测与计算方法研究[D].硕士学位论文,上海:上海交通大学,2008
    [95]汤梅芳,王炳龙.BP神经网络在悬浮桩复合地基沉降预测中的应用[J].华东交通大学学报,2006,23(02):15-18
    [96]李磊.地基沉降预测方法分析[D].博士学位论文,杭州:浙江大学,2004
    [97]仲爱宝,刘增贤.公路软土地基沉降计算及预测的探讨[J].公路,2004(08):216-219
    [98]傅贤超,雷学文.公路软土地基沉降预测分析[A].第二届全国岩土与工程学术大会论文集(下册)[C].武汉:中国岩石力学与工程学会,2006:342-347
    [99]吴起星,胡辉.基于Gompertz成长曲线的真空预压软土沉降规律分析[J].岩石力学与工程学报,2006(S2):3600-3606
    [100]郭超,闫澍汪,宋绪国.京津城际路基沉降数值模拟与原位观测对比分析[J].铁道工程学报,2009(08):38-41
    [101]史旦达,周健,贾敏才等.考虑蠕变性状的港区软土地基参数反演和长期沉降预测[J].岩土力学,2009,30(03):746-750
    [102]余闯.路堤荷载下刚性桩复合地基理论与应用研究[D].博士学位论文,南京:东南大学,2006
    [103]张慧梅,李云鹏,毛成.人工神经网络在软土地基路基沉降预测中的应用[J].长安大学学报(自然科学版),2002,22(04):20-22
    [104]陈远洪,陈占,周革.软基路堤工后沉降的幂多项式预测与分析[J].土木工程学报,2009,42(05):112-116
    [105]吕秀杰.软土地基工后沉降预测模型的研究[J].岩土力学,2009,30(07):2091-2095
    [106]朱志铎,周礼红.软土路基全过程沉降预测的Logistic模型应用研究[J].岩土工程学报,2009,31(06):965-969
    [107]魏丽敏.软土路基双重非线性流-固祸合仿真分析与沉降预测[D].博士学位论文,长沙:中南大学,2005
    [108]刘加才,赵维炳,施建勇等.竖向排水井地基工后沉降预测[J].岩土力学,2006,27(09):1475-1479
    [109]吴雪婷.温州浅滩软土工程特性及固结沉降规律研究[D].博士学位论文,武汉:中国地质大学,2010
    [110]吴春勇.真空联合堆载预压软土路基稳定控制与沉降预测[D].博士学位论文,长春:吉林大学,2007
    [111]张留俊,王福胜,刘建都.高速公路软土地基处理技术[M].北京:人民交通出版社,2002
    [112]《工程地质手册》编委会.工程地质手册(第四版)[S].北京:中国建筑工业出版社,2007
    [113]黄绍铭,高大钊.软土地基与地下工程(第二版)[M].北京:中国建筑工业出版社,2005
    [114]李西斌.软土流变固结理论与试验研究[D].博士学位论文,杭州:浙江大学2005
    [115]Mitchel J K. Fundamental aspects of thixotropy in soils[J]. Journal of the Soil Mechanics and Foundations Division,1960,86(3):19-52
    [116]Boswell P G H. A preliminary examination of the thixotropy of some sedimentary rocks[J]. Quarterly Journal of the Geological Society,1948,104:499-526
    [117]李丽华,陈轮,高盛焱.翠湖湿地软土触变性试验研究[J].岩土力学,2010,31(03):765-768
    [118]Romanov S V, Romanov D A. Procedure for impressing reinforced-concrete piles into leader holes using soil thixotropy[J]. Soil Mechanics and Foundation Engineering, 1997,34(1):22-24
    [119]Kulchitskii G B. Thixotropy of soils of the middle of region and its consideration when contructing pile foundations [J]. Soil Mechanics and Foundation Engineering,1976, 12(3):168-170
    [120]胡卸文.软土性质及其地基加固技术研究概况[J].地质灾害与环境保护,1994,5(4):52-60
    [121]郭宏峰.有机质对水泥土强度影响的机理研究[D].硕士学位论文,上海:同济大学,2008
    [122]牟春梅,李佰锋.有机质含量对软土力学性质影响效应分析[J].水文地质工程地质,2008(3):42-46
    [123]谷任国,房营光.有机质对软土流变性质影响的试验研究[J].土木工程学报,2009,42(1):101-106
    [124]中华人民共和国铁道部.铁建设[2005]140号.新建时速200-250公里客运专线铁路设计暂行规定[S].北京:中国铁道出版社,2005.
    [125]中华人民共和国铁道部.铁建设[2005]654号.客运专线无砟轨道铁路设计指南[S].北京:中国铁道出版社,2005.
    [126]赵伟.客运专线桩-网复合地基现场试验研究与数值分析[D].中南大学硕士学位论文,2009.
    [127]姚志勇.潮汕车站超大面积深厚软土桩网复合地基性状数值分析[D].西南交通大学硕士学位论文,2010
    [128]马时冬.桩身负摩阻力的现场测试与研究.岩土力学,1997,18(1):8-15.
    [129]王波.桥台桩负摩阻力现场试验及有限元分析.南京:河海大学硕士学位论文,2006.
    [130]孔纲强.群桩负摩阻力特性研究.大连:大连理工大学,2009.
    [131]胡伟.软土地层地铁车站深基坑开挖围护结构稳定性数值模拟分析[D].成都:西南交通大学硕士学位论文,2005.9:13-14
    [132]吴洪词.长江三峡水利枢纽船闸陡高边稳定性的拉格朗日元分析[J].贵州工业大学学报,1998,27(1):32-38
    [133]杨新安,黄宏伟,丁全录.FLAC程序及其在隧道工程中的应用[J].上海铁道大学学报(自然科学版),1996,17(4):39-44
    [134]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.9:3-15
    [135]龚晓南.土工计算机分析[M].北京:中国建筑工业出版社,2000.10:11-31
    [136]彭文斌.FLAC3D实用教程[M].北京:机械工业出版社,2008.1:87-99
    [137]邹栋,郑宏.快速拉格朗日法及其在边坡稳定性分析中的应用[J].矿业研究与开发,2005.25(5):80-83
    [138]中华人民共和国铁道部.高速铁路设计规范(试行)[M].北京:中国铁道出版社,2009.12
    [139]中华人民共和国铁道部.铁路车站及枢纽设计规范[M].北京:中国铁道出版社,2006.6,54
    [140]中国建筑工业出版社.建筑结构设计规范[M].北京:中国建筑工业出版社,中国计划出版社,2008.1.