里氏木霉FS10-C强化修复铜污染土壤的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜是生物正常生长发育所必需的微量元素,但过量的铜会干扰动植物和人的正常生理功能,造成植物生长缓慢甚至死亡且危害人类健康,因此铜污染修复具有重要的现实意义。木霉属真菌可通过分离培养获得纯培养、易于筛选,生物量大且适应酸性环境,且具有有重金属抗性或促进植物生长的功能,具有用于铜污染土壤修复的优势。鉴此,本研究以一株经筛选的里氏木霉FS10-C为研究对象,探讨其对铜污染土壤的强化修复效应和机理。主要研究内容和结果如下:
     1)通过不同温度、湿度、pH和光照下里氏木霉FS10-C孢子萌发、菌丝生长及产孢情况探讨里氏木霉FS10-C的环境适应性,并初步评估了里氏木霉FS10-C的生物安全性,以评价其环境应用前提。结果表明,里氏木霉FS10-C在10-40℃和相对湿度60%~100%时均可进行孢子萌发和菌丝生长;在20~35℃时可产孢;在铜污染导致的偏酸性环境中(pH4-7)生长繁殖旺盛;光照利于产孢但对孢子萌发和菌丝生长影响不大。同时,里氏木霉FS10-C及其代谢产物无皮肤刺激性、无急性皮肤毒性不产生溶血效应。可见,里氏木霉FS10-C环境适应性广且对人畜无害,初步具备应用于环境铜污染修复前提条件。
     2)通过摇瓶试验研究铜胁迫条件对里氏木霉FS10-C生长发育和积累铜的影响、对里氏木霉FS10-C成熟细胞形态及吸附铜的影响及对里氏木霉FS10-C生理特性的影响等,同时研究了里氏木霉FS10-C产铁载体能力,探讨该株木霉的铜胁迫响应及其抗性机制。结果表明:(1)里氏木霉FS10-C在Cu2+浓度不大于600mg/L的溶液中均可生长发育,且在含100、200和400mg/L Cu2+的溶液中铜积累率分别可达50.6%、30.3%和4.7%。SEM显示,在含100mg/L Cu2+溶液中,成熟里氏木霉FS10-C细胞形态无明显改变,400mg/L时菌体结构仍完整;EDX元素分析显示,在含100和400mg/L Cu2+的溶液中,里氏木霉FS10-C细胞铜的平均质量分数分别为18.50%和30.40%,且菌丝大于孢子;(2)里氏木霉FS10-C的铜抗性机制与细胞表面含氮基团和磷脂的作用、可溶性蛋白和GSH含量的增加及铁载体的分泌有关。可见,里氏木霉FS10-C是一株高铜抗性真菌,可通过菌体成分及生理生化调节机制积累和吸附铜,减少环境中的铜。
     3)采用正交试验筛选最佳固体里氏木霉FS10-C制剂发酵方法。通过盆栽试验研究里氏木霉FS10-C木霉制剂对外源铜污染土壤海州香薷生长和铜吸收能力及对土壤质量的影响。结果表明:(1)里氏木霉FS10-C以苜蓿粉为固体发酵基质,在适宜发酵条件下可制成孢子含量较高的木霉制剂;(2)施加该木霉制剂后,除400mg/kg外源铜浓度土壤上地上部干重外,海州香薷生物量在各外源铜浓度土壤上均呈增加趋势;各外源铜浓度土壤NH4OAc提取态铜含量均显著高于PD培养基组(P<0.05),且除l00mg/kg外源铜土壤上地上部外,海州香薷铜积累量均呈增加趋势,总积累量在100和400mg/kg外源铜土壤上均显著增加(P<0.05);(3)该木霉制剂显著提高了外源铜土壤上土壤速效磷含量、脲酶、脱氢酶和磷酸酶等土壤酶活性、土壤生物量碳含量及土壤pH,从而提高土壤质量。可见,里氏木霉FS10-C制剂可通过提高海州香薷生物量和活化土壤铜有效性增加其对海州香薷对铜的吸收能力,同时可显著提高土壤质量,具有土壤修复剂和微生物肥料双重功效。
     4)通过研究里氏木霉FS10-C对海州香薷的促生作用、促生生物学特性、对海州香薷抗铜胁迫能力(铜抗性)的影响及里氏木霉FS10-C对土壤铜有效性的影响,探讨了里氏木霉FS10-C对海州香薷修复铜污染土壤强化作用的机理。结果表明:(1)里氏木霉FS10-C可产铁载体、ACC脱氨酶且具有较强的溶磷能力等促生生物学活性;(2)在无铜胁迫时,里氏木霉FS10-C可显著提高海州香薷萌发率,促进幼苗根系发育;(3)铜胁迫环境下,里氏木霉FS10-C亦可显著促进海州香薷种子萌发、提高生物量和根系活力,降低MDA含量、提高GSH含量及提高POD、SOD和CAT活性(P<0.05);(4)里氏木霉FS10-C生长发育的过程中降低培养基pH,发酵液有较强的浸提土壤铜的作用,提示里氏木霉FS10-C在代谢过程中释放酸性物质提高土壤铜有效性。可见,里氏木霉FS10-C通过促生活性和增强铜抗性促进铜胁迫下海州香薷的生长发育,通过产生酸性产物等提高土壤铜有效性,从而强化修复铜污染土壤。
     综合以上研究认为,里氏木霉FS10-C是一株颇具研究潜力的铜污染生物修复菌,其木霉制剂可在铜污染土壤植物修复中发挥安全有效的强化作用。
Copper is an essential trace element that is vital to the health of all living things. But excess copper accumulation in plants, animals and human being will disturb their normal physiological processes, lead to stunted growth or even death in plants, and worse enough, risk factors of animals and our human beings. Therefore, remediation of copper contamination is of great importance at present. Trichoderma sp. can be easily screened out by isolation and culturing methods to cost-effectively obtained their pure culture. In addition, Trichoderma sp. has larger production of biomass, and can grow well in low pH besides its capacity of heavy metal resistance or promoting plant growth. Therefore, it could be as a candidate with its great advantage for remediation of copper contamination. A copper resistant Trichoderma reesei strain FS10-C was studied in the present study, to investigate its effects and mechanisms in bioremediation of copper contaminated soil. The important research scope and results are summarized as follows:
     1) Trichoderma reesei FS10-C was evaluated for its environmental adaptability through verifying of the spore germination, hyphal growth and sporulation in diverse conditions of temperature, humidity, pH value and light. In addition, bio-safety assessment was conducted to evaluate the perspective application of Trichoderma reesei FS10-C in remediation of copper pollution. The results showed that spore germination and hyphal growth of Trichoderma reesei FS10-C were possible at temperature of10-40℃and in relative humidity of60-100%, and sporulation occurred favorably at20-35℃. Trichoderma reesei FS10-C grew vigorously in acid-biased environment (pH4-7) due to copper contamination. Light stimulated sporulation sporulation of Trichoderma reesei FS10-C, but had little effect on spore germination and hyphal growth. No toxicity effects of skin irritation, skin toxicity, eye irritation and hemolysis were observed in both Trichoderma reesei FS10-C and its metabolites. These findings show that Trichoderma reesei FS10-C has wider environmental suitability, yet no health risk factors for humans and animals. It suggested that Trichoderma reesei FS10-C is a safe candidate for bio-remediation of copper contamination.
     2) Shake Flask tests were performed to observe variations of Trichoderma reesei FS10-C under copper stress, such as growth and development while copper accumulation, morphology and element of adult cell while copper absorption, and physiological-biochemical characteristic. Besides, capacity of siderophore production was verified to study responses and mechanisms of copper resistance of Trichoderma reesei FS10-C. The results showed that (1) the spores of Trichoderma reesei FS10-C were well grown and developed in aqueous solutions with Cu(II) concentration below600mg/L. Copper accumulation rates of Trichoderma reesei FS10-C under100,200and400mg/L Cu(II) concentrations were50.6%,30.3%and4.7%, respectively. The SEM showed no morphological variation in Trichoderma reesei FS10-C at100mg/L Cu(II) and mostly complete cell structure at400mg/L Cu(II). EDX results showed that weight percentage of copper in Trichoderma reesei FS10-C was18.50%and30.40%at100and400mg/L Cu(II), respectively, and biosorption capacity of mycelium was higher than that of spore;(2) mechanisms of copper resistant and removal effect of Trichoderma reesei FS10-C were related to increase of soluble protein and GSH contents, siderophore production, nitrogen-containing group and phospholipid of cells. It suggested that Trichoderma reesei FS10-C is a fungal strain with higher copper resistance, and it can remove copper by bioaccumulation and biosorption by cell composition and physiological and biochemical regulating mechanisms.
     3) Spores of Trichoderma reesei FS10-C were made into Trichoderma sp. preparation by solid-state fermentation with condition screened by orthogonal tests. And a pot experiment of Elsholtzia splendens in soils spiked with copper was carried out to investigate effects of the preparation on growth and Cu accumulation of the plant and on soil quantity. The results indicated that (1) spores of Trichoderma reesei FS10-C can grow and develop in alfalfa meal as solid matrix and made into Trichoderma sp. preparation with high spore density;(2)the plant biomass of Elsholtzia splendens showed an increasing trend in soils with all spiked Cu concentrations after applying of the preparation, except for shoot dry weight in soils with spiked Cu levels of400mg/kg. The preparation increased NH4OAc-extractable Cu in all Cu contaminated soils significantly in comparison with that in the control (P<0.05), and also led to an increasing trend in Cu accumulations of all plants, except for that in shoot in soils with external Cu level of100mg/kg. Total Cu accumulations were significantly enhanced in soils with external Cu levels of100and400mg/kg (P<0.05);(3)the Trichoderma sp. preparation improved soil quantity by enhancing available P content, activity of dehydrogenase, urease and phosphatase, microbial biomass C content and pH value of Cu contaminated soil. The findings suggested that this Trichoderma reesei FS10-C preparation could enhance Cu accumulation by promoting growth of Elsholtzia splendens and increasing Cu phytoavailability in soil. It can be both bioremediation agent and microbial fertilizer for soil, and could be a potential agent for bioremediation of copper contaminated soil.
     4) The mechanisms of augmentation effect of Trichoderma reesei FS10-C on remediation of Cu contaminated soil with Elsholtzia splendens were investigated, such as plant growth promoting effect on Elsholtzia splendens, biological characteristics of plant growth promoting, enhancement of Cu resistance of Elsholtzia splendens and enhancement Cu. availability of soil.The results showed that (1) Trichoderma reesei FS10-C was able to produce ACC deaminase, siderophore, and have the ability of phosphate solubilization;(2) Trichoderma reesei FS10-C had significantly promoted seed germination of Elsholtzia splendens and root development of the seedling in condition of copper stress free;(3)even in environment of copper stress, Trichoderma reesei FS10-C were capable of promoting seed germination and enhancing biomass, improving root activity, decreasing MDA content and increasing POD, SOD and CAT activities of Elsholtzia splendens(P<0.05).(4) Trichoderma reesei FS10-C had reduced pH value of the culture media during its development process. The fermentation broth also had higher ability of extracting Cu from soils. It proved that Trichoderma reesei FS10-C may release certain acidic materials that were able to accelerate extraction of Cu from soils to eventually enhance Cu availability of soil. These findings suggested that Trichoderma reesei FS10-C could promote growth and development of the plant in Cu contaminates soil due to its biological activity of plant growth promoting and capacity of copper resistance enhancement, and it may enhance Cu. availability of soils due to producing some acid materials.
     In summary, copper resistant Trichoderma reesei FS10-C can be a potential candidate for bioremediation of copper pollution. Trichoderma reesei FS10-C preparation could play safe and effective role in phytoremediation of Cu contaminated soil.
引文
[1]滕应,黄昌勇.重金属污染土壤的微生物生态效应及其修复研究进展[J].土壤与环境,2002,11(1):85-89.
    [2]王济,王世杰.土壤中重金属环境污染元素的来源及作物效应[J].贵州师范大学学报(自然科学版),2005,(2):113-120.
    [3]刁晓平,史光华.环境污染物对土壤生态系统的影响及其评价方法[J].海南大学学报自然科学版,2004,22(4):360-364.
    [4]Athar R, Ahmad M. Heavy metal toxicity: Effect on plant growth and metal uptake by wheat, and on free living Azotobacter [J]. Water, Air, & Soil Pollution,2002,138(1):165-180.
    [5]杨旭,向昌国,刘志霄.重金属污染对土壤动物的影响[J].中国农学通报,2008,24(12):454-457.
    [6]Jarup L. Hazards of heavy metal contamination [J]. British medical Bulletin,2003,68(1):167-182.
    [7]吕晓男,孟赐福,麻万诸.重金属与土壤环境质量及食物安全问题研究[J].中国生态农业学报,2007,(2):197-200.
    [8]孟多,周立岱,于常武.水体重金属污染现状及治理技术[J].辽宁化工,2006,35(9):534-536.
    [9]Chojnacka K. Bioaccumulation of Cr (III) ions by Blue-Green alga Spirulina sp. Part I. A Comparison with Biosorption [J]. American Journal of Agricultural and Biological Sciences,2007,2(4): 218-223.
    [10]王雅静,戴惠新.生物吸附法分离废水中重金属离子的研究进展[J].冶金分析,2006,26(1):40-45.
    [11]吕英俊,刘永军.重金属污染废水微生物处理机制及其研究进展[J].山西建筑,2007,33(10):3-4.
    [12]Gadd G M. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization [J]. Current Opinion in Biotechnology,2000,11(3):271-279.
    [13]骆永明.污染土壤修复技术研究现状与趋势[J].化学进展,2009,21(2/3):558-565.
    [14]王海慧,郇恒福,罗瑛,等.土壤重金属污染及植物修复技术[J].中国农学通报,2009,25(11):210-214.
    [15]徐龙君,袁智.土壤重金属污染及修复技术[J].环境科学与管理,2006,31(8):67-69.
    [16]周启星,宋玉芳.植物修复的技术内涵及展望[J].安全与环境学报,2001,1(3):48-53.
    [17]蒋先军,骆永明,赵其国.土壤重金属污染的植物提取修复技术及其应用前景[J].农业环境保护,2000,19(3):179-183.
    [18]倪才英,陈英旭,骆永明.土壤-植物系统铜污染与修复的研究进展[J].浙江大学学报:农业与生命科学版,2003,29(3):237-243.
    [19]Alkorta I, Hernandez-Allica J, Becerril J, et al. Chelate-enhanced phytoremediation of soils polluted with heavy metals [J]. Reviews in Environmental Science and Biotechnology,2004,3(1):55-70.
    [20]廖晓勇,陈同斌,阎秀兰,等.提高植物修复效率的技术途径与强化措施[J].环境科学学报,2007,27(6):881-893.
    [21]Karami A, Shamsuddin Z. Phytoremediation of heavy metals with several efficiency enhancer methods [J]. African Journal of Biotechnology,2010,9(25):3689-3698.
    [22]张玉秀,黄智博,柴团耀.螯合剂强化重金属污染土壤植物修复的机制和应用研究进展[J].自然科学进展,2009,19(11):1149-1158.
    [23]胡亚虎,魏树和,周启星,等.螯合剂在重金属污染土壤植物修复中的应用研究进展[J].农业环境科学学报,2010,29(11):2055-2063.
    [24]向言词,官春云,黄璜,等.植物生长调节剂IAA, GA和6-BA对芥菜型油菜和甘蓝型油菜富集镉的强化[J].农业现代化研究,2010,31(4):504-508.
    [25]牛之欣,孙丽娜,孙铁珩.重金属污染土壤的植物-微生物联合修复研究进展[J].生态学杂志,2009,28(11):2366-2373.
    [26]周宝利,陈玉成.植物修复的促进措施及根际微生物的作用[J].环境保护科学,2006,32(3):39-42.
    [27]魏树和,周启星,张凯松,等.根际圈在污染土壤修复中的作用与机理分析[J].应用生态学报,2003,14(1):143-147.
    [28]陈保冬,陈梅梅,白刃.丛枝菌根在治理铀污染环境中的潜在作用[J].环境科学,2011,32(3):809-816
    [29]Gamalero E G E, Lingua G L G, Berta G B G, et al. Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress [J]. Canadian Journal of Microbiology,2009,55(5):501-514.
    [30]Jing Y, He Z, Yang X. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils [J]. Journal of Zhejiang University-Science B,2007,8(3):192-207.
    [31]滕应,骆永明,李振高.污染土壤的微生物修复原理与技术进展[J].土壤,2007,39(4):497-502.
    [32]Khan M S, Zaidi A, Wani P A, et al. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils [J]. Environmental Chemistry Letters,2009,7(1):1-19.
    [33]Gamalero E, Glick B R. Mechanisms Used by Plant Growth-Promoting Bacteria [J]. Bacteria in Agrobiology:Plant Nutrient Management,2011,17-46.
    [34]Karimi A, Khodaverdiloo H, Sepehri M, et al. Arbuscular mycorrhizal fungi and heavy metal contaminated soils [J]. African Journal of Microbiology Research,2011,5(13):1571-1576.
    [35]Maheshwari D K. Plant growth and health promoting bacteria [M]. Springer,2010.
    [36]夏娟娟.植物促生内生细菌的筛选及其强化油菜富集土壤铅镉重金属的研究[D];南京农业大学,2006.
    [37]Zhuang X, Chen J, Shim H, et al. New advances in plant growth-promoting rhizobacteria for bioremediation [J]. Environment International,2007,33(3):406-413.
    [38]Auge R M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis [J]. Mycorrhiza, 2001,11(1):3-42.
    [39]王发园,林先贵,尹睿.丛枝菌根真菌对海州香薷生长及其Cu吸收的影响[J].环境科学,2006,26(5):174-180.
    [40]Liu Y, Zhu Y, Chen B, et al. Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L [J]. Mycorrhiza,2005,15(3): 187-192.
    [41]成杰民,俞协治,黄铭洪.蚯蚓-菌根在植物修复镉污染土壤中的作用[J].生态学报,2005,25(6):1256-1263.
    [42]金棵,赵洪,李博.我国菌根研究进展及展望[J].应用与环境生物学报,2004,10(4):515-520.
    [43]Qian H, Hu B, Cao D, et al. Bio-safety assessment of validamycin formulation on bacterial and fungal biomass in soil monitored by real-time PCR [J]. Bulletin of Environmental Contamination and Toxicology,2007,78(3):239-244.
    [44]董新姣,林晓华.铜绿假单胞菌对Cu2+的吸附条件及动力学初步研究[J].江西科学,2002,20(2):85-89.
    [45]Sawaidis I, Hughes M N, Poole R K. Copper biosorption by Pseudomonas cepacia and other strains [J]. World Journal of Microbiology and Biotechnology,2003,19(2):117-121.
    [46]Perez Silva R M, Abalos Rodriguez A, Gomez Montes De Oca J M, et al. Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT 18 isolated from a site contaminated with petroleum [J]. Bioresource Technology,2009,100(4):1533-1538.
    [47]倪语星,尚红.临床微生物学与检验[M].人民卫生出版社,2007.
    [48]Melo I S, Faull J L. Parasitism of Rhizoctonia solani by strains of Trichoderma spp [J]. Scientia Agricola,2000,57(1):55-59.
    [49]Bae Y, Knudsen G R. Soil microbial biomass influence on growth and biocontrol efficacy of Trichoderma harzianum [J]. Biological Control,2005,32(2):236-242.
    [50]Ousley M A, Lynch J M, Whipps J M. Potential of Trichoderma spp. as consistent plant growth stimulators [J]. Biology and Fertility of Soils,1994,17(2):85-90.
    [51]Sallam Nashwa M, Abo-Elyousr K, Hassan M. Evaluation of Trichoderma species as biocontrol agent for damping-off and wilt diseases of Phaseolus vulgaris L. and efficacy of suggested formula [J]. Egypt J Phytopathol,2008,36(1-2):81-93.
    [52]Vinale F, Sivasithamparam K, Ghisalberti E L, et al.Trichoderma-plant-pathogen interactions [J]. Soil Biology and Biochemistry,2008,40(1):1-10.
    [53]Harman G E. Overview of Mechanisms and Uses of Trichoderma spp [J]. Phytopathology,2006, 96(2):190-194.
    [54]梁志怀,魏林,郑明福,等.哈茨木霉发酵产物对豇豆产量和品质的影响[J].湖南农业科学,2006,(5):38-40.
    [55]陈佛保,柏珺,林庆祺,等.植物根际促生菌(PGPR)对缓解水稻受土壤锌胁迫的作用[J].农业环境科学学报,2012,31(1):67-74.
    [56]Belimov A A, Dodd I C, Hontzeas N, et al. Rhizosphere bacteria containing ACC deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling [J]. New Phytologist,2009,181(2):413-423.
    [57]杜育梅,刘国道.植物利用磷素的有效性研究进展[J].华南热带农业大学学报,2007,13(2):41-47.
    [58]Rudresh D, Shivaprakash M, Prasad R. Tricalcium phosphate solubilizing abilities of Trichoderma spp. in relation to P uptake and growth and yield parameters of chickpea (Cicer arietinum L.) [J]. Canadian Journal of Microbiology,2005,51(3):217-222.
    [59]洪常青,聂艳丽.根系分泌物及其在植物营养中的作用[J].生态环境,2003,12(4):508-511.
    [60]Hoyos-Carvajal L, Orduz S, Bissett J. Growth stimulation in bean(Phaseolus vulgaris L.) by Trichoderma [J]. Biological Control,2009,51(3):409-416.
    [61]杨依军,齐中波.拮抗木霉菌在生物防治中的作用[J].天津农业科学,2000,6(3):29-33.
    [62]于新,田淑慧,徐文兴,等.木霉菌生防作用的生化机制研究进展[J].中山大学学报:自然科学版,2005,44(2):86-90.
    [63]Malik S K, Mukhtar H. Optimization of process parameters for the biosynthesis of cellulases by Trichoderma viride [J]. Pak J Bot,2010,42(6):4243-4251.
    [64]胡琼,商世能.木霉菌与化学农药相互关系的研究进展[J].农药,2011,50(2):87-89.
    [65]付文祥,郭立正.敌敌畏降解真菌的分离及其特性研究[J].环境科学与技术,2006,29(4): 32-34.
    [66]胡亮,王吉坤,王鲁民,等.绿色木霉对Zn2+的吸附特性研究[J].化学与生物工程,2007,(8):38-40.
    [67]Anand P, Isar J, Saran S, et al. Bioaccumulation of copper by Trichoderma viride [J]. Bioresource Technology,2006,97(8):1018-1025.
    [68]沈薇,杨树林,李校堃,等.木霉(Trichoderma sp.)HR-1活细胞吸附Pb(Ⅱ)的机理[J].中国环境科学,2006,(1):101-105.
    [69]张坤,罗书.水体重金属污染治理技术研究进展[J].中国环境管理干部学院学报,2010,20(3):62-64,81.
    [70]Rajendran P, Gunasekaran P. Nanotechnology for bioremediation of heavy metals [J]. Environmental bioremediation technologies Springer-Verlag, Berlin Heidelberg,2007, (11):211-222.
    [71]Stern B R, Solioz M, Krewski D, et al. Copper and human health:biochemistry, genetics, and strategies for modeling dose-response relationships [J]. Journal of Toxicology and Environmental Health, Part B,2007,10(3):157-222.
    [72]Arland P, Isar J, Saran S, et al. Bioaccumulation of copper by Trichoderma viride [J]. Bioresource Technology,2006,97(8):1018-1025.
    [73]赵静.铜污染土壤的木霉强化海州香薷修复研究[D];华中农业大学,2009.
    [74]杨合同.木霉分类与鉴定[M].中国大地出版社,2009.
    [75]刘梅,徐同.木霉的营养生长及发酵条件[J].云南农业大学学报,2000,15(3):263-268.
    [76]潘玮,穆常青,蒋细良,等.木霉的孢子与土壤抑菌作用[J].中国生物防治,2006,22(2):87-91.
    [77]Chillappagari S, Seubert A, Trip H, et al. Copper stress affects iron homeostasis by destabilizing iron-sulfur cluster formation in Bacillus subtilis [J]. Journal of Bacteriology,2010,192(10):2512-2524.
    [78]Amanatidou A, Smid E J, Bennik M H J, et al. Antioxidative properties of Lactobacillus sake upon exposure to elevated oxygen concentrations [J]. FEMS Microbiology Letters,2006,203(1):87-94.
    [79]Choudhary M, Jetley U K, Abash Khan M, et al. Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis S5 [J]. Ecotoxicol Environ Saf,2007,66(2):204-209.
    [80]Kadukova J, Vircfkova E. Comparison of differences between copper bioaccumulation and biosorption [J]. Environ Int,2005,31(2):227-232.
    [81]Bosecker K. Microbial leaching in environmental clean-up programmes [J]. Hydrometallurgy,2001, 59(2):245-248.
    [82]Bruins M R, Kapil S, Oehme F W. Microbial resistance to metals in the environment [J]. Ecotoxicol Environ Saf,2000,45(3):198-207.
    [83]Rajkumar M, Ae N, Prasad M N V, et al. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction [J]. Trends Biotechnol,2010,28(3):142-149.
    [84]沈薇.生物修复环境污染的微生物筛选及其性能研究[D];南京理工大学,2006..
    [85]李清彪,刘刚,吴松涛,等.黄孢展齿革菌对镉离子的吸附机理研究[J].化工进展,2002,1(增刊1):182-185
    [86]陈志英,王磊,周琪.菌龄对恶臭假单胞菌吸附铜离子能力的影响[J].中国环境科学,2006,26(B07):97-101.
    [87]Kapoor A, Viraraghavan T. Heavy metal biosorption sites in aspergillus niger [J]. Bioresour Technol,1997,61(3):221-227.
    [88]Sar P, Kazy S, Singh S. Intracellular nickel accumulation by Pseudomonas aeruginosa and its chemical nature [J]. Letters in Applied Microbiology,2001,32(4):257-261.
    [89]Zheng W, Fei Y, Huang Y. Soluble protein and acid phosphatase exuded by ectomycorrhizal fungi and seedlings in response to excessive Cu and Cd [J]. Journal of Environmental Sciences (China),2009, 21(12):1667-1672.
    [90]Antsuki T, Sano D, Omura T. Functional metal-binding proteins by metal-stimulated bacteria for the development of an innovative metal removal technology [J]. Water science and technology:a journal of the International Association on Water Pollution Research,2003,47(10):109-115.
    [91]Singh R, Tripathi R, Dwivedi S, et al. Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system [J]. Bioresour Technol,2010,101(9):3025-3032.
    [92]Dazy M, Masfaraud J, Ferard J. Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw [J]. Chemosphere,2009,75(3):297-302.
    [93]Mishra S, Srivastava S, Tripathi R, et al. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L [J]. Plant Physiology and Biochemistry:PPB/Societe Francaise de Physiologie Vegetale,2006,44(1):25-37.
    [94]Lee S, Moon J S, Ko T S, et al. Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress [J]. Plant Physiol,2003,131(2):656-663.
    [95]Beck A, Lendzian K, Oven M, et al. Phytochelatin synthase catalyzes key step in turnover of glutathione conjugates [J]. Phytochemistry,2003,62(3):423-431.
    [96]Backor M, Pawlik-Skowronska B, Bud' ova J, et al. Response to copper and cadmium stress in wild-type and copper tolerant strains of the lichen alga Trebouxia erici:metal accumulation, toxicity and non-protein thiols [J]. Plant Growth Regulation,2007,52(1):17-27.
    [97]Bhattacharya A. Siderophore mediated metal uptake by Pseudomonas fluorescens and its comparison to Iron (III) chelation [J]. Ceylon Journal of Science (Biological Sciences),2010,39(2): 147-155.
    [98]Dimkpa C, Svatos A, Dabrowska P, et al. Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp [J]. Chemosphere,2008,74(1):19-25.
    [99]Sinha S, Mukherjee S K. Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization [J]. Current Microbiology,2008,56(1): 55-60.
    [100]冯立顺,刘洪燕.火焰原子吸收法测定土壤中铜的测量不确定度评定[J].分析试验室,2006,25(4):65-67.
    [101]彭红云,杨肖娥.香薷植物修复铜污染土壤的研究进展[J].水土保持学报,2005,19(5):195-199.
    [102]孙约兵,周启星,郭观林.植物修复重金属污染土壤的强化措施[J].环境工程学报,2007,1(3):103-110.
    [103]许传坤,莫明和,张克勤.土壤对木霉生防菌株的抑制作用及这种作用的解除[J].南京师大学报:自然科学版,2004,27(2):77-80.
    [104]唐永庆,许艳丽,张红骥,等.木霉制剂的生防应用研究及发展前景[J].黑龙江农业科学,2008,2008(1):111-113.
    [105]赵其国,孙波,张桃林.土壤质量与持续环境[J].土壤,1997,29(3):113-120.
    [106]刘占锋,傅伯杰,刘国华,等.土壤质量与土壤质量指标及其评价[J].生态学报,2006,26(3):901-913.
    [107]章家恩,廖宗文.试论土壤的生态肥力及其培育[J].土壤与环境,2000,9(3):253-256.
    [108]刘健,李俊,葛诚.微生物肥料作用机理的研究新进展[J].微生物学杂志,2001,21(1):33-36.
    [109]李振高,骆永明,滕应.土壤与环境微生物研究法[M].科学出版社,2008.
    [110]Zentmyer G. Biological control of Phytophthora root rot of avocado with alfalfa meal [J]. Phytopathology,1963,53(12):1383-1387.
    [111]Francesco Vinalea A, Sivasithamparamb K, Ghisalbertic E L, et al.Trichoderma-plant-pathogen interactions [J]. Soil Biology & Biochemistry,2008,40:1-10.
    [112]李志强,李新胜.苜蓿干草的碳水化合物营养特性[J].中国奶牛,2005,(1):34-36.
    [113]Sekar C, Balaraman K. Optimization studies on the production of cyclosporin A by solid state fermentation [J]. Bioprocess and Biosystems Engineering,1998,18(4):293-296.
    [114]Jackson A, Whipps J, Lynch J. Effects of temperature, pH and water potential on growth of four fungi with disease biocontrol potential [J]. World Journal of Microbiology and Biotechnology,1991,7(4): 494-501.
    [115]Parrish Z D, Banks M K, Schwab A P. Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil [J]. Environmental Pollution,2005,137(2):187-197.
    [116]Singhania R R, Patel A K, Soccol C R, et al. Recent advances in solid-state fermentation [J]. Biochemical Engineering Journal,2009,44(1):13-18.
    [117]Sallam Nashwa M, Abo-Elyousr K, Hassan M. Evaluation of Trichoderma species as biocontrol agent for damping-off and wilt diseases of Phaseolus vulgaris L. and efficacy of suggested formula [J]. Egypt J Phytopathol,2008,36(1-2):81-93.
    [118]李卫平,林福呈.绿色木霉对蔬菜苗期病害的防治和促生作用[J].浙江农业学报,2000,12(2):106-107.
    [119]Chang Y C, Baker R, Kleifeld O, et al. Increased growth of plants in the presence of the biological control agent Trichoderma harzianum [J]. Plant Disease,1986,70(2):145-148.
    [120]Altomare C, Norvell W, BjSrkman T, et al. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22 [J]. Applied and Environmental Microbiology,1999,65(7):2926-2933.
    [121]焦琮,路炳声.康氏木霉制剂对棉花和菜豆幼苗几个生理生化指标的影响[J].中国生物防治,1995,11(1):30-32.
    [122]Cao L, Jiang M, Zeng Z, et al. Trichoderma atroviride F6 improves phytoextraction efficiency of mustard (Brassica juncea (L.) Coss. var. foliosa Bailey) in Cd, Ni contaminated soils [J]. Chemosphere, 2008,71(9):1769-1773.
    [123]Wang B, Liu L, Gao Y, et al. Improved phytoremediation of oilseed rape (Brassica napus) by Trichoderma mutant constructed by restriction enzyme-mediated integration (REMI) in cadmium polluted soil [J]. Chemosphere,2009,74(10):1400-1403.
    [124]曹慧,孙辉.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物学报,2003,9(1):105-109.
    [125]张秋芳,王果,杨佩艺,等.有机物料对土壤镉形态及其生物有效性的影响[J].应用生态学报,2002,13(12):1659-1662.
    [126]王果,陈建斌.稻草和紫云英对土壤外源铜的形态及生态效应的影响[J].生态学报,1999,19(4):551-556.
    [127]陈建斌.有机物料对土壤的外源铜和镉形态变化的不同影响[J].农业环境保护,2002,21(5): 450-452.
    [128]陆晓辉,黎成厚,涂成龙.有机物料对黄壤性质及外源铜有效性的影响[J].安徽农业科学,2009,37(6):2613-2616.
    [129]彭娜,王凯荣,王开峰,等.不同水分条件下施用稻草对土壤有机酸和有效磷的影响[J].土壤学报,2006,43(2):437-439
    [130]Fliessbach A, Martens R, Reber H. Soil microbial biomass and microbial activity in soils treated with heavy metal contaminated sewage sludge [J]. Soil Biology and Biochemistry,1994,26(9): 1201-1205.
    [131]El-Ghamry A M, Subhani A, Moh'd W, et al. Effects of copper toxicity on soil microbial biomass [J]. Pakistan Journal of Biologcal Sciences,2000,3(6):907-910.
    [132]Wyszkowska J, Kucharski J, Lajszner W. Enzymatic activities in different soils contaminated with copper [J]. Polish Journal of Environmental Studies,2005,14(5):659-664.
    [133]何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,29(2):61-69
    [134]Pocknee S, Sumner M E. Cation and nitrogen contents of organic matter determine its soil liming potential [J]. Soil Science Society of America Journal,1997,61(1):86-92.
    [135]Xu R, Coventry D R. Soil pH changes associated with lupin and wheat plant materials incorporated in a red-brown earth soil [J]. Plant and Soil,2003,250(1):113-119.
    [136]Gadd G M. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization [J]. Curr Opin Biotechnol,2000,11(3):271-279.
    [137]Gadd G M. Microbial influence on metal mobility and application for bioremediation [J], Geoderma,2004,122(2):109-119.
    [138]曾任森,石木标,骆世明,等.绿色木霉代谢产物的植物毒性研究[J].应用生态学报,1998,9(1):64-66.
    [139]张旭东,刘云龙,张中义.木霉生防菌对植物生长的影响[J].云南农业大学学报,2001,16(4):299-303.
    [140]Kucey R. Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils [J]. Canadian Journal of Soil Science,1983,63(4):671-678.
    [141]Kucey R. Increased phosphorus uptake by wheat and field beans inoculated with a phosphorus-solubilizing Penicillium bilaji strain and with vesicular-arbuscular mycorrhizal fungi [J]. Applied and Environmental Microbiology,1987,53(12):2699-2703.
    [142]金术超,杜春梅,平文祥,等.解磷微生物的研究进展[J].微生物学杂志,2006,26(2):73-78.
    [143]Anusuya D, Jayarajan R. Solubilization of phosphorus by Trichoderma viride [J]. Current Science, 1998,74(5):464-466.
    [144]杨合同,于雪云,魏艳丽,等.多功能植病生防木霉的分离筛选与鉴定[J].山东科学,2009,22(5):27-30.
    [145]Yehuda Z, Shenker M, Hadar Y, et al. Remedy of chlorosis induced by iron deficiency in plants with the fungal siderophore rhizoferrin [J]. Journal of Plant Nutrition,2000,23(11-12):1991-2006.
    [146]Glick B R, Jacobson C B, Schwarze M M K, et al.1-Aminocyclopropane-l-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation [J]. Canadian Journal of Microbiology,1994,40(11):911-915.
    [147]Stearns J C, Shah S, Greenberg B M, et al. Tolerance of transgenic canola expressing 1-aminocyclopropane-l-carboxylic acid deaminase to growth inhibition by nickel [J]. Plant Physiology and Biochemistry,2005,43(7):701-708.
    [148]Grichko V P, Filby B, Glick B R. Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn [J]. Journal of Biotechnology,2000, 81(1):45-53.
    [149]Arshad M, Saleem M, Hussain S. Perspectives of bacterial ACC deaminase in phytoremediation [J]. Trends Biotechnol,2007,25(8):356-362.
    [150]谢明吉,柯文山,下万贤,等.铜胁迫下两种海州香薷的膜脂过氧化水平及抗氧化能力比较[J].生态学杂志,2005,24(8):935-938.
    [151]Liu J, Xiong Z. Differences in accumulation and physiological response to copper stress in three populations of Elsholtzia haichowensis S [J]. Water, Air, & Soil Pollution,2005,168(1):5-16.
    [152]Abou-Shanab R, Angle J, Delorme T, et al. Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale [J]. New Phytologist,2003,158(1):219-224.
    [153]Benitez T, Rinc6n A, Lim6n M, et al. Biocontrol mechanisms of Trichoderma strains [J]. International Microbiology: the official journal of the Spanish Society for Microbiology,2004,7(4): 249-260.
    [154]Haran S, Schickler H, Oppenheim A, et al. Differential expression of Trichoderma harzianum chitinases during mycoparasitism [J]. Phytopathology,1996,86(9):980-985.
    [155]戴学龙,蒋玉根,裘希雅,等.提取液对土壤有效重金属含最与生物有效性的影响[J].浙江农业科学,2010,(4):886-889.