金属氧化物微/纳米结构的合成、表征及其在锂离子电池中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属氧化物纳米材料具有独特的物理化学性质,其在光电器件、传感器、催化、磁学和锂离子电池等领域有广泛的应用前景。纳米材料的结构和形貌对其性能有重要的影响。发展新的合成方法,探索其生长机制,对于系统研究纳米材料结构与性能的关系,实现工业生产具有重要的意义。本文设计了一系列合成CoO、CuO、Cr2O3、SnO2及其复合材料的新方法,详细探讨了部分材料的反应机理,检测了它们在锂离子电池中的电化学性能。通过大量的探索和实验,取得了一些有意义的成果。
     1、设计了一种水热法合成SnO2纳米棒束花的新方法。利用X射线衍射仪、场发射扫描电镜、透射电子显微镜检测仪器详细研究了SnO:纳米棒束花的新颖结构。检测结果显示纳米棒束花是由四方状的纳米棒组成,棒的尺寸大小可以通过改变SnCl4浓度来调控。在详细分析实验结果的基础上,提出了SnO:纳米棒束花的形成机理。电化学测试表明SnO2纳米棒束花具有良好的储锂容量和循环性能,0.1C时循环充放电40次后,放电容量保持在694mAhg-1。
     2、发展了一种制备疏松结构SnO2纳米球的水热-分解新路线。通过热重分析检测研究了整个分解过程。疏松结构SnO2纳米球直径为300nm左右,是由粒径26nm左右的粒子自组装而成。疏松结构SnO2纳米球的首次放电容量为1520mAh g-1,充电容量为724mAhg-,循环充放电30次后容量保持在522mAh g-。得益于疏松结构,SnO2纳米球具有较大的储锂容量和较好的循环性能。
     3、采用葡萄糖为碳原,在150℃下水热反应10小时后制备了单分散性好的纳米SnO2-C复合材料。对其进行详细表征,结果证实SnO2纳米粒子均匀地分散在无定型碳中。电化学检测表明,这种纳米SnO2-C复合材料首次放电容量为1321mAhg-1,充电容量为735mAhg-,循环充放电60次后充电容量是486mAhg-1,循环性能比较好。
     4、设计了一种通过溶剂热法合成CoO实心纳米球的新方法。其反应温度低,操作简单,适合于工业应用。通过对样品的各种检测证实,制备的样品是高纯CoO实心纳米球,其直径为100~300nm。探讨了油酸的用量对CoO实心纳米球形貌的影响,提出了可能的形成机理。在0.1C时,CoO实心纳米球首次放电容量和充电容量分别为1598mAh g-1和905mAh g-1。
     5、以SiO2纳米球为模板,设计了一条合成CoO空心纳米球的新路线。详细阐述了CoO空心纳米球的形成机理。通过恒电流充放电实验证实,在电流密度0.1C时,CoO空心纳米球首次放电容量是1640mAh g-1,并且CoO空心纳米球的循环性能比CoO实心纳米球更好。
     6、发展了一条制备CuO纳米粒子和多孔微米球的水热合成新路线。详细分析了pH值和十二烷基苯磺酸钠用量对CuO多孔微米球形貌的影响。检测发现CuO纳米粒子和CuO多孔微米球的首次充电容量分别为475mAh g-1和564mAh g-1,循环充放电30次后,其充电容量分别为272mAh g-1和477mAh g-1。
     7、通过水热反应得到前驱体,再煅烧前驱体,制备了Cr2O3纳米粒子,其粒径在30~60nm之间。探索了pH值对其形貌的影响。检测了Cr2O3纳米粒子的电化学性能,发现其首次放电容量为1222mAhg-1,充电容量为781mAh g-1,循环30次后,其充电容量为327mAh g-1。
Owing to their unique physical and chemical properties, metal oxide nanomaterials have potential applications in photoelectric devices, sensors, catalysis, magnetics and lithium-ion battery. Structure and morphology of nanomaterials have great influence on their properties such as surface effect, small-size effect and quantum size effect. Developing new synthetic methods and investigating their formation mechanisms should be a key precondition to understand the relation among structure and properties and industrial applications. In this dissertation, new synthetic methods of nanosized CoO, CuO, Cr2O3, SnO2and SnO2-carbon composite have been developed. Their formation mechanisms have been explored in detail. And, electrochemical properties of selected samples of each oxide as anode in lithium-ion battery have been tested. Several new and interesting results have been achieved and listed as the followings.
     1. A new hydrothermal synthetic method has been established to synthesize flowerlike SnO2nanorod bundles. Structure details of flowerlike SnO2nanorod bundles were studied by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy, respectively. Microscopy images showed that the flowerlike SnO2nanorod bundles are consisted of tetragonal nanorods with size readily tunable by changing the concentration of SnCl4. Based on experimental results, a probable formation mechanism of SnO2nanorod bundles has been proposed. Results on electrochemical properties showed that SnO2nanorod flowers as anode in lithium-ion battery possessing improved discharge capacity of694mAh g-1up to40th cycle at0.1C.
     2. A new hydrothermal-decomposition route was developed to prepare porous SnO2nanospheres. Decomposition process of precursor for making porous SnO2nanospheres was studied by DSC-TGA curve. These porous SnO2nanospheres of300nm in diameters are composed of numerous nanoparticles around20~35nm. The first discharge and charge capacity of porous SnO2nanospheres was1520mAh g-1and724mAh g-1, respectively, while the discharge capacity after30cycles retained at about522mAh g-1. Porous SnO2nanospheres have large capacity and good cycling performance, due to their unique porous nanostructure.
     3. Monodispersed SnO2-carbon composite has been synthesized by hydrothermal route using glucose as carbon sources and reacted with SnO2at150℃for24h. SnO2-carbon composite has been characterized in detail with SnO2nanoparticles dispersed uniformly in amorphous carbon. Electrochemical tests showed that first discharge and charge capacity of SnO2-carbon composite as anode materials was1321mAh g-1and735mAh g-1, respectively. The charge capacity after60cycles retained at about486mAh g-1
     4. A new solvothermal method has been designed to synthesize solid CoO nanospheres by esterification reaction. Compared to traditional solid state reaction, operation of solvothermal reaction is relatively simple with mild synthetic temperature and therefore of promising for industrial application. High-purity solid CoO nanospheres of100~300nm in diameters were characterized. Effect of concentration of oleic acid on morphology of samples has been investigated and possible formation mechanism of solid CoO nanospheres has been proposed. The first discharge capacity and charge capacity of solid CoO nanospheres as anode are1598mAh g-1and978mAh g-1at0.1C, respectively.
     5. A new synthetic route was designed to prepare hollow CoO nanospheres through using SiO2as template. Formation mechanism of hollow CoO nanospheres was introduced in detail. Galvanostatic discharge-charge experiments showed that first discharge capacity of hollow CoO nanospheres was1640mAh g-1at0.1C, and hollow CoO nanospheres as anode here showed better cycle performance compared to that of solid CoO nanospheres.
     6. A new hydrothermal synthetic route was developed to fabricate CuO nanoparticles and porous CuO microspheres. The effects of pH and concentration of sodium dodecylbenzensulfonate were discussed on morphology of porous CuO microspheres. Electrochemical tests showed that first charge capacity of CuO nanoparticles and porous CuO microspheres was475mAh g-1and564mAh g-1, respectively. Charge capacity of CuO nanoparticles and porous CuO microspheres after60cycles retained at272mAh g-1and477mAh g-1, respectively.
     7. The precursor of Cr2O3was fabricated by hydrothermal method while Cr2O3nanoparticles of30-60nm in diameters were obtained by annealing of the precursor. Effect of pH on morphology of Cr2O3nanoparticles was investigated. The first discharge capacity and charge capacity of Cr2O3nanoparticles as anode are1222mAh g-1and781mAh g-1at0.1C, respectively. Charge capacity of Cr2O3nanoparticles as anode after30cycles is327mAh g-1.
引文
[1]孙玉绣,张大伟,金政伟.纳米材料的制备方法及其应用.北京:中国纺织出版社,2010.9.
    [2]祝新发,陈顺民,许辉.物理气相沉积(Ti,Al)N涂层刀具的切削性能.热处理,2006,21(2):28-30.
    [3]莫继良,朱旻昊.物理气相沉积法制备的CrN涂层的摩擦学性能.西南交通大学学报,2008,43(2):280-284.
    [4]Hegde S.S., Kunjomana A.G., Chandrasekharan K.A., et al. Optical and electrical properties of SnS semiconductor crystals grown by physical vapor deposition technique. Physica B,2011,406(5):1143-1148.
    [5]Qiu J., An Y, Zhao Z., et al. Catalytic synthesis of single-walled carbon nanotubes from coal gas by chemical vapor deposition method. Fuel Processing Technology,2004,85(8-10):913-920.
    [6]Wu W., Liu Z., Jauregui L. A., et al. Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing. Sensors and Actuators B,2010,150(1):296-300.
    [7]Liu J.Z., Yan P.X., Yue GH., et al. Synthesis of doped ZnS one-dimensional nanostructures via chemical vapor deposition. Materials Letters,2006,60(29-30): 3471-3476.
    [8]Chang Y, Hong F. C. Synthesis and characterization of indium nitride nanowires by plasma-assisted chemical vapor deposition. Materials Letters,2009,63(21):1855-1858.
    [9]Bacsa R., Kihn Y, Verelst M., e.t al. Large scale synthesis of zinc oxide nanorods by homogeneous chemical vapour deposition and their characterization. Surface & Coatings Technology,2007,201(22-23):9200-9204.
    [10]Sun X., Li Y. Ga2O3 and GaN semiconductor hollow spheres. Angewandte Chemie International Edition.2004,43(29):3827-3831.
    [11]Bai F., Wang D., Huo Z., et al. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angewandte Chemie International Edition.2007, 46(35):6650-6653.
    [12]Liu J., Li Q., Wang T., et al. Metastable vanadium dioxide nanobelts: hydrothermal synthesis, electrical transport, and magnetic properties. Angewandte Chemie International Edition.2004,116(38):5158-5162.
    [13]Xu R., Wang D., Zhang J., et al. Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chemistry Asian Journal.2006,1(6):888-893.
    [14]Guo C., Xing Z., Ma X., et al. Solvothermal synthesis of Si3N4 nanomaterials at a low temperature. Journal of the American Chemical Society,2008,91(5): 1725-1728.
    [15]Yang X., Li C., Yang L., et al. Reduction-nitridation synthesis of titanium nitride nanocrystals. Journal of the American Chemical Society,2003,86(1):206-208.
    [16]Zhang W., Xu L., Tang K., et al. Solvothermal synthesis of NiS 3D nanostructures. European Journal of Inorganic Chemistry.2005,4:653-656.
    [17]Lian J., Liang Y., Kwong F., et al. Template-free solvothermal synthesis of ZnO nanoparticles with controllable size and their size-dependent optical properties. Materials Letters,2012,66(1):318-320.
    [18]Fan Y., Wang S., Sun Z. In2O3 hollow spheres:one-step solvothermal synthesis and gas sensing properties. Materials Chemistry and Physics,2012,134(1):93-97.
    [19]Cheng Z., Chu X. Z., Zhong H., et al. Synthesis of Fe3O4 nanoflowers by a simple and novel solvothermal process. Materials Letters,2012,76(6):90-92.
    [20]Park J., Shen X., Wang G. Solvothermal synthesis and gas-sensing performance of Co3O4 hollow nanospheres. Sensors and Actuators B,2009,136(2):494-498.
    [21]周志华,金安定,赵波,等.材料化学.北京:化学工业出版社,2006.1.
    [22]Hafezi-Ardakani M., Moztarzadeh F., Rabiee M., et al. Synthesis and characterization of nanocrystalline merwinite (Ca3Mg(SiO4)2) via sol-gel method. Ceramics International.2011,37(1):175-180.
    [23]Li Z., Shen W., Fang L., et al. Synthesis and characteristics of silica-modified ZnS nanoparticles by sol-gel-hydrothermal method. Journal of Alloys and Compounds,2008,463(1-2):129-133.
    [24]Baheiraei N., Moztarzadeh F., Hedayati M. Preparation and antibacterial activity of Ag/SiO2 thin film on glazed ceramic tiles by sol-gel method. Ceramics International,2012,38(4):2921-2925.
    [25]Mechiakh R., Sedrine N., Chtourou R. Sol-gel synthesis, characterization and optical properties of mercury-doped TiO2 thin films deposited on ITO glass substrates. Applied Surface Science,2011,257(21):9103-9109.
    [26]Xu L., Li X., Chen Y., et al. Structural and optical properties of ZnO thin films prepared by sol-gel method with different thickness. Applied Surface Science, 2011,257(9):4031-4037.
    [27]Liang L., Xu Y., Wu D., et al. A simple sol-gel route to ZrO2 films with high optical performances. Materials Chemistry and Physics,2009,114(1):252-256.
    [28]陈敬中,刘剑洪,孙学良,等.纳米材料科学导论.北京:高等教育出版社,2010.9.
    [29]Lin C. Y., Duh J.G. Porous Li4Ti2O12 anode material synthesized by one-step solid state method for electrochemical properties enhancement. Journal of Alloys and Compounds,2011,509(8):3682-3685.
    [30]章金兵,许民,周小英.固相法合成纳米二氧化钛.有色金属,2005,56(6):42-45.
    [31]Sun D., Li D., Zhu Z., et al. Photoluminescence properties of europium and titanium co-doped BaZrO3 phosphors powders synthesized by the solid-state reaction method. Optical Materials,2012,34(11):1890-1896.
    [32]Bang E. Y., Mumm D. R., Park H. R., et al. Lithium nickel cobalt oxides synthesized from Li2CO3, NiO and Co3O4 by the solid-state reaction method. Ceramics International,2012,38(5):3635-3641.
    [33]丁云峰,余锡宾,贺香红,等.变形六方ZnS纳米晶的固相合成及其荧光特性.上海师范大学学报(自然科学版),2002,31(4):47-51.
    [34]张月,高艳阳.室温固相法合成ZnO纳米棒及其光学特性.功能材料与器件学报,2006,12(4):343-346.
    [35]佘希林,宋国君,王士财,等.AAO模板法组装Ni亚微米阵列.稀有金属,2010,34(5):722-725.
    [36]Shon J. K., Kong S. S., Kim Y. S., et al. Solvent-free infiltration method for mesoporous SnO2 using mesoporous silica templates. Microporous and Mesoporous Materials,2009,120(3):441-446.
    [37]Lin Y, Duh J., Hung M. Shell-by-shell synthesis and applications of carbon-coated SnO2 hollow nanospheres in lithium-ion battery. Journal of Physical Chemistry C,2010,114(30):13136-13141.
    [38]Wang Y, Guo M., Zhang M., et al. Hydrothermal synthesis of SnO2 nanoflower arrays and their optical properties. Scripta Materialia,2009,61(3):234-236.
    [39]Bi J. Q., Wang W. L., Qi Y. X., et al. Large-scale synthesis of BN nanotubes using carbon nanotubes as template. Materials Letters,2009,63(15):1299-1302.
    [40]Zhang D., Pan C., Shi L., et al. A highly reactive catalyst for CO oxidation: CeO2 nanotubes synthesized using carbon nanotubes as removable templates. Microporous and Mesoporous Materials,2009,117(1-2):193-200.
    [41]Huang W., Shen J., Wan L., et al. Y2O3:Yb/Er nanotubes:Layer-by-layer assembly on carbon-nanotube templates and their upconversion luminescence properties. Materials Research Bulletin,2012,47(11):3875-3880.
    [42]陈翌庆,石瑛.纳米材料学基础.长沙:中南大学出版社,2009.1.
    [43]Klabunde K. J., Stark J., Koper O., et al. Nanocrystals as stoichiometric reagents with unique surface chemistry. Journal of Physical Chemistry,1996,100: 12142-12153.
    [44]Sun S., Yang L., Pang G., et al. Surface properties of Mg doped LaCoO3 particles with large surface areas and their enhanced catalytic activity for CO oxidation. Applied Catalysis A:General,2011,401(1-2):199-203.
    [45]Wang A., Hsieh Y. P., Chen Y. F., et al. Au-Ag alloy nanoparticle as catalyst for CO oxidation:Effect of Si/Al ratio of mesoporous support. Journal of Catalysis, 2006,237(1):197-206.
    [46]Oh J. H., Lee H., Kim D., et al. Effect of Ag nanoparticle size on the plasmonic photocatalytic properties of TiO2 thin films. Surface & Coatings Technology 2011, 206(1):185-189.
    [47]He X., Shi H. Size and shape effects on magnetic properties of Ni nanoparticles. Particuology,2012,10(4):497-502.
    [48]Gonzalez F., Torres T.E., Andres V., et al. Magnetic nanoparticles for power absorption:Optimizing size, shape and magnetic properties. Journal of Solid State Chemistry,2009,182(10):2779-2784.
    [49]George M., John A. M., Nair S. S., et al. Finite size effects on the structural and magnetic properties of sol-gel synthesized NiFe2O4 powders. Journal of Magnetism and Magnetic Materials,2006,302(1):190-195.
    [50]Son Y, Yeo J., Ha C. W., et al. Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning. Thermochimica Acta,2012, 542(8):52-56.
    [51]Tabatabaei S., Kumar A., Ardebili H., et al. Synthesis of Au-Sn alloy nanoparticles for lead-free electronics with unique combination of low and high melting temperatures. Microelectronics Reliability,2012,52(11):2685-2689.
    [52]Qi W.H., Wang M.P. Size and shape dependent melting temperature of metallic nanoparticles. Materials Chemistry and Physics,2004,88(2-3):280-284.
    [53]Henglein A. Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles. Chemical Reviews,1989,89:1861-1873.
    [54]Hosny N. M. Synthesis, characterization and optical band gap of NiO nanoparticles derived from anthranilic acid precursors via a thermal decomposition route. Polyhedron,2011,30(3):470-476.
    [55]Ning J., Men K., Xiao G, et al. Synthesis, optical properties and growth process of In2S3 nanoparticles. Journal of Colloid and Interface Science,2010,347(2): 172-176.
    [56]He Y. Q., Liu S. P., Kong L., et al. A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering. Spectrochimica Acta Part A,2005,61(13-14): 2861-2866.
    [57]Niu X., Cheng X., Xu J., et al. Size-dependent visible photoluminescence from ZnO nanoparticles prepared via SiO2 network. Superlattices and Microstructures, 2012,52(2):193-199.
    [58]Dosev D., Guo B., Kennedy I.M. Photoluminescence of Eu3+:Y2O3 as an indication of crystal structure and particle size in nanoparticles synthesized by flame spray pyrolysis. Aerosol Science,2006,37(3):402-412.
    [59]Awschalom D. D., McCord M. A., Grinstein G. Observation of macroscopic spin phenomena in nanometer-scale magnets. Physical Review Letters,1990,65(6): 783-786.
    [60]席力,杨啸林,李成贤,等.纳米多晶La0.7Sr0.3MnO3-δ的输运性质和磁电阻效应研究.物理学报,2006,25(2):854-859.
    [61]章建高.纳米合金薄膜Ni(B)的结构和磁学性质.金属功能材料,2001,8(4):15-20.
    [62]Tan R. P., Carrey J., Respaud M., et al.3000% high-field magnetoresistance in super-lattices of CoFe nanoparticles. Journal of Magnetism and Magnetic Materials, 2008,320(6):L55-L59.
    [63]郭炳焜,徐徽,王先友,等.长沙:中南大学出版社,2002.5.
    [64]Weinert J. X., Burke A. F., Wei X. Lead-acid and lithium-ion batteries for the Chinese electric bike market and implications on future technology advancement. Journal of Power Sources,2007,172(2):938-945.
    [65]黄学杰.锂离子电池及相关材料进展.中国材料进展,2010,29(8):46-52.
    [66]Kim T. H., Park J. S., Chang S. K., et al. The current move of lithium ion batteries towards the next phase. Advanced Energy Materials.2012,2(7):860-872.
    [67]吴宇平,张汉平,吴峰.绿色电源材料.北京:化学工业出版社,2008.7.
    [68]Jeong E., Won M., Shim Y. Cathodic properties of a lithium-ion secondary battery using LiCoO2 prepared by a complex formation reaction. Journal of Power Sources,1998,70(1):70-77.
    [69]Ying J., Jiang C., Wan C. Preparation and characterization of high-density spherical LiCoO2 cathode material for lithium ion batteries. Journal of Power Sources, 2004,129(2):264-269.
    [70]Kumta P. N., Gallet D., Waghray A., et al. Synthesis of LiCoO2 powders for lithium-ion batteries from precursors derived by rotary evaporation. Journal of Power Sources,1998,72(1):91-98.
    [71]Cao Q., Zhang H. P., Wang G J., et al. A novel carbon-coated LiCoO2 as cathode material for lithium ion battery. Electrochemistry Communications,2007, 9(5):1228-1232.
    [72]Jin Y., Lin P., Chen C. H. An investigation of silicon-doped LiCoO2 as cathode in lithium-ion secondary batteries. Solid State Ionics,2006,177(3-4):317-322.
    [73]Wakihara M. Recent developments in lithium ion batteries. Materials Science and Engineering Reports.2001,33(4):109-134.
    [74]顾大明,张若楠,高农.尖晶石型锰酸锂制备及其电化学性能.哈尔滨工业大学学报,2008,40(4):607-610.
    [75]Zhang Y, Shin H., Dong J., et al. Nanostructured LiMn2O4 prepared by a glycine-nitrate process for lithium-ion batteries. Solid State Ionics,2004,171(1-2): 25-31.
    [76]Ha H., Yun N. J., Kim K. Improvement of electrochemical stability of LiMn2O4 by CeO2 coating for lithium-ion batteries. Electrochimica Acta.2007,52(9):3236-3241.
    [77]Tu J., Zhao X.B., Xie J., et al. Enhanced low voltage cycling stability of LiMn2O4 cathode by ZnO coating for lithium ion batteries. Journal of Alloys and Compounds,2007,432(1-2):313-317.
    [78]Xiong L., Xua Y, Tao T., et al. Synthesis and electrochemical characterization of multi-cations doped spinel LiMn2O4 used for lithium ion batteries. Journal of Power Sources,2012,199(2):214-219.
    [79]Andersson A. S., Thomas J.0., Kalska B., et al. Thermal stability of LiFeP04-based cathodes. Electrochemical and Solid-State Letters,2000,3(2):66-68.
    [80]Prosini P. P., Lisi M., Zane D., et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics,2002,148(1-2):45-51.
    [81]Chen H., Yu W., Han S., et al. Preparation and electrochemical properties of LiFePO4/C composite with network structure for lithium ion batteries. Transactions of Nonferrous Metals Society of China.2007,17:951-956.
    [82]Gao F., Tang Z. Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries. Electrochimica Acta,2008,53(15):5071-5075.
    [83]Kang F., Ma J., Li B. Effects of carbonaceous materials on the physical and electrochemical performance of a LiFePO4 cathode for lithium-ion batteries. New Carbon Materials,2011,26(3):161-170.
    [84]Wu S., Chen M., Chien C, et al. Preparation and characterization of Ti4+-doped LiFePO4 cathode materials for lithium-ion batteries. Journal of Power Sources,2009, 189(1):440-444.
    [85]Liu H., Cao Q., Fu L. J., et al. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochemistry Communications.2006,8(10): 1553-1557.
    [86]Liu H., Yang H., Li J. A novel method for preparing LiFePO4 nanorods as a cathode material for lithium-ion power batteries. Electrochimica Acta.2010,55(5): 1626-1629.
    [87]Ren Y, Bruce P. G Mesoporous LiFePO4 as a cathode material for rechargeable lithium ion batteries. Electrochemistry Communications,2012,17(4):60-62.
    [88]吴宇平,万春荣,姜长印,等.理离子电池用无定形碳材料容量衰减机理.电池,1999,29(1):10-12.
    [89]Yi Z., Liang Y, Lei X., et al. Low-temperature synthesis of nanosized disordered carbon spheres as an anode material for lithium ion batteries. Materials Letters 2007,61(19-20):4199-4203.
    [90]Guo Z.P., Jia D.Z., Yuan L., et al. Optimizing synthesis of silicon/disordered carbon composites for use as anode materials in lithium-ion batteries. Journal of Power Sources,2006,159(1):332-335.
    [91]Zhao H., Ren J., He X., et al. Modification of natural graphite for lithium ion batteries. Solid State Sciences 2008,10(5):612-617.
    [92]Wang H., Ikeda T., Fukuda K., et al. Effect of milling on the electrochemical performance of natural graphite as an anode material for lithium-ion battery. Journal of Power Sources 1999,83(1-2):141-147.
    [93]Yan J., Zhang J., Su Y., et al. A novel perspective on the formation of the solid electrolyte interphase on the graphite electrode for lithium-ion batteries. Electrochimica Acta,2010,55(5):1785-1794.
    [94]Tsumura T., Katanosaka A., Souma I., et al. Surface modification of natural graphite particles for lithium ion batteries. Solid State Ionics,2000,135(1-4):209-212.
    [95]Zuo P., Yin G, Tong Y. SiMn-graphite composites as anodes for lithium ion batteries. Solid State Ionics.2006,177(37-38):3297-3301.
    [96]Choi M. G., Lee Y. G., Song S. W., et al. Anode properties of titanium oxide nanotube and graphite composites for lithium-ion batteries. Journal of Power Sources, 2010,195(24):8289-8296.
    [97]Xu M., Zhao M., Wang F., et al. Facile synthesis and electrochemical properties of porous SnO2 micro-tubes as anode material for lithium-ion battery. Materials Letters,2010,64(8):921-923.
    [98]Liu J., Li Y, Huang X., et al. Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries. Journal of Materials Chemistry,2009,19(13):1859-1864.
    [99]Lou X. W., Li C. M., Archer L. A. Designed synthesis of coaxiall SnO2@carbon hollow nanospheres for highly reversible lithium storage. Advanced Materials.2009,21(24) 2536-2539.
    [100]Yin X. M., Li C. C., Zhang M., et al. One-step synthesis of hierarchical SnO2 hollow nanostructure via self-assembly for high power lithium ion batteries[J]. Journal of Physical Chemistry C.2010,114 (3) 8084-8088.
    [101]马淳安,黄立军,康虎强,等.机械合金化法制备锂离子电池锡基负极材料及其性能.浙江工业大学学报,2010,38(4):355-359.
    [102]袁正勇,徐迪静,陈亚东,等.锂离子电池铜锡锑合金负极材料研究.化学通报,2011,74(3):280-283.
    [103]Xue L., Xu Y, Huang L., et al. Lithium storage performance and interfacial processes of three dimensional porous Sn-Co alloy electrodes for lithium-ion batteries. Electrochimica Acta,2011,56(17):5979-5987.
    [104]Hieu N. S., Lim J. C., Lee J. K. Free-standing silicon nanorods on copper foil as anode for lithium-ion batteries. Microelectronic Engineering.2012,89(1):138- 140.
    [105]Li H., Cheng F., Zhu Z., et al. Preparation and electrochemical performance of copper foam-supported amorphous silicon thin films for rechargeable lithium-ion batteries. Journal of Alloys and Compounds,2011,509(6):2919-2923.
    [106]Gohier A., Laik B., Pereira-Ramos J., et al. Influence of the diameter distribution on the rate capability of silicon nanowires for lithium-ion batteries. Journal of Power Sources,2012,203(4):135-139.
    [107]Thakur M., Isaacson M., Sinsabaugh S. L., et al. Gold-coated porous silicon films as anodes for lithium ion batteries. Journal of Power Sources,2012,205(5):426-432.
    [108]Wang J., Zhong C., Chou S., et al. Flexible free-standing graphene-silicon composite film for lithium-ion batteries. Electrochemistry Communications,2010, 12(11):1467-1470.
    [109]Chen H., Xiao Y., Wang L., et al. Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries. Journal of Power Sources,2011,196(16): 6657-6662.
    [110]Poizot P., Laruelle S., Grugeon S., et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries [J]. Nature 2000,407(6807):496-499.
    [111]Wang F., Tao W., Zhao M., et al. Controlled synthesis of uniform ultrafine CuO nanowires as anode material for lithium-ion batteries. Journal of Alloys and Compounds,2011,509(41):9798-9803.
    [112]Huang X.H., Tu J.P., Zhang C.Q., et al. Hollow microspheres of NiO as anode materials for lithium-ion batteries. Electrochimica Acta,2010,55(28):8981-8985.
    [113]Do J. S., Weng C. H. Preparation and characterization of CoO used as anodic material of lithium battery. Journal of Power Sources,2005,146(1-2):482-486.
    [114]Hassan M. F., Guo Z., Chen Z., et al. a-Fe2O3 as an anode material with capacity rise and high rate capability for lithium-ion batteries. Materials Research Bulletin,2011,46(6):858-864.
    [115]Lu L. Q., Wang Y.. Facile synthesis of graphene-supported shuttle-and urchin-like CuO for high and fast Li-ion storage. Electrochemistry Communications, 2012,14(1):82-85.
    [116]叶茂,周震,卞锡奎,等.CoO填充多壁碳纳米管作为锂离子电池负极材料.无机化学学报,2006,22(7):1307-1311.
    [117]Zhang P., Guo Z.P., Kang S.G., et al. Three-dimensional Li2O-NiO-CoO composite thin-film anode with network structure for lithium-ion batteries. Journal of Power Sources,2009,189(4):566-570.
    [118]Lian P., Zhu X., Liang S., et al. High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochimica Acta, 2011,56(12):4532-4539.
    [119]Gao M., Chen X., Pan H., et al. Ultrafine SnO2 dispersed carbon matrix composites derived by a sol-gel method as anode materials for lithium ion batteries. Electrochimica Acta,2010,55(28):9067-9074.
    [120]Li J., Zhao Y., Wang N., et al. A high performance carrier for SnO2 nanoparticles used in lithium ion battery. Chemical Communications,2011,47(18): 5238-5240.
    [121]Lee K. T., Cho J. Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano today,2011,6(1):28-41.
    [122]Wang J., Du N., Zhang H., et al. Large-scale synthesis of SnO2 nanotube arrays as high-performance anode materials of Li-ion batteries. Journal of Physical Chemistry C,2011,115(22):11302-11305.
    [123]Wang J., Zhao H., Liu X., et al. Electrochemical properties of SnO2/carbon composite materials as anode material for lithium-ion batteries. Electrochimica Acta, 2011,56(18):6441-6447.
    [124]Idota Y., Kubota T., Matsufuji A., et al. Tin-based amorphous oxide:a high-capacity lithium-ion-storage material. Science,1997,276:1395-1397.
    [125]Liu W., Huang X., Wang Z., et al. Studies of stannic oxide as an anode material for lithium-ion batteries. Journal of the Electrochemical Society,1998,145: 59-62.
    [126]Li H., Huang X., Chen L. Anodes based on oxide materials for lithium rechargeable batteries. Solid State Ionics,1999,123(1-4):189-197.
    [127]Zhang W. M., Wu X. L., Hu J. S., et al. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Advanced Functional Materials, 2008,18(24):3941-3946.
    [128]Li H., Wang Z., Chen L., et al. Research on advanced materials for Li-ion batteries. Advanced Materials,2009,21(45):4593-4607.
    [129]Park M., Wang G, Kang Y, et al. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angewandte Chemie (?) Edition,2007,46(5):750-753.
    [130]Zhong K., Zhang B., Luo S., et al. Investigation on porous MnO microsphere aode for lithium ion batteries. Journal of Power Sources,2011,196(16):6802-6808.
    [131]Wan M., Jin D., Feng R... et al. Pillow-shaped porous CuO as anode material for lithium-ion batteries. Inorganic Chemistry Communications.2011,14(1):38-41.
    [132]Han Y., Wu X., Ma Y., et al. Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications. Crystal Engineering Communication,2011,13(10): 3506-3510.
    [133]Liu J., Li W., Manthiram A. Dense core-shell structured SnO2/C composites as high performance anodes for lithium ion batteries. Chemical Communications. 2010,46(9):1437-1439.
    [134]Ng S. H., Chew S. Y., Wang J. Z., et al. Foam-like microstructural SnO2-carbon composite thin films synthesized via a polyol-assisted thermal decomposition method. Dalton Transactions,2009,4:723-729.
    [135]Khan R., Kim T. Preparation and application of visible-light-responsive Ni-doped and SnO2-coupled TiO2 nanocomposite photocatalysts. Journal of Hazardous Materials,2009,163(2-3):1179-1184.
    [136]Wang H., Baek S., Lee J., et al. High photocatalytic activity of silver-loaded ZnO-SnO2 coupled catalysts. Chemical Engineering Journal,2009,146(3):355-361.
    [137]Wang C., Zhou Y., Ge M., et al. Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. Journal of the American Chemical Society,2010, 132(1):46-47.
    [138]Yin X., Chen L., Li C., et al. Synthesis of mesoporous SnO2 spheres via self-assembly and superior lithium storage properties. Electrochimica Acta,2011, 56(5):2358-2363.
    [139]Zhan Z., Wang W., Zhu L., et al. Flame aerosol reactor synthesis of nanostructured SnO2 thin films:high gas-sensing properties by control of morphology. Sensors and Actuators B,2010,150(2):609-615.
    [140]Xu J., Wang D., Qin L., et al. SnO2 nanorods and hollow spheres:Controlled synthesis and gas sensing properties. Sensors and Actuators B,2009,137(2): 490-495.
    [141]Hossain M.. A., Yang G, Parameswaran M., et al. Mesoporous SnO2 spheres symbesized by electrochemical anodization and their application in CdSe-sensitized solar cells. Journal of Physical Chemistry C,2010,114(49):21878-21884.
    [142]Liu J., Luo T., Mouli S., et al. A novel coral-like porous SnO2 hollow architecture:biomimetic swallowing growth mechanism and enhanced photovoltaic property for dye-sensitized solar cell application. Chemical Communications,2010, 46(3):472-474.
    [143]Wang Y., Guo M., Zhang M., et al. Hydrothermal preparation and photoelectrochemical performance of size-controlled SnO2 nanorod arrays. Crystal Engineering Communication,2010,12(12):4024-4027.
    [144]Kida T., Doi T., Shimanoe K. Synthesis of monodispersed SnO2 nanocrystals and their remarkably high sensitivity to volatile organic compounds. Chemistry of Materials,2010,22(8):2662-2667.
    [145]Acarbas O., Suvac E., Dogan A. Preparation of nanosized tin oxide (SnO2) powder by homogeneous precipitation. Ceramics International,2007,33(4):537-542.
    [146]Gnanam S., Rajendran V. Preparation of Cd-doped SnO2 nanoparticles by sol-gel route and their optical properties. Journal of Sol-Gel Science and Technology, 2010,56(2):128-133.
    [147]Li L., Yin X., Liu S., et al. Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries. Electrochemistry Communications, 2010,12(10):1383-1386.
    [148]Lou X. W., Wang Y., Yuan C., et al. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Advanced Materials,2006,18(17): 2325-2329.
    [149]Wang X., Zhuang J., Peng Q., et al. A general strategy for nanocrystal synthesis. Nature,2005,437(7055):121-124.
    [150]Liu J., Li Y. Synthesis and self-assembly of luminescent Ln3+-doped LaVO4 uniform nanocrystals. Advanced Materials,2007,19(8):1118-1122.
    [151]Sun X. M., Li Y. D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angewandte Chemie International Edition,2004, 43(5):597-601.
    [152]Zhou X., Fu W., Yang H., et al. Synthesis and ethanol-sensing properties of flowerlike SnO2 nanorods bundles by poly(ethylene glycol)-assisted hydrothermal process. Materials Chemistry and Physics,2010,124(1):614-618.
    [153]Liu C., Shan Y., Zhu Y., et al. Magnetic monolayer film of oleic acid-stabilized Fe3O4 particles fabricated via Langmuir-Blodgett technique. Thin Solid Films,2009,518(1):324-327.
    [154]Wen J., Li J., Liu S., et al. Preparation of copper nanoparticles in a water/oleic acid mixed solvent via two-step reduction method. Colloids and Surfaces A,2011, 373(1-3):29-35.
    [155]Liu F., Quan B., Chen L., et al. Investigation on SnO2 nanopowders stored for different time and BaTiO3 modification. Materials Chemistry and Physics,2004, 87(2-3):297-300.
    [156]Popescu D. A., Verduraz F. B. Infrared studies on SnO2 and Pd/SnO2. Catalysis Today,2001),70(1-3):139-154.
    [157]Du F., Guo Z., Li G. Hydrothermal synthesis of SnO2 hollow microspheres. Materials Letters,2005,59(19-20):2563-2565.
    [158]Teng F., Yao W., Zhu Y., et al. Micelle-assisted hydrothermal synthesis of the uniform Co3O4 nanorods and its chemoluminescence properties of CO oxidation. Journal of Non-Crystalline Solids 2009,355(48-49):2375-2380.
    [159]Han S., Jang B., Kim T., et al. Simple systhesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes. Advanced Functional Materials,2005,15:1845-1850.
    [160]Du N., Zhang H., Chen J., et al. Metal oxide and sulfide hollow spheres: layer-by-layer synthesis and their application in lithium-ion battery. Journal of Physical Chemistry B,2008,112(47):14836-14842.
    [161]Xue M. Z., Fu Z. W.. The reinvestigation on electrochemical reaction mechanism of stannic oxide thin film with lithium. Electrochemical and Solid-State Letters,2006,9(10):468-470.
    [162]Sun B., Horvat J., Kim H. S., et al. Synthesis of mesoporous r-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries. Journal of Physical Chemistry C,2010,114(44):18753-18761.
    [163]Ui K., Kawamura S., Kumagai N. Fabrication of binder-free SnO2 nanoparticle electrode for lithium secondary batteries by electrophoretic deposition method:Electrochimica Acta,2012,76(8):383-388.
    [164]Yi J., Li X.P., Hu S.J., et al. Preparation of hierarchical porous carbon and its rate performance as anode of lithium ion battery. Journal of Power Sources,2011, 196(16):6670-6675.
    [165]Wu P., Du N., Zhang H., et al. Self-templating synthesis of SnO2-carbon hybrid hollow spheres for superior reversible lithium ion storage. Applied Materials Interfaces,2011,3(6):1946-1952.
    [166]Xu G., Chen S., Li J., et al. A composite material of SnO2/ordered mesoporous carbon for the application in lithium-ion battery. Journal of Electroanalytical Chemistry,2011,656(1-2):185-191.
    [167]Nam S., Kim S., Wi S., et al. The role of carbon incorporation in SnO2 nanoparticles for Li rechargeable batteries. Journal of Power Sources,2012,211(8): 154-160.
    [168]Chang K., Chen W., Ma L., et al. Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries. Journal of Materials Chemistry,2011,21(17):6251-6257.
    [169]Mi H., Xu Y., Shi W., et al. Flocculant-assisted synthesis of Fe2O3/carbon composites for superior lithium rechargeable batteries. Materials Research Bulletin, 2012,47(1):152-155.
    [170]Yuan Y.F., Pei Y.B., Fang J., et al. Sponge-like mesoporous CuO ribbon clusters as high-performance anode material for lithium-ion batteries. Materials Letters,2013,91(1):279-282.
    [171]Zhang M., Jia M. High rate capability and long cycle stability Fe3O4-grapheme nanocomposite as anode material for lithium ion batteries. Journal of Alloys and Compounds,2013,551(2):53-60.
    [172]Chen C. H., Hwang B. J., Do J. S., et al. An understanding of anomalous capacity of nano-sized CoO anode materials for advanced Li-ion battery. Electrochemistry Communications,2010,12(3):496-498.
    [173]Seo W. S., Shim J. H., Oh S. J., et al. Phase- and size-controlled synthesis of hexagonal and cubic CoO nanocrystals. Journal of the American Chemical Society, 2005,127(17):6188-6189.
    [174]Zhang Y., Zhu J., Song X., et al. Controlling the synthesis of CoO nanocrystals with various morphologies. Journal of Physical Chemistry C,2008, 112(14):5322-5327.
    [175]Yao W., Yang J., Wang J., et al. Multilayered cobalt oxide platelets for negative electrode material of a lithium-ion battery. Journal of the Electrochemical Society,2008,155(12), A903-A908.
    [176]Wang Y., Djerdj I., Smarsly B., et al. Antimony-doped SnO2 nanopowders with high crystallinity for lithium-ion battery electrode. Chemistry of Materials,2009, 21(14):3202-3209.
    [177]Sivakumar N., Gnanakan S.R.P., Karthikeyan K., et al. Nanostructured as anode materials for lithium-ion batteries. Journal of Alloys and Compounds,2011,509(25):7038-7041.
    [178]Panda S. K., Yoon Y., Jung H. S., et al. Nanoscale size effect of titania (anatase) nanotubes with uniform wall thickness as high performance anode for lithium-ion secondary battery. Journal of Power Sources,2012,204(4):162-167.
    [179]Yin Y., Wu P., Zhang H., et al. Enhanced cathode performances of amorphous FePO4 hollow nanospheres with tunable shell thickness in lithium ion batteries. Electrochemistry Communications,2012,18:1-3.
    [180]Song Y., Wei J., Yang Y., et al. Preparation of CeO2 hollow spheres via a surfactant-assisted solvothermal route. Journal of Materials Science,2010,45(15): 4158-4162.
    [181]Gao G., Shi R., Qin W. et al. Solvothermal synthesis and characterization of size-controlled monodisperse Fe3O4 nanoparticles. Journal of Materials Science, 2010,45(13):3483-3489.
    [182]Liu G., Hong G., Dong X., et al. Synthesis of Y2O3:Eu3+ hollow sphelles using silica as templates. Journal of Rare Earths,2007,25:407-411.
    [183]Jiang J., Liu J., Ding R., et al. Direct synthesis of CoO porous nanowire arrays on Ti substrate and their application as lithium-ion battery electrodes. Journal of Physical Chemistry C,2010,114(2):929-932.
    [184]Yang H., Ouyang J., Tang A. Single step synthesis of high-purity CoO nanocrystals. Journal of Physical Chemistry B,2007,111(28):8006-8013.
    [185]Wu Z., Qin L., Pan Q. Fabrication and electrochemical behavior of flower-like ZnO-CoO-C nanowall arrays as anodes for lithium-ion batteries. Journal of Alloys and Compounds,2011,509(37):9207-9213.
    [186]Motohashi K., Ikeda N., Sato T., et al. Bidirectional recording performance of a perpendicular evaporated Co-CoO tape. Journal of Magnetism and Magnetic Materials,2008,320(22):3004-3007.
    [187]Moussa S., Abdelsayed V., Shall M. S. Laser synthesis of Pt, Pd, CoO and Pd-CoO nanoparticle catalysts supported on grapheme. Chemical Physics Letters 2011,510:179-184.
    [188]Nam K. M., Shim J. H., Han D., et al. Synthesis and characterization of wurtzite CoO, rocksalt CoO, and spinel Co3O4 nanocrystals:their interconversion and tuning of phase and morphology. Chemistry of Materials,2010,22(15):4446-4454.
    [189]Ye Y., Yuan F., Li S. Synthesis of CoO nanoparticles by esterification reaction under solvothermal conditions. Materials Letters,2006,60(25-26): 3175-3178.
    [190]Bai S., Chen L., Hu J., et al. Synthesis of quantum size ZnO crystals and their gas sensing properties for NO2. Sensors and Actuators B,2011,159(1):97-102.
    [191]Sun G., Zhang X., Cao M., et al. Facile synthesis, characterization, and microwave absorbability of CoO nanobelts and submicrometer spheres. Journal of Physical Chemistry C.,2009,113(17):6948-6954.
    [192]Wang W., Zhang G. Synthesis and optical properties of high-purity CoO nanowires prepared by an environmentally friendly molten salt route. Journal of Crystal Growth,2009,311(17):4275-4280.
    [193]Lagunas A., Payeras A. M., Jimeno C., et al. Low-temperature synthesis of CoO nanoparticles via chemically assisted oxidative decarbonylation. Chemistry of Materials,2008,20(1):92-100.
    [194]Guan H., Wang X., Li H., et al. CoO octahedral nanocages for high-performance lithium ion batteries. Chemical Communications,2012,48(40): 4878-4880.
    [195]Sun Y., Hu X., Luo W., et al. Self-assembled mesoporous CoO nanodisks as a long-life anode material for lithium-ion batteries. Journal of Materials Chemistry, 2012,22(27):13826-13831.
    [196]王富平,李三喜,张文政.球形二氧化硅的制备与改性.当代化工,2010,39(1):1-4.
    [197]Stober W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science,1968,26: 62-69.
    [198]Tang X., Liu Z., Zhang C., et al. Synthesis and capacitive property of hierarchical hollow manganese oxide nanospheres with large specific surface area. Journal of Power Sources,2009,193(2):939-943.
    [199]An K., Lee N., Park J., et al. Synthesis, Characterization, and Self-assembly of pencil-shaped CoO nanorods. Journal of the American Chemical Society,2006, 128(30):9753-9760.
    [200]Shi R., Chen G., Ma W., et al. Shape-controlled synthesis and characterization of cobalt oxides hollow spheres and octahedral. Dalton Transactions,2012,41(19): 5981-5987.
    [201]Tada M., Kanemaru T., Hara T., et al. Synthesis of hollow ferrite nanospheres for biomedical applications. Journal of Magnetism and Magnetic Materials,2009, 321(10):1414-1416.
    [202]Park J. H., Cho J. H., Cho K. H., et al. CO oxidation over CuO catalysts prepared with different precipitants. Korean Journal of Chemical Engineering,2012, 29(9):1151-1157.
    [203]Kim K. M., Jeong H. M., Kim H. R., et al. Selective detection of NO2 using Cr-doped CuO nanorods. Sensors,2012,12(6):8013-8025.
    [204]Gong S., Li L., Guo M., et al. Low temperature sintering and microwave dielectric properties of 7NiNb2O6-9TiO2 ceramics with CuO addition. Journal of Materials Science-Materials in Electronics,2012,23(7):1346-1351.
    [205]Zou C.W., Wang J., Liang F., et al. Large-area aligned CuO nanowires arrays: Synthesis, anomalous ferromagnetic and CO gas sensing properties. Current Applied Physics,2012,12(5):1349-1354.
    [206]Qin Y., Zhang F., Chen Y., et al. Hierarchically porous CuO hollow spheres fabricated via a one-pot template-free method for high-performance gas sensors. Journal of Physical Chemistry,2012,116(22):11994-12000.
    [207]Wang L., Zhou Q., Zhang G., et al. A facile room temperature solution-phase route to synthesize CuO nanowires with enhanced photocatalytic performance. Materials Letters,2012,74:217-219.
    [208]Chen H., Zhao G, Liu Y. Low-temperature solution synthesis of CuO nanorods with thin diameter. Materials Letters,2013,93(15):60-63.
    [209]Zhu J., Qian X. From 2-D CuO nanosheets to 3-D hollow nanospheres: interface-assisted synthesis, surface photovoltage properties and photocatalytic activity. Journal of Solid State Chemistry,2010,183(7):1632-1639.
    [210]Yu Q., Huang H., Chen R., et al. Synthesis of CuO nanowalnuts and nanoribbons from aqueous solution and their catalytic and electrochemical properties. Nanoscale,2012,4(8):2613-2620.
    [211]Kim W. S., Hwa Y, Jeun J. H., et al. Synthesis of SnO2 nano hollow spheres and their size effects in lithium ion battery anode application. Journal of Power Sources,2013,225(3):108-112.
    [212]Zhang J., Yao Y, Huang T., et al. Uniform hollow Fe3O4 spheres prepared by template-free solvothermal method as anode material for lithium-ion batteries. Electrochimica Acta,2012,78(9):502-507.
    [213]Xu M., Wang F., Ding B., et al. Electrochemical synthesis of leaf-like CuO mesocrystals and their lithium storage properties. RSC Advances,2012,2(6): 2240-2243.
    [214]Kong M., Zhang W., Yang Z., et al. Facile synthesis of CuO hollow nanospheres assembled by nanoparticles and their electrochemical performance. Applied Surface Science,2011,258(4):1317-1321.
    [215]Guan X., Li L., Li G., et al. Hierarchical CuO hollow microspheres: Controlled synthesis for enhanced lithium storage performance. Journal of Alloys and Compounds,2011,509(7):3367-3374.
    [216]Zhao L., Tao F., Quan Z., et al. Bubble template synthesis of copper sulfide hollow spheres and their applications in lithium ion battery. Materials Letters,2012, 68(2):28-31.
    [217]Wang H., Wu Y., Bai Y., et al. The self-assembly of porous microspheres of tin dioxide octahedral nanoparticles for high performance lithium ion battery anode materials. Journal of Materials Chemistry,2011,21(27):10189-10194.
    [218]Gao P., Ji H., Zhou Y., et al. Selective acetone gas sensors using porous WO3-Cr2O3 thin films prepared by sol-gel method. Thin Solid Films,2012,520(7): 3100-3106.
    [219]Li S., Li F., Zhou S., et al. Highly sensitive room-temperature gas sensors based on hydrothermal synthesis of Cr2O3 hollow nanospheres. Chinese Physics B, 2009,18(9):3985-3989.
    [220]Liu H., Du X., Xing X., et al. Highly ordered mesoporous Cr2O3 materials with enhanced performance for gas sensors and lithium ion batteries. Chemical Communications,2012,48(6):865-867.
    [221]Jiang L., Xin S., Wu X., et al. Non-sacrificial template synthesis of Cr2O3-C hierarchical core/shell nanospheres and their application as anode materials in lithium-ion batteries. Journal of Materials Chemistry,2010,20(35):7565-7569.
    [222]Pei Z., Xu H., Zhang Y. Preparation of Cr2O3 nanoparticles via C2H5OH hydrothermal reduction. Journal of Alloys and Compounds,2009,468(1-2):L5-L8.
    [223]Khamlich S., Manikandan E., Ngom B.D., et al. Synthesis, characterization, and growth mechanism of a-Cr2O3 Monodispersed particles. Journal of Physics and Chemistry of Solids,2011,72(6):714-718.
    [224]Lima M. D., Bonadimann R., Andrade M. J., et al. Nanocrystalline Cr2O3 and amorphous CrO3 produced by solution combustion synthesis. Journal of the European Ceramic Society,2006,26(7):1213-1220.
    [225]Yang S., Liu S., Lan C., et al. Single crystalline Cr2O3 nanowires/nanobelts: CrCl3 assistant synthesis and novel magnetic properties. Applied Surface Science, 2012,258(22):8965-8969.
    [226]Hu J., Li H., Huang X. J. Cr2O3/based anode materials for Li-ion batteries. Electrochemical and Solid State Letters,2005,8(1):A66-A69.
    [227]Li J., Maurice V., Jolanta S., et al.. XPS, time-of-flight-SIMS and polarization modulation IRRAS study of Cr2O3 thin film materials as anode for lithium ion battery. Electrochimica Acta,2009,54(14):3700-3707.
    [228]Sun J., Tang K., Yu X., et al. Overpotential and electrochemical impedance analysis on Cr2O3 thin film and powder electrode in rechargeable lithium batteries. Solid State Ionics,2008,179(40):2390-2395.
    [229]Guo B., Chi M., Sun X., et al. Mesoporous carbon-Cr2O3 composite as an anode material for lithium ion batteries. Journal of Power Sources,2012,205(5):495-499.
    [230]Hu J., Li H., Huang X., et al. Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries. Solid State Ionics,2006,177(26-32): 2791-2799.