铁氧化菌的耐砷性能及除砷特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界上很多国家和地区都分布有高砷地下水。在缺少替代水源的情况下,当地居民长期饮用高砷地下水,将带来很大的健康隐患。为保证这些地区居民的饮用水安全,必须先对高砷水进行处理。生物修复法是目前除砷领域研究的热点之一,而大量耐砷微生物的发现和耐砷机理研究又为生物法除砷的发展提供了新的思路。
     本文分别选取了好氧铁氧化菌GE-1和厌氧铁氧化菌Strain 2002作为研究对象,利用室内实验研究了这两种菌的Fe(Ⅱ)氧化能力和耐砷性能,探讨了Fe(Ⅱ)氧化、铁沉降原因及耐砷机理。在此基础上,初步试验了这两种菌的除砷效果,并研究了菌存在对菱铁矿除砷系统的影响。
     好氧铁氧化菌GE-1分离自浸泡生锈铁丝的自来水,属于假单胞菌。单菌体为无色杆状菌,长为1-5μm。GE-1生长升高环境pH,并分泌出大量胞外酶,都有助于Fe(Ⅱ)的氧化和铁的沉降,最终生成结晶度较低的水铁矿。GE-1有很大的耐砷潜力,在As(Ⅲ/Ⅴ)浓度高达100 mg/L的水环境中依然能正常生长。
     厌氧铁氧化菌Strain 2002是前人从淡水湖沉积物中分离出的。单菌体为无孢子、有鞭毛的杆状菌,长为1-4μm。Strain 2002还原硝酸盐时,能同时以乙酸盐和Fe(Ⅱ)作为电子供体,导致Fe(Ⅱ)氧化。其Fe(Ⅱ)氧化和铁沉降的产物为包含菱铁矿、纤铁矿和针铁矿等在内的Fe(Ⅱ)和Fe(Ⅲ)混合矿物。Strain 2002耐As(V)能力要高于耐As(Ⅲ)能力,当水环境中的As(Ⅲ)浓度为2000μg/L时,Strain 2002的生长速度就会受到明显影响。
     在高砷环境中,GE-1和Strain 2002都会逐渐收缩。当砷环境中无铁时,它们都不能通过吸收或生物吸附来降低砷的浓度,也不能改变砷的价态。当砷环境中有Fe(Ⅱ)时,它们氧化Fe(Ⅱ)、沉降铁的产物朝着结晶更差、颗粒更细小的方向转化。生成的铁沉淀能通过吸附或共沉降作用来除砷,效果很好。
     在菱铁矿除砷系统中加入GE-1和Strain 2002后,由于引入了大量细菌,会造成吸附点位的减少和菱铁矿颗粒表面电荷的改变,不利于砷的去除。
     本文取得成果为建立耐砷铁氧化菌的除砷适用技术和研究砷的迁移转化规律提供了理论基础。
High arsenic groundwaters have been found in many countries and areas. People,exposed to high-arsenic groundwater due to limited alternative water resources, mayhave severe health problems. Therefore, arsenic removal should be conducted forensuring the safety of drinking water. In recent years, bioremediation has receivedmuch attention on arsenic removal from aqueous solution. Moreover, a number ofmicroorganisms which survive in high As(III/V) environment have been reported.The findings of arsenic-resistant microorganisms and mechanism on their arsenictolerance give new ideas on arsenic bioremediation.
     This study investigated the potential of Fe(Ⅱ)-oxidizing bacteria in arsenictolerance and removal in aqueous environment. Aerobic Fe(Ⅱ)-oxidizing bacteriaGE-1 and anaerobic Fe(Ⅱ)-oxidizing bacteria Strain 2002 were selected. Mechasiamof Fe(Ⅱ) oxidization and Fe precipitation by theses bacteria were also revealed.
     Aerobic Fe(Ⅱ)-oxidizing bacteria GE-1 were isolated from the batch of tap waterand rusty iron wires. This strain was colorless and rod-shaped (1-5μm), belonging toPseudomonas sp. according to 16S rRNA gene sequences. The growth of GE-1increased solution pH and secreted extracellular enzymes, which contributed to Fe(Ⅱ)oxidization and Fe precipitation. XRD (X-ray diffraction) patterns indicated that Fedeposits by GE-1 in Fe-rich culture medium were low-crystallized ferrihydrites. GE-1had high arsenic tolerance, which even survived and propagated in 100 mg/L As(III/V)solutions.
     Anaerobic Fe(Ⅱ)-oxidizing bacteria Strain 2002 were rod-shaped (1-4μm),non-spore forming and flagellated, which were isolated from freshwater lakesediments by Weber et al. This strain was capable of utilizing acetate and Fe(Ⅱ) aselectron donor to reduce nitrate under heterotrophically growth conditions.FE-SEM/EDS (Field Emission Scanning Electron Microscope/Energy DispersiveSpectrometer) results showed that Fe deposits by Strain 2002 in Fe-rich culturemedium were mixed Fe(Ⅱ) and Fe(III) minerals containing siderite, lepidocrocite andgoethite. Strain 2002 had higher tolerance of As(V) than As(III). The growth wasobviously slow in 2000μg/L As(III) condition.
     In high As(III/V) environment, morphological characteristics of both strainsshowed similar changes, e.g., shrinking of long bacillus. Besides, with the absence ofFe(Ⅱ) and Fe(III), both strains neither removed arsenic nor change the species ofarsenic. With the presence of Fe(Ⅱ), these strains led to oxidization of Fe(Ⅱ) andprecipitation of Fe minerals, and produced smaller and less crystalline minerals.Adsorption on and co-precipitation with these biogenic Fe minerals greatlycontributed to high arsenic removal efficiency of Fe(Ⅱ)-oxidizing bacteria.
     The effect of GE-1 and Strain 2002 on arsenic removal by siderite were alsostudied when siderite was adopted as the adsorbent to remove arsenic. Results showedthat due to the introduction of bacteria into solution, adsorption sites and surfacecharge of siderite changed, which exerted negative influences on arsenic removal.
     These findings provided theoretical supports on developing applicable arsenicbioremediation by arsenic-resistant Fe(Ⅱ)-oxidizing bacteria and studyingtransformation and geological cycle of arsenic in nature.
引文
Afkar E., Lisak J., Saltikov C., et al. The respiratory arsenate reductase from Bacillusselenitireducens strain MLS10[J]. Fems Microbiology Letters, 2003, 226(1):107-112.
    Ahmed K. M., Bhattacharya P., Hasan M. A., et al. Arsenic enrichment in groundwater of thealluvial aquifers in Bangladesh: an overview[J]. Applied Geochemistry, 2004, 19(2):181-200.
    Ahsan H., Chen Y., Parvez F., et al. Arsenic exposure from drinking water and risk ofpremalignant skin lesions in Bangladesh: baseline results from the health effects of arseniclongitudinal study[J]. American Journal of Epidemiology, 2006, 163(12):1138-1148.
    Anderson G. L., Williams J., Hille R. The purification and characterization of arsenite oxidasefrom Alcaligenes faecalis, a molybdenum-containing hydroxylase[J]. Journal of BiologicalChemistry, 1992, 267(33):23674-23682.
    Badruzzaman M. Mass transport scaling and the role of silica on arsenic adsorption onto porousiron oxide (hydroxide): [Dissertation for Doctoral Degree]. USA: Arizona state university,2005.
    Bajpai S., Chaudhuri M. Removal of arsenic from ground water by manganese dioxide–coatedsand[J]. Journal of Environmental engineering, 1999, 125: 782.
    Bentley R., Chasteen T. G. Microbial methylation of metalloids: arsenic, antimony, andbismuth[J]. Microbiology and Molecular Biology Reviews, 2002, 66 (2): 250-271.
    Berg M., Luzi S., Trang P. T. K., et al. Arsenic removal from groundwater by household sandfilters: comparative field study, model calculations, and health benefits[J]. EnvironmentalScience & Technology, 2006, 40(17):5567-5573.
    Bhattacharjee S., Chakravarty S., Dureja V., et al. Removal of arsenic from groundwater usinglow cost ferruginous manganese ore[J]. Water Research, 2002, 36(3):625-632.
    Bobrowicz P., Wysocki R., Owsianik G., et al. Isolation of three contiguous genes, ACR1, ACR2and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomycescerevisiae[J]. Yeast, 1997, 13 (9): 819-828.
    Casiot C., Pedron V., Bruneel O., et al. A new bacterial strain mediating As oxidation in theFe-rich biofilm naturally growing in a groundwater Fe treatment pilot unit[J]. Chemosphere,2006, 64(3):492-496.
    Caudill M. The effects of arsenic on Thiobacillus ferrooxidans: [Dissertation for Master Degree].USA: Columbia University, 2003.
    Chang J. S., Yoon I. H., Lee J. H., et al. Arsenic detoxification potential of aox genes inarsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic ofKorea[J]. Environmental Geochemistry and Health, 2010, 32(2):95-105.
    Chaudhuri S. K., Lack J. G., Coates J. D. Biogenic magnetite formation through anaerobicbiooxidation of Fe(II)[J]. Applied and Environmental Microbiology, 2001, 67(6):2844-2848.
    Chen X. P., Zhu Y. G., Hong M. N., et al. Effects of different forms of nitrogen fertilizers onarsenic uptake by rice plants[J]. Environmental Toxicology and Chemistry, 2008,27(4):881-887.
    Chung J., Li X., Rittmann B. Bio-reduction of arsenate using a hydrogen-based membrane biofilmreactor[J]. Chemosphere, 2006, 65 (1): 24-34.
    Cullen W. R., Reimer K. J. Arsenic speciation in the environment[J]. Chemical Reviews, 1989,89(4):713-764.
    Deliyanni E., Bakoyannakis D., Zouboulis A., et al. Sorption of As(V) ions by akaganeite-typenanocrystals[J]. Chemosphere, 2003, 50 (1): 155-163.
    DPHE/BGS/MML, 1999. Groundwater studies for arsenic contamination in Bangladesh. Phase I:rapid investigation phase[R]. BGS/MML technical report to department for internationaldevelopment, UK, 6 volumes.
    Driehaus W., Seith R., Jekel M. Oxidation of arsenate(III) with manganese oxides in watertreatment[J]. Water Research, 1995, 29 (1): 297-305.
    Drits V., Sakharov B., Salyn A., et al. Structural model for ferrihydrite[J]. Clay Minerals, 1993,28(2):185-207.
    Duquesne K., Lieutaud A., Ratouchniak J., et al. Arsenite oxidation by a chemoautotrophicmoderately acidophilic Thiomonas sp.: from the strain isolation to the gene study[J].Environmental Microbiology, 2008, 10 (1): 228-237.
    Ehrenreich A., Widdel F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type ofphototrophic metabolism[J]. Applied and Environmental Microbiology, 1994, 60(12): 4517.
    Emde K., Smith D., Facey R. Initial investigation of microbially influenced corrosion (MIC) in alow temperature water distribution system[J]. Water Research, 1992, 26(2):169-175.
    Fan D.J., Neuser R.D., Sun X.J., et al. Authigenic iron oxide formation in the estuarine mixingzone of the Yangtze River[J]. Geo-Marine Letters, 2008, 28(1):7-14.
    Farquhar M. L., Charnock J. M., Livens F. R., et al. Mechanisms of arsenic uptake from aqueoussolution by interaction with goethite, lepidocrocite, mackinawite, and pyrite: an X-rayabsorption spectroscopy study[J]. Environmental Science & Technology, 2002, 36 (8):1757-1762.
    Fields K., Chen A., Wang L. Arsenic removal from drinking water by iron removal plants[M].USA: EPA, 2000.
    Fuller C. C., Davis J. A., Waychunas G. A. Surface chemistry of ferrihydrite: Part 2. Kinetics ofarsenate adsorption and coprecipitation[J]. Geochimica et Cosmochimica Acta, 1993,57(10):2271-2282.
    Ghiorse W. Biology of iron-and manganese-depositing bacteria[J]. Annual Reviews inMicrobiology, 1984, 38(1): 515-550.
    Gimenez J., Martinez M., Depablo J., et al. Arsenic sorption onto natural hematite, magnetite, andgoethite[J]. Journal of Hazardous Materials, 2007, 141 (3): 575-580.
    Gladysheva T. B., Oden K. L., Rosen B. P. Properties of the arsenate reductase of plasmidR773[J]. Biochemistry, 1994, 33 (23): 7288-7293.
    Goldstone M. E., Atkinson C., Kirk P. W. W. The behaviour of heavy metals during wastewatertreatment III. Mercury and arsenic[J]. Science of the Total Environment, 1990, 95: 271-294.
    Green H. H. Isolation and description of a bacterium causing oxidation of arsenite to arsenate incattle-dipping baths. Rep Dir Vet Res S Afr, 1918, 6: 593-599.
    Guo H. M., Stuben D., Berner Z. Adsorption of arsenic(III) and arsenic(V) from groundwaterusing natural siderite as the adsorbent[J]. Journal of Colloid and Interface Science, 2007a,315 (1): 47-53.
    Guo H. M., Stuben D., Berner Z. Arsenic removal from water using natural iron mineral-quartzsand columns[J]. Science of The Total Environment, 2007b, 377 (2-3): 142-151.
    Guo H. M., Stuben D., Bemer Z., et al. Adsorption of arsenic species from water using activatedsiderite-hematite column filters[J]. Journal of Hazardous Materials, 2008, 151 (2-3):628-635.
    Guo H., Li Y., Zhao K. Arsenate removal from aqueous solution using synthetic siderite[J].Journal of Hazardous Materials, 2010, 176(1-3):174-180.
    Guo H., Li Y., Zhao K., et al. Removal of arsenite from water by synthetic siderite: Behaviors andmechanisms[J]. Journal of Hazardous Materials, 2011, 186(2-3):1847-1854.
    Güray M.Z. Partial purification and characterization of polyphenol oxidase from thermophilicBacillus sp.: [Dissertation for Doctoral Degree]. Turkey: zmir Institute of Technology, 2009.
    Hanert H. H. The genus Gallionella[J]. The prokaryotes, 1992, 1:4082-4088.
    Hohmann C., Morin G., Ona-Nguema G., et al. Molecular-level modes of As binding to Fe(III)(oxyhydr)oxides precipitated by the anaerobic nitrate-reducing Fe(II)-oxidizing Acidovoraxsp. strain BoFeN1[J]. Geochimica et Cosmochimica Acta, 2011, 75(17):4699-4712.
    Hohmann C., Winkler E., Morin G., et al. Anaerobic Fe(II)-oxidizing bacteria show As resistanceand immobilize As during Fe(III) mineral precipitation[J]. Environmental Science &Technology, 2010, 44(1):94-101.
    Hug S. J., Voegelin A. Catalyzed oxidation of arsenic(III) by hydrogen peroxide on the surface offerrihydrite: An in situ ATR-FTIR study[J]. Environmental Science & Technology, 2003, 37(5): 972-978.
    Islam F. S., Gault A. G., Boothman C., et al. Role of metal-reducing bacteria in arsenic releasefrom Bengal delta sediments[J]. Nature, 2004, 430(6995):68-71.
    Jahan K., Mosto P., Mattson C., et al. Microbial removal of arsenic[J]. Water, Air, & SoilPollution: Focus, 2006, 6 (1-2): 71-82.
    Jang J. H., Dempsey B. A. Coadsorption of arsenic (III) and arsenic (V) onto hydrous ferric oxide:effects on abiotic oxidation of arsenic (III), extraction efficiency, and model accuracy[J].Environmental Science & Technology, 2008, 42 (8): 2893-2898.
    Ji G. Y., Silver S. Reduction of arsenate to arsenite by the arsc protein of the arsenic resistanceoperon of Staphylococcus aureus plasmid-Pi258[J]. Proceedings of the National Academy ofSciences of the United States of America, 1992, 89 (20): 9474-9478.
    Kappler A., Newman D. K. Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophicbacteria[J]. Geochimica et Cosmochimica Acta, 2004, 68(6):1217-1226.
    Kappler A., Pasquero C., Konhauser K. O., et al. Deposition of banded iron formations byanoxygenic phototrophic Fe(II)-oxidizing bacteria[J]. Geology, 2005a, 33(11): 865.
    Kappler A., Schink B., Newman D. K. Fe(III) mineral formation and cell encrustation by thenitrate-dependent Fe(II)-oxidizer strain BoFeN1[J]. Geobiology, 2005b, 3(4): 235-245.
    Kartinen E. O., Martin C. J. An overview of arsenic removal processes[J]. Desalination, 1995,103(1-2):79-88.
    Kashyap D. R., Botero L. M., Franck W. L., et al. Complex regulation of arsenite oxidation inAgrobacterium tumefaciens[J]. Journal of Bacteriology, 2006, 188 (3): 1081-1088.
    Kleinert S., Muehe E. M., Posth N. R., et al. Biogenic Fe(III) minerals lower the efficiency ofiron-mineral-based commercial filter systems for arsenic removal[J]. Environmental Science& Technology, 2011, 45:7533-7541.
    Konhauser K. O. Diversity of bacterial iron mineralization[J]. Earth-Science Reviews, 1998,43(3-4):91-121.
    Krumbein W. E. Microbial geochemistry blackwell[M], Oxford: Blackwell Scientific Publications,1983, 105.
    Kucera S., Wolfe R. S. A selective enrichment method for Gallionella ferruginea[J]. Journal ofBacteriology, 1957, 74: 344-349.
    Ladeira A. C. Q., Ciminelli V. N. S. T. Adsorption and desorption of arsenic on an oxisol and itsconstituents[J]. Water Research, 2004, 38(8):2087-2094.
    Langner H. W., Inskeep W. P. Microbial reduction of arsenate in the presence of ferrihydrite[J].Environmental Science & Technology, 2000, 34(15):3131-3136.
    Larese-Casanova P., Haderlein S. B., Kappler A. Biomineralization of lepidocrocite and goethiteby nitrate-reducing Fe (II)-oxidizing bacteria: Effect of pH, bicarbonate, phosphate, andhumic acids[J]. Geochimica et Cosmochimica Acta, 2010, 74(13):3721-3734.
    Lièvremont D. Biological oxidation of arsenite: batch reactor experiments in presence ofkutnahorite and chabazite[J]. Chemosphere, 2003, 51(5):419-428.
    Lim M.-S., Yeo I. W., Roh Y., et al. Arsenic reduction and precipitation by shewanella sp.: Batchand column tests[J]. Geosciences Journal, 2008, 12 (2): 151-157.
    Lin S., Shi Q., Nix F. B., et al. A novel S-adenosyl-L-methionine : arsenic(III) methyltransferasefrom rat liver cytosol[J]. Journal of Biological Chemistry, 2002, 277 (13): 10795-10803.
    Luo Q., Tsukamoto T. K., Zamzow K. L., et al. Arsenic, selenium, and sulfate removal using anethanol-enhanced sulfate-reducing bioreactor[J]. Mine Water and the Environment, 2008, 27(2): 100-108.
    Malasarn D., Keeffe J. R., Newman D. K. Characterization of the arsenate respiratory reductasefrom Shewanella sp. strain ANA-3[J]. Journal of Bacteriology, 2008, 190 (1): 135-142.
    Manna B. R., Dey S., Debnath S., et al. Removal of arsenic from groundwater using crystallinehydrous ferric oxide(CHFO)[J]. Water quality research journal of Canada, 2003, 38 (1):193-210.
    Manning B. A., Fendorf S. E., Goldberg S. Surface structures and stability of arsenic(III) ongoethite: Spectroscopic evidence for inner-sphere complexes[J]. Environmental Science &Technology, 1998, 32 (16): 2383-2388.
    Mayo J. T., Yavuz C., Yean S., et al. The effect of nanocrystalline magnetite size on arsenicremoval[J]. Science and Technology of Advanced Materials, 2007, 8 (1-2): 71-75.
    Meng X., Bang S., Korfiatis G. P. Effects of silicate, sulfate, and carbonate on arsenic removal byferric chloride[J]. Water Research, 2000, 34(4):1255-1261.
    Meng X., Korfiatis G. P., Christodoulatos C., et al. Treatment of arsenic in Bangladesh well waterusing a household co-precipitation and filtration system[J]. Water Research, 2001,35(12):2805-2810.
    Michel C., Jean M., Coulon S., et al. Biofilms of As(III)-oxidising bacteria: formation and activitystudies for bioremediation process development[J]. Applied Microbiology and Biotechnology,2007, 77(2):457-467.
    Mohan D., Pittman C. U. Arsenic removal from water/wastewater using adsorbents - A criticalreview[J]. Journal of Hazardous Materials, 2007, 142(1-2):1-53.
    Mouchet P. From conventional to biological removal of iron and manganese in France[J]. Journalof the American Water Works Association, 1992, 84 (4): 158-167.
    Muller D., Medigue C., Koechler S., et al. A tale of two oxidation states: Bacterial colonization ofarsenic-rich environments[J]. Plos Genetics, 2007, 3 (4).
    Nithya C., Gnanalakshmi B., Pandian S. K. Assessment and characterization of heavy metalresistance in Palk Bay sediment bacteria[J]. Marine Environmental Research, 2011,71(4):283-294.
    Nordstrom D. K. Public health - Worldwide occurrences of arsenic in ground water[J]. Science,2002, 296(5576):2143-2145.
    O’Neil M. J., Smith A., Heckelman P.E., Budavari S. The Merck index: an encyclopedia ofchemicals, drugs, and biologicals(13th ed.)[M]. New Jersey: Whitehouse Station, 2001.
    Oremland R. S. The ecology of arsenic[J]. Science, 2003, 300(5621):939-944.
    Oremland R. S., Stolz J. F. Arsenic, microbes and contaminated aquifers[J]. Trends inMicrobiology, 2005, 13(2):45-49.
    Pandey P. K., Yadav S., Nair S., et al. Arsenic contamination of the environment: A newperspective from central east India[J].Environment International, 2002, 28: 235-245.
    Pedersen H. D., Postma D., Jakobsen R. Release of arsenic associated with the reduction andtransformation of iron oxides[J].Geochimica et Cosmochimica Acta, 2006, 70: 4 116-129.
    Pontius F. W., Brown K. G., Chen C. J. Health implications of arsenic in drinking-water[J].Journal American Water Works Association, 1994, 86(9):52-63.
    Posth N. R., Huelin S., Konhauser K. O., et al. Size, density and composition of cell–mineralaggregates formed during anoxygenic phototrophic Fe (II) oxidation: Impact on modern andancient environments[J]. Geochimica et Cosmochimica Acta, 2010, 74(12):3476-3493.
    Pringsheim, E. G.. The filamentous bacteria Sphaerotilus, Leptothrix, Cladothrix, and theirrelation to iron and manganese[J]. Series B, Biological Sciences, 1949, 233(605): 453-482.
    Qin J., Rosen B. P., Zhang Y., et al. Arsenic detoxification and evolution of trimethylarsine gas bya microbial arsenite S-adenosylmethionine methyltransferase[J]. Proceedings of the NationalAcademy of Sciences of the United States of America, 2006, 103 (7): 2075-2080.
    Randall S. R., Sherman D. M., Ragnarsdottir K. V. Sorption of As (V) on green rust(Fe4(II)Fe2(III)(OH)12SO4·3H2O) and lepidocrocite (γ-FeOOH): surface complexes fromEXAFS spectroscopy[J]. Geochimica et Cosmochimica Acta, 2001, 65 (7): 1015-1023.
    Redman A. D., Macalady D. L., Ahmann D. Natural organic matter affects arsenic speciation andsorption onto hematite[J]. Environmental Science & Technology, 2002, 36(13):2889-2896.
    Richmond W. R., Loan M., Morton J., et al. Arsenic removal from aqueous solution viaferrihydrite crystallization control[J]. Environmental Science & Technology, 2004,38(8):2368-2372.
    Rivera-Utrilla J., Bautista-Toledo I., Ferro-García M. A., et al. Activated carbon surfacemodifications by adsorption of bacteria and their effect on aqueous lead adsorption[J].Journal of Chemical Technology and biotechnology, 2001, 76(12):1209-1215.
    Saltikov C. W., Newman D. K. Genetic identification of a respiratory arsenate reductase[J].Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(19): 10983-10988.
    Santini J. M., Sly L. I., Schnagl R. D., et al. A new chemolithoautotrophic arsenite-oxidizingbacterium isolated from a gold mine: phylogenetic, physiological, and preliminarybiochemical studies[J]. Applied and Environmental Microbiology, 2000, 66(1):92-97.
    Sato T., Kobayashi Y. The ars operon in the skin element of Bacillus subtilis confers resistance toarsenate and arsenite[J]. Journal of Bacteriology, 1998, 180 (7): 1655-1661.
    Senn D. B., Hemond H. F. Nitrate controls on iron and arsenic in an urban lake[J]. Science, 2002,296(5577):2373-2376.
    Smedley P. L., Kinniburgh D. G. A review of the source, behaviour and distribution of arsenic innatural waters[J]. Applied Geochemistry, 2002, 17(5):517-568.
    Smith A. H., Lopipero P. A., Bates M. N., et al. Public health - arsenic epidemiology and drinkingwater standards[J]. Science, 2002, 296(5576):2145-2146.
    Solozhenkin P., Deliyanni E., Bakoyannakis V., et al. Removal of As(V) ions from solution byakaganeite bgr-FeO (OH) nanocrystals[J]. Journal of Mining Science, 2003, 39 (3): 287-296.
    Sridevi B., Singara Charya M.A. Isolation, identification and screening of potential cellulase-freexylanase producing fungi[J]. African Journal of Biotechnology, 2011, 10, 4624-4630.
    Stolz J. F., Oremland R. S. Bacterial respiration of arsenic and selenium[J]. Fems MicrobiologyReviews, 1999, 23(5):615-627.
    Straub K. L., Buchholz-Cleven B. E. E. Enumeration and detection of anaerobic ferrousiron-oxidizing, nitrate-reducing bacteria from diverse European sediments[J]. Applied andEnvironmental Microbiology, 1998, 64(12):4846.
    Straub K. L., Schonhuber W. A., Buchholz-Cleven B. E. E., et al. Diversity of ferrousiron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent ironcycling[J]. Geomicrobiology Journal, 2004, 21(6):371-378.
    Sudek L. A., Templeton A. S., Tebo B. M., et al. Microbial ecology of Fe (hydr) oxide mats andbasaltic rock from Vailulu'u Seamount, American Samoa[J]. Geomicrobiology Journal, 2009,26(8):581-596.
    Tadanier C. J., Schreiber M. E., Roller J. W. Arsenic mobilization through microbially mediateddeflocculation of ferrihydrite[J]. Environmental Science & Technology, 2005,39(9):3061-3068.
    Thirunavukkarasu O. S. Removal of arsenic from drinking water: [Dissertation for DoctoralDegree]. Canada: University of Regina, 2003.
    Vogels C M, Johnson M D. Arsenic remediation in drinking waters using ferrate and ferrousions[M]. USA: New Mexico Water Resources Research Institute, 1998.
    Walker C., Goodyear C., Anderson D., et al. Identification of arsenic resistant bacteria in the soilof a former munitions factory at Locknitz, Germany[J]. Land Contamination andReclamation, 2000, 8:3–18.
    Wang G. J., Kennedy S. P., Fasiludeen S., et al. Arsenic resistance in Halobacterium sp. strainNRC-1 examined by using an improved gene knockout system[J]. Journal of Bacteriology,2004, 186 (10): 3187-3194.
    Weber K. A., Hedrick D. B., Peacock A. D., et al. Physiological and taxonomic description of thenovel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. strain 2002[J]. AppliedMicrobiology and Biotechnology, 2009, 83(3):555-565.
    Weber K. A., Picardal F. W., Roden E. E. Microbially catalyzed nitrate-dependent oxidation ofbiogenic solid-phase Fe (II) compounds[J]. Environmental Science & Technology, 2001,35(8):1644-1650.
    Weber K. A., Pollock J., Cole K. A., et al. Anaerobic nitrate-dependent iron (II) bio-oxidation by anovel lithoautotrophic betaproteobacterium, strain 2002[J]. Applied and EnvironmentalMicrobiology, 2006a, 72(1): 686.
    Weber K. A., Urrutia M. M., Churchill P. F., et al. Anaerobic redox cycling of iron by freshwatersediment microorganisms[J]. Environmental Microbiology, 2006a, 8(1): 100-113.
    WHO, 2006. Guidelines for drinking-water quality, incorporating 1st and 2nd addenda, Vol.1, 3rdedition. http://www.who.int/water_sanitation_health /dwq/fulltext. pdf.
    Widdel F., Schnell S., Heising S., et al. Ferrous iron oxidation by anoxygenic phototrophicbacteria[J]. Nature, 1993, 362(6423): 834-836.
    Wood T. C., Salavagionne O. E., Mukherjee B., et al. Human arsenic methyltransferase (AS3MT)pharmacogenetics - gene resequencing and functional genomics studies[J]. Journal ofBiological Chemistry, 2006, 281 (11): 7364-7373.
    Yamamura S., Ike M., Fujita M. Dissimilatory arsenate reduction by a facultative anaerobe,Bacillus sp. strain SF-1[J]. Journal of Bioscience and Bioengineering, 2003, 96 (5): 454-460.
    Yoon I. H., Chang J. S., Lee J. H., et al. Arsenite oxidation by Alcaligenes sp. strain RS-19isolated from arsenic-contaminated mines in the Republic of Korea[J]. EnvironmentalGeochemistry and Health, 2008, 31(1):109-117.
    Yoshida T., Yamauchi H., Sun G. F. Chronic health effects in people exposed to arsenic via thedrinking water: dose-response relationships in review[J]. Toxicology and AppliedPharmacology, 2004, 198(3):243-252.
    Zhang J. S., Stanforth R. Slow adsorption reaction between arsenic species and goethite(α-FeOOH): Diffusion or heterogeneous surface reaction control[J]. Langmuir, 2005, 21 (7):2895-2901.
    Zhang W., Singh P., Paling E., et al. Arsenic removal from contaminated water by natural ironores[J]. Minerals Engineering, 2004, 17 (4): 517-524.
    Zhao J., Huggins F. E., Feng Z., et al. Ferrihydrite: surface structure and its effects on phasetransformation[J]. Clays and Clay Minerals, 1994, 42(6):737-746.
    Zouboulis A. I., Katsoyiannis I. A. Recent advances in the bioremediation of arsenic-contaminatedgroundwaters[J]. Environment International, 2005, 31 (2): 213-219.
    Zouboulis A., Katsoyiannis I. Removal of arsenates from contaminated water bycoagulation-direct filtration[J]. Separation Science and Technology, 2002, 37(12):2859-2873.
    鲍志戎,于湘晖,李惟,等.铁锰氧化还原细菌研究概况[J].微生物学通报, 1996, 23(1):48-50.
    蔡林,王革娇.抗砷性微生物及其抗砷分子机制研究进展[J].微生物学通报, 2009, 36 (8):1253-1259.
    常玉梅,杨琦,郝春博,等.城市污水厂活性污泥强化自养反硝化菌研究[J].环境科学, 2011,32(4):1210-1216.
    戴树桂.环境化学(第二版)[M].北京:高等教育出版社, 2006, 159-163.
    德伟,张一鸣.生物化学与分子生物学[M].南京:东南大学出版社, 2007, 39.
    段继周,张晓军.海水中钢铁锈层的微生物成因及其环境效应[J].高校地质学报, 2007, 13(4): 631-636.
    关小红,李修华,姜利,等.氧化-混凝法去除水中As(III)的研究进展[J].环境科学与技术,2009, 32 (8): 88-100.
    郭华明,王焰新,李永敏.山阴水砷中毒区地下水砷的富集因素分析[J].环境科学, 2003, 24( 4) : 60-67.
    郭华明,杨素珍,沈照理.富砷地下水研究进展[J].地球科学进展, 2007, 22 (11): 1109-1117.
    洪斌.微生物对砷的地球化学行为的影响-暨地下水砷污染机制的最新研究进展[J].地球科学进展, 2006, 21(1): 77-82.
    金银龙,梁超轲,何公理,等.中国地方性砷中毒分布调查[J].卫生研究, 2003, 32 (6):519-539.
    廖立兵,李国武.射线衍射方法与应用[M].北京:地质出版社, 2008.
    廖敏,谢正苗,王锐.菌藻共生体去除废水中砷初探[J].环境污染与防治, 1997, 19 (2):11-12.
    刘春华,郭华明,郑伟,等.天然磁铁矿吸附-电感耦合等离子体质谱测定砷[J].分析化学,2011, 39 (1): 115-119.
    沈东升,李文兵,姚俊,等.亚铁厌氧微生物氧化及其在环境污染修复中的作用机制[J].浙江大学学报(农业与生命科学版), 2011, 37(1): 112-118.
    孙胜龙.环境污染与生物变异[M].北京:化学工业出版社, 2003, 229.
    汤洁,林年丰,卞建民,等.内蒙河套平原砷中毒病区砷的环境地球化学研究[J].水文地质工程地质, 1996, (1) : 49-54.
    王小明,杨凯光,孙世发,等.水铁矿的结构,组成及环境地球化学行为[J].地学前缘, 2011,18(2):339-347.
    王焰新,郭华明,阎世龙,等.浅层孔隙地下水系统环境演化及污染敏感性研究[M].北京:科学出版社, 2004.
    王兆苏,王新军,陈学萍,等.微生物铁氧化作用对砷迁移转化的影响[J].环境科学学报,2011,31(2):328-333.
    韦瑾军,刘幽燕,张洪威,等.铜绿假单胞菌GF31降解土壤中氯氰菊酯的性能研究[J].环境污染与防治, 2011, 33(10).
    翁酥颖,戚蓓静,史家梁,等.环境微生物学[M]北京:科学出版社, 1995: 69-79.
    许旭萍,杨冠彬,王芳,等.假单胞菌产生铁氧化酶条件的研究[J].微生物学杂志, 2009,29(4):16-19.
    易霞,钟江.两株假单胞菌对吡啶和喹啉的生物降解(英文)[J].微生物学报, 2011,51(8):1087-1097.
    张曾惠等译.美国公共卫生协会等编著.水和废水标准检验法(第13版)[M].北京:中国建筑工业出版社, 1978, 12.
    张丰德,吕宪禹.现代生物学技术(第三版)[M].天津:南开大学出版社, 2005, 53-60.
    张艳,王红武,马鲁铭.铁细菌在水处理方面的应用及影响其生长的因素[J].四川环境,2006, 25 (5): 61-64.