水体富营养化对碳钢腐蚀影响及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的高速发展,我国水体受到了不同程度的污染,特别是城市内湖,氮、磷污染尤为严重。目前,水体的富营养化已成为一种普遍现象。淡水体是金属材料服役的重要场所,淡水体富营养化将导致服役环境的改变,使金属材料腐蚀行为与规律发生变化。国内外关于金属在污染水体中的腐蚀研究,主要集中在污染水体对输水管道腐蚀的影响,合金在污染海水中的腐蚀规律与机理研究等方面,针对水体富营养化对金属腐蚀行为影响的研究较少。本论文工作在国家自然科学基金的资助下,以水工构筑物常用金属材料A3钢为研究对象,以富营养化东湖水为研究水体,开展了水体富营养化对碳钢腐蚀行为影响的研究。主要工作和研究结果如下:
     (1)研究了水体富营养化对水质指标的影响。通过比较清洁水体(丹江口水库)和富营养化水体(东湖)一年的水质检测结果,发现水体富营养化后,水质指标发生的变化主要表现为溶解氧降低,总氮、总磷浓度增大,悬浮物和微生物含量增大,水体中有毒有害物质增多。
     (2)采用现场试验和实验室模拟水体试验,研究了碳钢在富营养化淡水体(东湖)和清洁水体(丹江口水库)中的腐蚀类型、速率、产物和形貌特征,进一步证实了碳钢在污染淡水体(富营养化水体)中腐蚀比清洁水体中的慢这一规律;不同挂片深度对碳钢腐蚀影响的研究表明,A3钢的腐蚀速率随着挂片深度增加而加快。该现象是由不同水深处的光照差异引起了生物量的差异造成的。这一规律由我课题组首次报道,对于认识淡水环境中微生物覆盖对金属腐蚀的影响有较大意义;挂片季节对碳钢腐蚀影响的研究表明,受季节影响,A3钢夏季(2007,07-2008,07)挂片的腐蚀速率比冬季(2005,12-2006,12)的快。
     (3)研究了富营养化水体主要水质污染物对碳钢腐蚀的作用机理。系统研究了富营养化淡水中水质污染指标:总氮(铵盐、硝酸盐、亚硝酸盐、有机氮物质)、总磷(磷酸盐、磷酸氢盐、磷酸二氢盐、有机磷物质)、化学需氧量(COD)、悬浮物(高岭土)、有机污染物质(有机磷农药、有机氮农药)对碳钢腐蚀的影响。结果表明:水流速度可忽略的条件下,A3钢的腐蚀速率随溶解氧浓度的增大而增大;随COD值的增大而减小,当COD值>120mg/L时,A3钢的腐蚀速度变化缓慢;随pH值的增大呈线性降低;随水体中总氮(TN)浓度的增大而减小。铵盐在淡水中对A3钢的腐蚀有诱发作用,主要影响A3钢阴极过程的吸氧反应。亚硝酸盐和硝酸盐主要抑制A3钢的阳极过程,对A3钢腐蚀具有减缓的作用;A3钢腐蚀速度随水体中总磷(TP)浓度的增加而减小。磷酸盐、磷酸氢盐、磷酸二氢盐和多聚磷酸盐对A3钢腐蚀都具有减缓作用,作用机理为在A3钢表面形成沉积膜,抑制了A3钢阳极反应过程;A3钢的腐蚀随水体中高岭土含量的增加而减小;水体中有机磷农药(亚磷酸二乙酯)能够促进A3钢的阳极反应,使其腐蚀速度加快;有机氮农药(氨基甲酸乙酯)对A3钢的阳极反应有抑制作用,减缓其腐蚀。
     (4)研究了富营养化水体中微生物对碳钢腐蚀的影响。通过对东湖挂片表面的腐蚀产物膜内的细菌进行培养、分离、纯化筛选出7种优势菌。经鉴定,主要为Comamonas菌(丛毛单胞菌)和Pseudomonas菌(假单胞菌),少量Myroides菌;富营养化水体中氮、磷、小分子碳物质对细菌生长有促进的作用;腐蚀初期,淡水中微生物(细菌和藻类)在A3钢表面的覆盖能够减缓其腐蚀速率,它们参与腐蚀产物的形成过程,使产物膜更加致密,成分更加复杂。
     (5)采用电化学方法研究了A3钢在富营养化水体中的腐蚀过程;提出富营养化水体中主要环境因子对碳钢腐蚀的作用机理模型;建立多变量灰色预测模型MGM(1,3),用于富营养化水体和清洁水体中A3钢腐蚀速率的预测研究。经残差检验、关联度检验和后验差检验,该模型的精度为一级。
With the rapid development of economy, water bodies especially the urban lakes are polluted by nitrogen and phosphorus in various degrees seriously in our country. At present, the eutrophication of water bodies has become a typical and widespread phenomenon. Fresh water is also an important place where the metal materials are being serviced. Water eutrophication will lead to the changes of the service environment, therefore corrosion behavior and laws of metal materials will be changed. From now on, studies on metal corrosion in water pollution mainly concentrated in pipeline corrosion impacted by the pollution of water bodies, and corrosion laws and mechanism of alloy in pollution seawater, etc. But the study on metal corrosion behavior impacted by eutrophic water is less reported. In this paper, supported by National Natural Science Fund, A3 steel which is common used at hydraulic structures is taken as the research object, and East Lake eutrophic water is chosen as the water body, The corrosion behavior of carbon steel impacted by eutrophic water are studied. The main works and study results are as follows:
     (1) The study of influence on indicators of water quality by water eutrophication. Compared with the measurement results of water quality in one year between the clean water (Danjiangkou Reservoir) and the eutrophic water (Shuiguo Lake of East Lake), the changes of water quality indicators mainly has been found that the reducing of dissolved oxygen, the increasing of the concentration of total nitrogen and total phosphorus, the enhancing of the content of suspended solids and micro-organisms and the growing of the number of toxic and harmful substances in water after eutrophication.
     (2) By field tests and water body simulation tests in laboratory, corrosion type, rate, products and morphology of carbon steel in eutrophic freshwater (East Lake water) and cleaning water (Danjiangkou Reservoir)are researched, and further results confirm the law that carbon steel corrosion rate in pollution water (eutrophic water) is slower than that in clean water; the study on carbon steel corrosion impacted by different hanging depth of sample shows that A3 steel corrosion rate increases with the depth of hanging. This phenomenon is due to the difference of biomass caused by different illumination at different hanging depth. This law is first reported by my group, it is significant to understand the impact of microorganism to metal corrosion in freshwater environment; the study of metal corrosion impacted by the season of hanging sample shows that seasonal impact, the corrosion rate of A3 steel hanged at summer (2007,07-2008,07) is faster than the that hanged at winter (2005,12-2006,12).
     (3) The study on corrosion mechanism of carbon steel caused by main water pollutants in eutrophic water. The influence of water pollution indicators for the carbon metal corrosion has been researched in the eutrophic freshwater which has total nitrogen (ammonium, nitrate, nitrite, organic nitrogen substance), total phosphorus (phosphate, hydrogen phosphate, dihydric phosphate, organophosphorus material), chemical oxygen demand (COD), suspended solids (kaolin), organic pollutants (organophosphorus pesticide, organonitrogen pesticide). The results show that:in case of that the rate of water flow can be neglected, A3 steel corrosion rate increases with the concentration of dissolved oxygen, decreases with the COD value, when COD> 120mg/L, the change of A3 steel corrosion rate is slow, lower linear with pH value increasing, decreases with the concentration of total nitrogen (TN) in water. Ammonium in fresh water is an inducement of corrosion of A3 steel, mainly impacting oxygenation reaction of A3 steel cathode process. Nitrite and nitrate mainly inhibits A3 steel anodic process, which reduces the corrosion of A3 steel; A3 steel corrosion rate decreases with total phosphorus (TP) concentration in water. phosphate, hydrogen phosphate, dihydric phosphate and polyphosphate reduce the corrosion of A3 steel, because deposition film is formed on the surface of A3 steel, which restrains A3 steel anodic process; A3 steel corrosion rate decreases with kaolinite content; organophosphorus pesticide (diethyl phosphite) in water can promote A3 steel anodic process to accelerate the corrosion of carbon steel; organonitrogen pesticide (urethane) inhibits A3 steel anodic reaction, reducing the corrosion of A3 steel.
     (4) The study on corrosion of carbon steel impacted by bacteria in eutrophication water. By cultivating, separating and purifying bacteria in corrosion product film on the surface of sample hanged in East Lake, and 7 kinds of dominant bacteria are screened out and identified. The bacteria are mainly belonging to the species of Comamonas and Pseudomonas, and small amounts are belonging to the species of Myroides. Nitrogen, phosphorus and small molecule can promote the growth of bacteria, and the initial stages of corrosion, the surface of A3 steel covered by microbe (bacteria and algae) in freshwater can slow down the corrosion rate, they participate in forming the corrosion product, and make the product film compact and component complex.
     (5) Discussing the corrosion mechanism of A3 steel in eutrophic water using electrochemical methods; putting forward an function mechanism model of main environmental factors in eutrophic water to carbon steel corrosion; Multiple Grey Predicting Model MGM(1,3) is established to predict A3 steel corrosion behavior in the clean freshwaters and eutrophic freshwaters respectively, and the accuracy of MGM(1, 3) is one grade.
引文
[1]曹楚南.中国材料的自然环境腐蚀[M].北京:化学工业出版社,2005:5.
    [2]莱茵哈特.金属和合金在不同海洋深度下的腐蚀[A].见:舒马赫编,李大超等译.海水腐蚀手册[M].北京:国防工业出版社,1985:265-273.
    [3]Dexter S. C., Culberson C.. Global Variability of Natural Sea Water [J]. Materials Performance, 1980,19(9):16-28.
    [4]Schrieber C. F., Coley F. H.. Behavior of Metals in Desalting Environments-Seventh Progress Report (summary) [J]. Material Performance,1976,15(7):47-54.
    [5]John Sedricks A. Advanced Materials in Marine [J]. Material Performance,1994,33(2):56-63.
    [6]Santana Rodriguez J.J., Santana Hernandez F.J., Gonzalez Gonzalez J.E.. Comparative study of the behavior of AISI 304 SS in a natural seawater hopper, in sterile media and with SRB using electrochemical techniques and SEM [J]. Corrosion Science,2006,48:1265-1278.
    [7]Gonzalez J.E.G., Santana F.J.H., Mirzarosca J.C.. Effect of bacterial biofilm on 205SS corrosion in natural seawater by EIS [J]. Corrosion Science,1998,39(1):1030-1043.
    [8]Habib K., Riad W., Muhanna K., Al-Sumait H.. Electrochemical behavior of Al-brass in polluted natural seawater [J]. Desalination,2002,142:5-9.
    [9]Shams El Din A.M., El-Dahshan M.E., Tag El Din A.M.. Bio-film formation on stainless steels Part 2:The role of seasonal changes, seawater composition and surface roughness [J]. Desalination,2003,154:267-276.
    [10]Yu H., Wu J. H., Wang H. R., Wang J. T, Huang G. S.. Corrosion inhibition of mild steel by polyhydric alcohol phosphate ester (PAPE) in natural sea water [J]. Corrosion Engineering, Science and Technology,2006,41(3):259-263.
    [11]Munger C.G.. Marine and offshore corrosion control [J]. Material Performance,1993,32(9): 37-41.
    [12]Oldfield J.W. Test techniques for pitting and crevice corrosion-resistant of stainless steel and Nickel-base Alloys in chloride-containing environments [J]. International Material Review, 1987,32(3):1-18.
    [13]Mollica A., Trevis A.. Crevice corrosion resistance of stainless steel in natural seawater in the temperature range of 25-40 ℃ [J]. Corrosion,1988,44(4):194-198.
    [14]Rardal E., Drugli J. M., Gartland P. O.. The Behavior of Corrosion-resistant Steel in Sea Water: A review [J]. Corrosion Science,1993,33(1-4):257-267.
    [15]Hua H., Ives M.B.. The Galvanic Coupling Approach to Crevice Corrosion [J]. Material Science Forum,1998:1103-1117.
    [16]Rogon T., Steinsmo V.. Practical Consequence of the Biofilm in Natural Sea Water and of Chlorination on the Corrosion Behavior of Stainless Steel [J]. No.19 Institute of Materials, London, UK:1996:55-74.
    [17]Schrieber C. F., Coley F. H.. Behavior of Metals in Desalting Environments-Seventh Progress Report (summary) [J]. Material Performance,1976,15(7):47-54.
    [18]Lee T. S., Thieve E. W., Waldorf J. H.. The effect of seawater velocity on corrosion potential of materials [J]. Material Performance,1984,23(11):44-46.
    [19]Hodgkies T., Lim C.W.. Aspects of Galvanic Corrosion Behavior of A Range of Materials in Sea Water [J]. Corrosion Science,1993,5(1-4):269-283.
    [20]门智,渡边常安.低合金钢的海水腐蚀[J].防食技术,1976,25(3):173-190.
    [21]博依德,芬克.金属在海洋环境中的腐蚀.海水腐蚀手册[M].北京:国防工业出版社,1985:3-261.
    [22]活罗克,博宾,布坎南等.非金属材料的行为.海水腐蚀手册[M].北京:国防工业出版社,1985:582-638.
    [23]Laque F. L.. Marine corrosion-caused and prevention[M]. John Wiley and Son. Inc.,1975.
    [24]Efrid K D. Effect of Fluid Dynamics on the Corrosion of Copper Base Alloy in Sea Water [J]. Corrosion,1977,33(1):3-8.
    [25]腐食防食协会编.防食技术便览[M].日刊工业社,1990:212.
    [26]Lee T. S., Thieve E. W., Waldorf J. H.. The Effect of Seawater Velocity on Corrosion Potential of Materials [J]. Material Performance,1984,23(11):44-46.
    [27]山下桂一,石田昭夫,青冈钟一.高流速海水树种金属材料的腐蚀[J].防食技术,1969,18(5):206-211.
    [28]John Sedriks A. Advanced Materials in Marine [J]. Material Performance,1994,33(2):56-63.
    [29]格查可夫.海生物的影响.海水腐蚀手册[M].北京:国防工业出版社,1985:547-580.
    [30]柯伟,臧启山.关于海洋工程结构用钢腐蚀疲劳研究(访美考察报告)[J].腐蚀科学与技 术,1990,2(3):51-53.
    [31]Audouard J. P., Feron D., Mollica A., etal.. Effect of Marine Biofilm on Stainless Steel:Results of European Exposure Program, European Workshop on Sea Water Corrosion of Stainless Steel-Mechanism and Experience EFC [J]. No.19,Institute of Materials, London, UK:1996: 9-22.
    [33]Mollica A., Scott V.. Mechanism and Prevention of Biofilm on Stainless Steel Corrosion [J]. No.19 Institute of Materials, London, UK:1996:23-43.
    [33]Carrera P., Gabefta G. Biocide Options in the Offshore Industry [J]. No.19 Institute of Materials, London, UK:1996:44-54.
    [34]Xu K., Dexter S. C., Luther G. W.. Voltammetric Microelectrodes for Biocorrosion Studies [J]. Corrosion,1998:54(10):814-823.
    [35]Franklin M.J., Nivens D.E., Guckert J.B., etal.. Effect of Electrochemical Impedance Spectroscopy on Microbial Biofilm Cell Numbers, Viability and Activity [J]. Corrosion,1991, 47(7):519-522.
    [36]博依德,芬克.金属在海洋环境中的腐蚀.海水腐蚀手册[M].北京:国防工业出版社,1985:3-261.
    [37]Francis R.. Effect of Pollutants on Corrosion of Copper Alloy in Sea Water. Part1. Ammonia and Chlorine. Part 2. Sulphide and Chlorine [J]. British Corrosion Journal,1985,20(4): 167-182.
    [38]Shalaly H. M., AL-Hashem A.,AL-Muhanna K.. Study of Effect of Pollutant Additions on Corrosion Behavior of Al-Brass in Sea Water [J]. British Corrosion Journal,1996,31(3): 199-205.
    [39]Feron D., Wallen B.. Effect of High Concentration of Chlorine and Sulfide on Stainless Steel in Sea Water [J]. Corrosion Review,1995,13(2-4):219-249.
    [40]Melchers R. E.. Factors Influencing the Immersion Corrosion of Steels in Marine Steel [J].14 ICC. Cape Town:1999,98.
    [41]Chernov B. B., Pononmarenko S. A.. Physico-chemical Modeling for the Predication of Sea Water Metal Corrosion [J].14 ICC, Cape Town:1999:215.
    [42]Abraham G. J., Kain Dey V.G.K.. MIC failure of cupronickel condenser tube in fresh water application [J]. Engineering Failure Analysis,2009,16:934-943.
    [43]Thompson E.A., Burleigh T.D. Accelerated corrosion of zinc alloys exposed to ultraviolet light [J].Corrosion Engineering, Science and Technology,2007,42(3):237-241.
    [44]Masayuki Itagaki, Eri Takamiya, Kunihiro Watanabe, etal.. Diagnosis of quality of fresh water for carbon steel corrosion by Mahalanobis distance [J]. Corrosion Science,2007,49(8): 3408-3420.
    [45]Melchers R.E.. Microbiologically influenced corrosion behavior in stainless steels for public sewage treatment plants [J].Corrosion Science,2006,48(12):4174-4201.
    [46]Melchers R.E.. The marine corrosion of structural steels in brackish and fresh waters [J]. Structure and infrastructure engineering,2006,2(1):53-61.
    [47]Gismelseed A., Elzain M., Yousif A., Al Rawas A., etal.. Identification of Corrosion Products Due to Seawater and Fresh Water [J]. Hyperfine Interactions,2004,156-157(1-4):487-492.
    [48]Mohanan S., Maruthamuthu S., Venkatachari G., etal.. Corrosion inhibition by freshwater biofilm on 316 stainless steel [J]. Bulletin of electrochemistry,2004,20(3):129-132.
    [49]Borshchevskii A. M., Elizarova V. P.. Efficiency of the inhibitor of 10CrSiNiCu steel corrosion in fresh water [J]. Russian journal of applied chemistry,2000,73(7):1298-1299.
    [50]George R.P., Muraleedharan P., Parvathavarthini N., etal.. Microbiologically influenced corrosion of AISI type 304 stainless steels under fresh water biofilms [J]. Materials and Corrosion,2000,51(4):213-218.
    [51]George R.P., Muraleedharan P., Parvathavarthini N., etal.. Electrochemical studies on biocorrosion of AISI type 304 SS in fresh water [J]. Materials and Corrosion,1998,51(5): 331-335.
    [52]Nakayama G., Akashi M.. Life prediction model for the initiation of crevice corrosion on stainless steel in estuary water [J]. Electrochemical society series:roceedings of the symposium on passivity and its breakdown,1998,97(26):45-56.
    [53]周学杰,张三平,郑鹏华,,周蝉,安江峰.纯锌在水环境中腐蚀行为[J].装备环境工程,2008,5(5):9-13.
    [54]毛旭辉,吴成红,甘复兴等.多相流动淡水体系中碳钢的冲刷腐蚀行为[J].腐蚀科学与技术,2001,11(13):391-394.
    [55]吴成红.长江三峡多项流动水体环境腐蚀与防护初步研究[D].武汉:武汉大学,2001:28-32.
    [56]朱雅仙,朱锡昶,葛燕,朱秀娟.流动淡水中钢的腐蚀行为研究[J].水利水运工程学报,2002,6(2):7-11.
    [57]张文渊.淡水环境中水工钢闸门的腐蚀与防护[J].腐蚀与防护,2001,22(6):258-259.
    [58]伍发元,黄种买,苟晓东.城市二级出水回用作火电厂循环冷却水氨氮的腐蚀研究[J].贵州化工,2004,29(1):6-7.
    [59]徐安桃,李振生,邱翼龙.金属材料在发动机冷却水中的电偶腐蚀研究[J].军事交通学院学报,2008,10(2):62-64.
    [60]夏兰廷,黄桂桥,张三平等.金属材料的海洋腐蚀与防护[M].北京:冶金工业出版,2003:134.
    [61]朱相荣,张启福.海水中钢铁腐蚀与环境因素的关联分析[J].海洋科学,2000,24:537-540.
    [62]于福洲.金属材料的耐蚀性[M].北京:科学出版社,1992:56.
    [63]Nageh K. A., Elsayed A. A.. Promoting effect of low concentration of benzotriazole on the corrosion of Cu10Ni alloy in sulfide polluted salt water [J]. Applied surface science,2008, 254(16):5007-5011.
    [64]张英,戴明安.海水中舰船钢低电位差电偶的腐蚀[J].中国腐蚀与防护学报,1992,13(1):86-90.
    [65]夏兰廷,韦华.低合金铸铁在流动海水中的腐蚀研究[J].铸造设备研究,2002,1:25-27.
    [66]黄桂桥.碳钢在海水中的腐蚀研究(Ⅰ)-腐蚀与污损特征[M].北京:化学工业出版社,2002.
    [67]Wiener M. S., Salas B. V., Quintero-Nunez M., etal.. Effect of H2S on corrosion in polluted waters:a review [J], Corrosion engineering science and technology,2006,41(3):221-227.
    [68]Al Kharafi F.M., Ghayad I.M., Ateya B.G.. Rapid intergranular corrosion of copper in sulfide-polluted salt water [J]. Electrochemical and solid state letters,2008,11(4):15-18.
    [69]Hegazy H. S., Ashour E. A., Ateya B. G.. Effect of benzotriazole on the corrosion of alpha brass in sulfide polluted salt water [J]. Journal of applied electrochemistry,2001,31(11):1261-1265.
    [70]Liz K. H., Andrea M. P., Carlos A. G., etal.. Biocorrosion and biofouling in carbon steel submerged in port polluted water of the Caribbean Sea:prevention and protection by means of antifouling coatings [J]. Revista tecnica de la facultad de ingenieria Universidad del zulia,2007, 30(11):280-289.
    [71]张顒,侯盾,李雨松,卜城.污水回用于循环冷却水系统腐蚀影响因素的研究[J].工业 水处理,2001,21(03):1-3.
    [72]赵清,安景辉.污水回用中COD和氨氮去除方法探讨[J].石油化工环境保护,2001,3:1-5.
    [73]Cao G., Mao X.H., Jiang L., Gan F.X.. Preliminary study on the corrosion behavior of A3 steels in polluted freshwater [J]. Fresenius environmental bulletin,2007,16(6):613-616.
    [74]王晓华,林乐耘,赵月红.流动和污染海水诱发并加速铜合金脱成分腐蚀的研究[J].稀有金属,2001,25(1):9-14.
    [75]刘银水,杨曙东,李壮云.海水液压水下作业工具系统的微生物污染和腐蚀[J].海洋技术,2002,1:49-53.
    [76]Bettarel Y., Arfi R., Bouvier T., etal. Virioplankton distribution and activity in a tropical eutrophicated bay [J]. Estuarine coastal and shelf science,2008,80 (3):425-429.
    [77]Jorgensen B.B., Richardson K. (Eds.) Eutrophication in Coastal Marine Ecosystems. Coastal and Estuarine Studies [J]. American Geophysical Union, Washington, DC.273:1996:25.
    [78]Castro-Diez P., Navarro J., Maestro M.. Effects of moderate shade and irrigation with eutrophicated water on the nitrogen economy of Mediterranean oak seedlings [J]. Flora,2008, 203(3):243-253.
    [79]Jimenez-Carceles F. J., Alvarez-Rogel J.. Phosphorus fractionation and distribution in salt marsh soils affected by mine wastes and eutrophicated water:A case study in SE Spain [J]. Geoderma,2008,144(1-2):299-309.
    [80]Chellappa N.T., Chellappa S. L., Chellappa S.. Harmful phytoplankton blooms and fish mortality in a eutrophicated reservoir of Northeast Brazil [J]. Brazilian archives of biology and technology,2008,51(4):833-841.
    [81]Rasmussen E.K., Petersen O.S., Thompson J.R., etal. Model analyses of the future water quality of the eutrophicated Ghar El Melh lagoon (Northern Tunisia) [J]. Hydrobiologia,2009,622(4): 173-193.
    [82]Bettarel Y., Arfi R., Bouvier T., et al. Virioplankton distribution and activity in a tropical eutrophicated bay [J]. Estuarine coastal and shelf science,2008,80 (3):425-429.
    [83]Chellappa N. T., Chellappa S. L., Chellappa S.. Harmful phytoplankton blooms and fish mortality in a eutrophicated reservoir of Northeast Brazil [J]. Brizilian archives of biology and technology,2008,51(4):833-841.
    [84]Sollie S., Coops H., Verhoeven J.T.A.. Natural and constructed littoral zones as nutrient traps in eutrophicated shallow lakes [J]. Hydrobiologia,2008,605(6):19-233.
    [85]Jimenez-Carceles F.J., Alvarez-Rogel J.. Phosphorus fractionation and distribution in salt marsh soils affected by mine wastes and eutrophicated water:A case study in SE Spain [J]. Geoderma, 2005,144(1-2):299-309.
    [86]Teppo A., Tuhkanen J., Sivil M.. Biomanipulation of large moderately eutrophicated Lake Lappajarvi [J]. International association of the oretical and applied limnology -proceedings: International Association of Theoretical and Applied Limnology, Pt 2:Proceedings,2005,29: 841-844.
    [87]Yoshinaga I., Hitomi T., Miura A., etal.. Cyanobacterium Microcystis bloom in a eutrophicated regulating reservoir [J]. Jarq-Japan agricultural research quarterly,2006,40(3):283-289.
    [88]Song G.L., Hou WH, Wang Q.H., Wang J.L., etal.. Effect of low temperature on eutrophicated waterbody restoration by Spirodela polyrhiza [J]. Bioresource technology,2006,97(15): 1865-1869.
    [89]闫玉华,钟成华,邓春光.水生动植物对富营养化水体联合修复研究[J].科技信息,2008,11:43-44.
    [90]王琳,王迎春,李季,刘英,胡菊.微生物菌剂处理富营养化景观水体的室内试验研究[J].农业环境科学学报,2007,26(1):88-91.
    [91]李传红,谢贻发,刘正文.鱼类对浅水湖泊生态系统及其富营养化的影响[J].安徽农业科学,2007,36(9):3679-3681.
    [92]王瑁,柳世袭.水生植物对富营养化水体的净化效应研究[J].杭州电子科技大学学报,2008,28(2):82-85.
    [93]唐林森,陈进,黄茁.人工生物浮岛在富营养化水体治理中的应用[J].长江科学院院报.2008,25(1):21-25.
    [94]柴超,长江口水域富营养化现状与特征研究[D].青岛:中国科学院海洋研究所,2006.
    [95]张亮,杜翠薇,李晓刚.温度、pH值和氧浓度对X70管线钢电化学行为的影响[J].金属热处理,2008,33(11):36-39.
    [96]曹刚.金属材料在污染淡水体中的腐蚀行为和机理研究[D].武汉大学,2007.
    [97]化学工业部化工机械研究院..腐蚀与防护手册-腐蚀理论·试验及监测[M].1989年第一版,北京:化学工业出版社,1997:165-167(169,382,246).
    [98]Fiemming H. C.. Economical, Technical Overview, Microbiologically Influenced Corrosion of Material[M]. Berlin:Spinger-Verlag,1996:65-70.
    [99]刘艳鸣.东湖浮游病毒形态多样性时空分布及基因组大小测定[D].武汉:中国科学院研究生院(水生生物研究所),2005.
    [100]饶钦止,章宗涉.武汉东湖浮游植物的演变(1956-1975)和富营养化问题[J].水生生物学集刊,1980,7(1):1-6.
    [101]刘建康.(1995)长江中下游流域的湖泊及其渔业利用问题[A].见:刘建康主编.东湖生态学研究(二)[M].北京:科学出版社,1-25.
    [102]张水元,刘衢霞,黄耀桐.武汉东湖氮磷营养收支主要来源.海洋与湖沼[J].1984,15:203-213.
    [103]甘义群,郭永定.武汉东湖富营养化现状分析及治理对策[J].2004,13:277-281.
    [104]吴阴顺等编著,中国腐蚀与防护学会主编,腐蚀试验方法与防腐蚀监测技术[M].北京:化学工业出版社,1996:66.
    [105]李久青,杜翠薇编著.腐蚀试验方法及监测技术[M].北京:中国石化出版社,2007:123.
    [106]Gabriele R.. A.. Numerical Method for the Evaluation of the Corrosion Rate of a Metal [J]. Corrosion Science,1993,34(6):885-897.
    [107]Florian M.. Some Errors in Linear Polarization Measurements and Their Correction [J]. Corrosion,1974,30(3):92-96.
    [108]Qamar I., Husain S.W.. Determination of Electrochemical Corrosion Parameters Using Discrete Laplace Transformation [J]. British Corrosion Journal,1993,8(1):71-73.
    [109]Scully J. R.. Polarization Resistance Method for Determination of Instantaneous Corrosion Rates [J]. Corrosion,2000,56(2):199-218.
    [110]林修洲,龚敏,仵建平.植物废料提取液作为盐酸酸洗缓蚀剂的研究[J].腐蚀科学与防护技术,2006,18(3):222-224.
    [111]匡尹杰,周琼花,王名浩.有机缓蚀剂对钢筋的缓蚀作用[J].长沙理工大学学报(自然科学版),2008,5(2):97-101.
    [112]鲍玉胜,王玮,尹衍升等.TiO2薄膜在海水中的耐腐蚀性能[J].中国腐蚀与防护学报,2008,28(5):287-290.
    [113]Ken-Ichi K., Masayuki S., Yuichi S.. Tafel Slope Determination of Corrosion Reaction by the Coulostatic Method [J]. Corrosion Science,1980,20:1059-1066.
    [114]Skold R. V., Larson T. E..Measurement of the Instantaneous Corrosion Rate by Means of Polarization Data [J]. Corrosion,1957,13(2):69-72.
    [115]曹楚南.腐蚀电化学[M].1994年9月第一版,北京:化学工业出版社,1994:52-127.
    [116]吴荫顺.高等学校教学用书-金属腐蚀研究方法[M].北京:冶金工业出版社,1994:48.
    [117]段继周,孙先国,黄彦良等.碳钢在不同类型海底沉积物中的腐蚀行为[J].腐蚀科学与防护技术,2001,13:424-426.
    [118]唐红雁,宋光铃,曹楚南,林海潮.弱极化曲线拟合技术在土壤腐蚀研究中的应用[J].腐蚀科学与防护技术,1996,8(3):179-185.
    [119]曹楚南,张鉴清著.电化学阻抗图谱导论[M],北京:科学出版社,2002:21.
    [120]史美伦编著.交流阻抗谱原理及应用[M].北京:国防工业大学出版社,2001:45.
    [121]高岩,刘鹤鸣.电化学阻抗谱在缓蚀剂研究中的应用进展[J].石油化工腐蚀与防护,2008,25(1):6-9.
    [122]范国义,曾为民,马玉录.交流阻抗法在凝汽器黄铜管腐蚀研究中的应用[J].表面技术,2006,35(1):85-88.
    [123]赵晓栋,段继周,于林,侯保荣.含有硫酸盐还原菌的海泥中阴极保护电位对碳钢腐蚀的影响[J].材料开发与应用,2008,23(3):43-48.
    [124]欧阳维真,王蕾,许淳淳.带锈铁器在海水介质中腐蚀行为的电化学阻抗研究[J].桂林工学院学报,2008,28(3):389-392.
    [125]Rantakokko J. K., Nikkari S., Jalava J.,et al. Direct amplifi-cation of rRNA genes in diagnosis of bacterial infections[J]. J Clin Microbiol,2000,38:32-39.
    [126]Gonzalea N., Romero J., Espejo R. T.. Comprehensive detection of bacterial populations by PCR amplification of the 16S-23S rRNA spacer region[J]. J Microbiol Methods,2003,55(1): 91-97.
    [127]Shang S., Chen Z., Yu X. Detection of bacterial DNA by PCR and reverse hybridization in the 16S rRNA gene with particular reference to neonatal septicemia[J]. Acta Paediatr,2001,90(2): 179-18.
    [128]卞广林.脆弱类杆菌群细菌的基因分类与诊断方法进展[D].郑州大学,2006.
    [129]Shang S., Chen Z., Yu X.. Detection of bacterial DNA by PCR and reverse hybridization in the 16S rRNA gene with particular reference to neonatal septicemia[J]. Acta Paediatr,2001,90(2): 179-183.
    [130]Kotilainen P., Jalava J., Meurman O., et al. Diagnosis of meningococcal eningitis by broad-range bacterial PCR with cere-brospinal fluid[J]. J Clin Microbiol,1998,36(8):2 205-2209.
    [131]Lu J T.,Perng C. L., Lee S. Y., et al. Use of PCR with universal primers and restriction endonuclease digestions for detection and identi-fication of common bacterial pathogens in cerebrospinal fluid[J]. J Clin Microbiol,2000,38 (6):2076-2080.
    [132]龙雯,陈存社.16S rRNA测序在细菌鉴定中的应用[J].北京工商大学学报(自然科学版),2006,24(5):10-12.
    [133]Michel D..16S rRNA quence analysis of a lagre collection of enviomrental and elinical unidentifiable baeterial isolate[J]. J Clin Mieorbiol,2000,8:3623-3630.
    [134]赵霖.基于多元线性回归模型的预测分析决策系统的研究与实现[D].上海:上海大学.2007,12:14.
    [135]宋光铃,曹楚南,史志明,林海潮.腐蚀电极恒电位阶跃暂态过程的多元线性回归分析[J].中国腐蚀与防护学报,1994,14(1):31-35.
    [136]陈颖敏,张胜寒,李育宏,陈小芹.老化30Cr2MoV汽轮机转子钢电化学性能的研究[J].汽轮机技术,2005,47(6):477-480.
    [137]韩鹏举,白晓红,赵永强,董晓强,任杰.硫酸环境对水泥土强度影响的试验研究[J].太原理工大学学报,2008,39(4):404-408.
    [138]邓聚龙.灰理论基础[M].武汉:华中理工大学出版社,2002:33.
    [139]杜辉.基于蚁群算法的灰色预报模型及其在舰船运动预报中的应用[D].哈尔滨:哈尔滨工程大学.2007,5.
    [140]邓聚龙.灰预测与灰决策[M].武汉:华中科技大学出版社,2002:78.
    [141]王学萌.灰色系统方法简明教程[M].成都:成都科技大学出版社.1993:1.
    [142]张芳,李宇春,李善风.灰色系统在缓蚀剂效果评价中的应用[J].腐蚀科学与防护技术,2004,16(2):116-117.
    [143]陈建设,史志民,李鑫,刘冀鲁,唐成宽,魏绪钧.灰色GM(1,1)模型在热浸镀层耐海水腐蚀研究领域的应用[J].材料与冶金学报,2006,5(3):234-237.
    [144]裴和中,雍歧龙,金蕾.金属材料大气腐蚀与环境因素的灰色关联分析[J].钢铁研究学报,1999,11(4):53-56.
    [145]Thomas E. Q., Liu Y. A.,查金荣等译.人工智能在化学工程中的应用[M].北京:中国石化出版社,1994.
    [146]袁曾任.人工神经网络及其应用[M].北京:清华大学出版社,1999.1026.
    [147]闻新,周露,王丹立,等.MATLAB神经网络应用设计[M].北京:科学出版社,2002:231.
    [148]杜翠薇,赵妍妍,卢琳,高瑾,李晓刚.神经网络在海水腐蚀预测中的应用[J].装备环境工程,2007,4(3):85-87.
    [149]邓春龙,李文军,孙明先.BP神经网络在碳钢、低合金钢海水腐蚀中的应用[J].腐蚀科学与防护技术,2006,18(1):54-57.
    [150]郭稚弧,金名惠,桂修文等.神经网络在金属土壤腐蚀研究中的应用[J].腐蚀科学与防护技术,1995,7(3):258.
    [1]工程材料实用手册编辑委员会编.材料实用手册:铁铸钢碳钢低合金钢[M].北京:中国标准出版社,1990.
    [2]周琦.管线钢在硫化氢水溶液中的台阶状氢致开裂析[J].金属热处理,2004,29(3):52-57.
    [3]刘艳鸣.东湖浮游病毒形态多样性时空分布及基因组大小测定[D].中国科学院研究生院(水生生物研究所).2005.
    [4]晏昌贵著.丹江口水库区域历史地理研究[M].北京:科学出版社,2007,23.
    [5]GB 5749-2006.生活饮用水卫生标准[S].北京:中国标准出版社,2007.
    [6]金相灿,屠清瑛.湖泊富营养化调查规范(第二版)[M].北京:中国环境科学出版社,1990:192.
    [7]GB/T 5776-2005.金属材料在表面海水中常规暴露腐蚀试验方法[S].北京:中国标准出版社,2005.
    [8]GB/T 6384-2008.船舶及海洋工程用金属材料在天然环境中的海水腐蚀试验方法[S].北京:中国标准出版社,2009.
    [9]SY/T 0026-1999.腐蚀性测试方法[S].北京:中国标准出版社,1999.
    [10]陈鸿海,金属腐蚀学[M].北京:北京理工大学出版社,1995:10.
    [11]张发余.电化学测定几种钢材在溶液中的腐蚀行为和腐蚀速度[J].表面技术,1994,23(4):37.
    [12]郭良生.海水中磷酸三乙醇胺-磷酸二氢盐对钢铁的缓蚀作用[J].材料保护,1997,30(8):67-69.
    [13]Bandy R., Jones D.A.. Analysis of Errors in Measuring Corrosion Rates by Linear Polarization [J]. Corrosion,1976,32(4):126-134.
    [14]Bandy R.. The Simultaneous Determination of Tafel Constants and Corrosion Rate A New Method [J]. Corrosion Science,1980,20:1017-1028.
    [15]宋诗哲.腐蚀电化学研究方法[M].化学工业出版社,1988:101.
    [16]沈德言.红外光谱在高分子研究中的应用[M].北京:科学出版社,1982:34.
    [17]卢湧泉,邓振华.红外光谱解析[M].北京:电子工业出版社,1989:75.
    [1]国家环境保护总局科技标准司编.中国湖泊富营养化及其防治研究[M].北京:中国环境科学出版社,2001:5.
    [2]丰茂武,吴云海.国内外湖泊富营养化的防治对策与展望[J].广州环境科学,2006,21(4):8-11.
    [3]夏兰廷,黄桂桥,张三平等.金属材料的海洋腐蚀与防护[M].北京:冶金工业出版社,2003:93.
    [4]柴超.长江口水域富营养化现状与特征研究[D].青岛:中国科学院海洋研究所,2006.
    [5]尹魁浩,袁弘任,徐葆华,李自勇.丹江口水库水质要素变化特征及其相互关系[J].长江流域资源与环境,2001,10(1):75-81.
    [6]李思悦,程晓莉,顾胜,李佳,张全发.南水北调中线水源地丹江口水库水化学特征研究[J].环境科学,2008,29(8):2110-2116.
    [7]夏兰廷,黄桂桥,张三平等.金属材料的海洋腐蚀与防护[M].北京:冶金工业出版社,2003,94.
    [8]况琪军,夏宜争,李植生等.武汉东湖不同营养型子湖的水生生物与水域功能[J].湖泊科学,1997,9(3):249-255.
    [9]柴超,长江口水域富营养化现状与特征研究[D].青岛:中国科学院海洋研究所,2006.
    [10]周红艺,王雪荣.蓝藻毒素的环境行为及其处理方法研究进展[J].浙江工业大学学报,2008,36(5):552-557.
    [11]刘学庆.海洋环境工程钢材腐蚀行为与预测模型的研究[D].青岛:中国科学研究生院(中 国科学院海洋所),2004.
    [12]Cao G, Mao X.H., Jiang L., Gan F.X.. Preliminary Study on the Corrosion Behavior of A3 Steels in Polluted Fresh Water [J]. Fresenius Environmental Bulletin,2007,16(6):613-616.
    [1]F.ANSON.电化学和电分析化学[M].北京:北京大学出版社,1983.
    [2]周谟银,几种加速剂对磷化过程及基体腐蚀的影响[J].腐蚀与防护,1994,6:284-288.
    [3]何晓英,邓祖宇,邓海英.(NH4)2S04薄层液膜下X70钢腐蚀的电化学研究[J].腐蚀科学与防护技术,2008,20(3):213-215.
    [4]安百刚,张学元,韩恩厚等.Zn在模拟酸雨溶液中及其液膜下的腐蚀[J].金属学报,2004,40(2):202.
    [5]梁晖.钢筋混凝土的腐蚀与亚硝酸钙的防护作用[J].材料开发与应用,2000,15(6):18-21.
    [6]柳俊哲,吕丽华,左红军.混凝土碳化腐蚀时亚硝酸钠保护钢筋作用的研究[J].混凝土,2003,162(4):24-25.
    [7]僚海渡,亲家康,林海潮.第十届全国缓蚀剂学术讨论论文集[C].1997:119.
    [8]方又兴,徐聪仁.硝酸钠对A3钢抗腐蚀之影响[J].防蚀工程,1993,7(3):1-9.
    [9]郑家燊,赵景茂.磷酸醋和磷酸盐在盐水泥浆中对碳钢的缓蚀作用[J].油田化学,1990,7(1):53-56.
    [10]曾华粱,杨家昌电解与化学转化膜[M].北京:轻工业出版社,1987:87.
    [11]王丽荣,张树芳,庄晓娟,莎仁.海水中A3钢缓蚀剂[J].内蒙古石油化工,2008,1:5-6。
    [12]刘晓文,胡岳华,黄圣生,邱冠周.高岭土的化学成分与表面电性研究[J].矿物学报,2001,21(3):443-447.
    [13]田昭武.化学研究方法[M].北京:科学出版社,1984:56.
    [13]Reuter J.H.. Importance of heavy metal-organic matter interaction in natural water [J]. Geochimica et Cosmochimica Acta,1977,41:325-334.
    [14]Gu B., Schmitt J., Chen Z., et al. Adsorption-desorption of Natural Organic Matter on Iron-oxide:Mechanisms and Models [J]. Environ Sci Technol,1994,28(1):38-46.
    [15]Rail C.. Groundwater Contamination Sources, Control and Preventive Measures [M]. New York: Technical Publishing Co.Inc..1989:540。
    [16]汪民,吴永峰.地表水微量有机污染[J].地学前缘,1996,39(1):169-175.
    [17]袁西恩主编.饮用水与健康[M].北京:中国农业科技出版社,1999:89.
    [18]康跃惠,张干,盛国英,傅家谟.固相萃取法测定水源水中的有机磷农药[J].中国环境科学,2000,20(1):1-4.
    [19]Sankararamakrishnan N., Sharma A.K.,Sanghi R... Organochlorine and organophosphorous pesticide residues in ground water and surface waters of Kanpur, Uttar Pradesh, India [J]. Environment International,2005,31(1):113-120.
    [20]Tanabe A., Mitobe H., Kawata K., etal.. Seasonal and spatial studies on pesticide residues in surface waters of the Shinano River in Japan [J]. Journal of Agriculture and Food Chemistry, 2001,49(8):3847-3852.
    [21]Bard A.J., Fanlkner L.R.. Electrochemical Methods:Fundamentals and Applications [M]. New York:Johnwiley & Sons, INC,2001:156.
    [22]Tian Z.W.. Electrochemical Research [M]. Beijing:Science Press,1984:161.
    [23]Gao Y., Xu Y.X., Chen J.J., etal.. XPS Analysis of Triphenyl Phosphite Film Formed on the Surface of A3 Steel[J]. Journal of Chinese Society for Corrosion and Protection,2003, 23(4):202-205.
    [24]Lu Y.Q., Deng Z.H.. Analysis of practical infrared spectrum [M]. Beijing:The Electronic Industry Press of China,1989:22.
    [25]Gao Y., Xu Y.X., Lei L.C., etal.. Influence of Processing Parameters on Formation of Triphenyl Phosphite Film on A3 Steel Surface[J]. Corrosion science and protection technology,2002,14(4): 208-211.
    [26]Bard A.J., Fanlkner L.R.. Electrochemical Methods:Fundamentals and Applications [M]. New York:Johnwiley & Sons, INC,2001:189.
    [27]Wan Q.N., Wei W.. Study on Phosphite's Inhibiting Property under High Temperature [J].Shanxi chemical industry,1999,28(1):13-14.
    [28]Tang H., Xie P. Buggets and dynamics of nitrogen and phosphotus in a shallow, hypereutrophic lake in China [J].Freshwater Ecology,2000,15(4):505-514.
    [29]Vasooncelos V. M., Pereira E.. Cyanobacteria diversity and toxicity in a wasterwater treatment plant (Portugal) [J]. Water Research,2001,35,1354-1357.
    [30]Daldorph P. W. G... Management and treatment of algae in low land reservoirs in Easter England [J]. Water Science and Technology,1998,37(2):57-63.
    [31]布坎南,吉本斯等编.伯杰细菌鉴定手册(第八版)[M].北京:科学出版社,1984:134.
    [33]王庆飞,宋诗哲.金属材料海洋环境生物污损腐蚀研究进展[J].中国腐蚀与防护学报,2002,22:184-188.
    [34]李相波,王佳,王伟.海洋环境微生物附着的电化学检测技术[J].中国腐蚀与防护学报,2005,2:84-87.
    [35]王伟,王佳,徐海波等.微生物腐蚀研究方法中的表面分析技术[J].中国腐蚀与防护学报,2007,1:60-64。
    [36]马士德,孙虎元,黄桂桥等.海洋污损生物对碳钢腐蚀的影响[J].中国腐蚀与防护学报,2000,3:177-182.
    [37]刘学庆.海洋环境工程钢材腐蚀行为与预测模型的研究[D].青岛:中国科学研究生院(中国科学院海洋所),2004,6.
    [38]王佳,李相波,王伟.海水环境中微生物附着对钝性金属开路电位的影响[J].中国腐蚀与防护学报,2004,24:263-267.
    [1]Cheng Y.F., Steward F.R.. Corrosion of carbon steels in high-temperature water studied by electrochemical techniques [J]. Corrosion Science,2004,46:2405-2420.
    [2]koichi S.Jiro K.. Mechanochemical model to predict stress corrosion crack growth of stainless steel in high temperature water [J].Corrosion Science,2001,43:1751-1766.
    [3]Akio K.. The corrosion behavior of one-fifth scale lid models of transport cask submerged in sea bottom [J]. Corrosion Science,2005,47:2361-2376.
    [4]Jeom K. P., Anil K.. Thayamballi Y. etal.. A time-dependent corrosion wastage model for seawater ballast tank structures of ships [J]. Corrosion Science,2004,46:471-486.
    [5]Melchers R.E.. Modelling immersion corrosion of structural steels in natural fresh and brackish waters [J]. Corrosion Science,2006,48:4174-4201.
    [6]Angella P., Urbanic K.. Sulphate-reducing bacterial activity as a parameter to predict localized corrosion of stainless alloys [J]. Corrosion Science,2000,42:897-912.
    [7]于福洲.金属材料的耐蚀性[M].北京:科学出版社,1992:89.
    [8]宋诗哲.腐蚀电化学研究方法[M].化学工业出版社,1988:101.
    [9]Angell P., Urbanic K.. Sulphate-reducing bacterial activity as a parameter to predict localized corrosion of stainless alloys [J].Corrosion Science,2000,42:897-912.
    [10]Cottis R. A., Li Q., Owen G... Neural network motheds for corrosion data reduction [J]. Materials Design,1999,20(4):169-178.
    [11]邓聚龙.灰色理论基础[M].武汉:华中科技大学出版社,2002:12.
    [12]石世云.多变量灰色模型MGM(1,n)在变形预测中的应用[J].测绘通报,1998,10:9-11.
    [13]邓欧,李亦秋.中国房地产价格指数的灰色预测研究[J].经济研究导刊,2008,7:141-142.
    [14]王志强,朝伦巴根,柴建华.用多变量灰色预测模型模拟预测参考作物蒸散量的研究[J].中国沙漠,2007,27(4):584-587.
    [15]柴占杰,张广明.多变量灰色模型MGM(1,n)在锅炉故障预测中的应用[J].机械与电子,2007,5:28-30.
    [16]楼玉,张清,刘国华,范庆来.城市用水量预测中的多变量灰色预测模型[J].水资源保护,2005,1:11-13.