城镇生活污水杨树林地慢速渗滤生态处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国人口众多,水资源匮乏,时空分布不均,水资源污染十分严重。随着工业污水的持续防治,生活污水已经成为污染地表水与地下水的主要污染源。处理与利用结合型林地慢速渗滤处理,利用污水促进林木生长,减少了林地对水资源的消耗,用林木吸收污水中的氮、磷与盐等污染物,从而实现木材高产与污水处理的目标。在中国,尤其在那些没有条件建立污水处理厂或污水量达不到建立污水处理厂所需要污水量的小城镇,具有广阔的发展前景。
     杨树是中北部地区的优质乡土树种,速生、丰产、根量大,常用于防护林与速生用材林。由于杨树生长快,能够吸收大量水分与污染物,比较适合于进行污水修复。在污水土地处理系统建立之前,首先要监测污水的成分,参照国家有关污水排放标准进行水质适宜性评价;调查土壤的理化性质,对场地适宜性进行评价。适宜性评价符合要求的水质与场地才能进行污水土地处理。水力负荷是污水土地处理的关键参数,慢渗处理系统的水力负荷通常可根据土壤渗透率、氮素限制、作物灌溉要求计算。但是由于各地的实际情况差别很大,多大水力负荷比较合适,需要经过试验才能确定。
     在杨树林地慢渗生态处理系统中,林木-土壤系统可以净化污水,但是生活污水中氯化钠含量较高,污水林地处理可能影响林木生长、土壤性质、土壤微生物区系与土壤酶活性。2008—2009年在郑州市龙湖镇,选择了4个杨树无性系人工林,采用不同水力负荷(0、3、6、9、12、15cm·week-1),进行了生活污水杨树林地生态处理试验,以观测不同杨树无性系和土壤微生物对生活污水的修复作用,以及生活污水对林地土壤性质和地下水的影响,为生活污水杨树林地慢速生态处理系统的构建与持续运行提供科学依据。研究结果表明:杨树可以吸收净化生活污水,不同的无性系对污水的吸收净化能力不同,应选择适当的无性系作为污水处理系统的植物材料;杨树根量大,小于1mm的细根所占比例大,可以为土壤微生物提供很好的生长界面,促进土壤微生物的发育,土壤微生物对生活污水的净化作用随着水力负荷的增加而增加,达到一定水力负荷之后,又随着水力负荷的增加而降低;在水力负荷适当时,污水处理可以提高林木生长量和土壤质量,如果水力负荷过大,将抑制林木生长、降低土壤质量,土壤微生物数量减少,酶活性降低。主要结论如下:
     1、不同杨树无性系对生活污水的反应差别很大,中林2001杨对生活污水胁迫的抗性最强,和其它无性系相比,其生长量最大,未出现严重的胁迫症状,对氮、磷与钠的吸收净化效果最好。生活污水林地处理也增加了欧美107杨与Ⅰ-72的生长量,这2个无性系对氮、磷污染物的吸收净化效果较好,但是对钠的吸收能力较差。中林46杨对生活污水中盐的反应敏感,较小的水力负荷就导致其生长量下降,该无性系不适合于进行生活污水修复。试验结果表明:对杨树生长比较适宜的水力负荷为3~9 cm·week-1,如果水力负荷再增加,将影响林木的健康状况,杨树对生活污水的吸收能力降低。
     2、适量的生活污水处理使土壤各类微生物及多样性增加,生活污水林地处理有利于土壤微生物的发育,土壤微生物对生活污水中有机污染物具有较强的分解与净化能力;如果水力负荷过大,土壤微生物数量急剧下降。土壤主要酶含量变化规律与微生物数量的变化趋势相似。
     土壤微生物数量、多样性及酶活性的变化情况表明,3~9cm·week-1水力负荷处理是比较适宜的。这个结果与各杨树无性系对污水的反应相似(中林46杨除外)适当的水力负荷输入了适量的土壤微生物能够分解与净化的污染物,在土壤微生物的作用下,养分被分解并有效化,可以提供林木生长所需要的养分,林木健康生长使其根系迅速发育,又为土壤微生物提供了更好的生存界面。水力负荷大于9cm·week-1,土壤中有害物质增加,土壤性质恶化,土壤微生物数量减少,酶活性下降。
     3、土壤可以吸收净化生活污水中污染物,这种净化过程是在土壤生物参与下进行的,在净化生活污水的同时,土壤性质也发生了变化。土壤性质的变化包括2个截然不同的方面和过程:由于土壤养分含量的增加,土壤的肥力得到了提高,同时土壤中污染物,如钠离子含量增加,导致土壤理化性质的不良变化,会降低土壤肥力,导致土壤生产力下降。这种变化与污水水力负荷密切相关,适当的水力负荷总体上讲可以提高土壤肥力,随着水力负荷的增加,污染物含量不断增加,生活污水对土壤的不良影响在加剧,从生活污水对土壤肥力的影响来看,3~9 cm·week-1水力负荷对土壤肥力的提高是显著的,土壤物理性质得到改善,土壤的养分状况得到了提高,水力负荷>9 cm week-1,土壤肥力将急剧下降。
     4、在水力负荷超过土壤-林木-微生物的净化能力之后,生活污水中的各种污染物,包括包括BOD5、COD、氨氮、氯化物、硝酸盐与硫酸盐等将导致地下水的严重污染,地下水的监测与评价是十分必要的。在生活污水处理水力负荷> 9 cm·week-1时,地下水的污染物含量随着水力负荷增加而急剧增加。
     5、生活污水杨树林地慢速渗滤处理污染物去除率高,可以获得良好的污水处理效果。生活污水林地处理投资少,运营费用低,如果经营得当,可以获得污水处理与林木增产双重效益。生活污水林地处理使杨树人工林尽快郁闭,迅速生长,改善了当地的生态环境条件,强化了人工林的防护效益,生态效益非常明显。由于生活污水杨树林地处理拥有以上优势,在季节性干旱,尤其是春季干旱比较严重的中北部地区,可以广泛应用。
China is a country of large population, the problem of water scarcity, the uneven spatial and temporal water distribution and water pollution is very severe. With the continuous work on prevention and treatment for industrial wastewater, the domestic wastewater has become a major pollution source of surface water and groundwater. In slow rate land system, soil-vegetation-microbial system can not only purify the contaminations such as nitrogen, phosphorus, sodium chloride, but also increase poplar growth, so goal of both wastewater treatment and timber production can be achieved. Slow rate land treatment has broad development potential in area where sewage treatment plant cannot be built up for economic condition or no enough wastewater quantity.
     Poplar is a high-quality native tree species in the north-central region. With the characteristics of fast growing, high yield, large root volume, the poplar is commonly used in the shelter-forest and the fast-growing plantation. As the poplar grows quickly, it can absorb large amounts of water and pollutants, so poplars are very suitable as vegetation for wastewater treatment. Before the establishment of land treatment system, the wastewater content should be monitored and suitability should be evaluated according to the relevant national wastewater discharge standard, the site applicability should be evaluated according to the investigation of soil properties. The wastewater treatment can only be carried out when the suitability assessment of the wastewater composition and site meets the requirements. Hydraulic loading, which is also one of the key parameters on wastewater treatment, can be calculated according to the relevant index of soil permeability, nitrogen uptake requirements and crop water requirement, to make some necessary preparations for the construction of the wastewater treatment system. But the actual conditions of different area are very big, wastewater treatment tests should be performed for designing suitable hydraulic loading.
     In slow rate land system, vegetation-soil system can purify the wastewater. However, the content of sodium chloride in wastewater is comparatively high and wastewater treatment may affect the tree growth, soil properties, microbial flora and soil enzyme activities. From 2008 to 2009, an experiment of domestic wastewater eco-treatment with poplar plantation has be performed at Longhu Town of Zhengzhou city, four poplar clones were selected as for vegetations and different hydraulic loadings (0,3,6,9,12,15 cm week-1) were applied in order to observe the absorbility of different poplar clones and the purification ability of soil microbes for wastewater. The domestic wastewater's influence on soil properties and the quality of underground water were studied. The study provides a scientific basis for the construction and continuous operation of slow rate land treatment with poplar plantation. The results show that:poplar can take up and purify wastewater, different clones have different absorbility, and appropriate clones should be selected as vegetations for cleaning domestic wastewater. The poplar can increase the growth of the soil microbe by providing a good microbial growth interface. Soil microbe's wastewater purification ability increased with the increase of hydraulic loading, and decreased with the increase of hydraulic loading after it reaches a certain hydraulic loading (>9 cm week-1). The wastewater land treatment can increase tree growth and soil properties treated with suitable hydraulic loading, while tree growth and soil fertility would be reduced if the hydraulic loading is too large. The main conclusions are as follows:
     1. The tested poplar clones are widely planted in north-central area. The responses of different poplar clones to wastewater vary greatly. Compared with the other clones, the clone 2001 has highest stress tolerance for wastewater and shows no severe stress symptom. It also has good absorption and purification ability to nitrogen, phosphorus and sodium chloride. Slow rate land treatment also increased the growth of the clone 107 and I-72, the two clones have a better purification ability on nitrogen and phosphorus pollutants, but poor to sodium chloride. The clone 46 is sensitive to salt stress, smaller hydraulic loading caused the decline of its growth, so the clones are not suitable as vegetations for wastewater treatment. The results showed that the appropriate hydraulic loading is 3-9 cm week-1, if the hydraulic loading keeps going up, wastewater treatment will affect the health of trees, the reduction of wastewater treatment efficiency will result in pollution of soil and groundwater.
     2. The proper amount of wastewater will diversify the microbes in the soil and promote the growth of microorganisms in the soil, the microorganisms in the soil have strong purification ability for organic pollutants, and there was similarity among the changes trend of enzyme content, quantity and diversity of microorganisms in the soil.
     From changes of the microbial diversity and quantity and enzyme activity, a conclusion can be reached that wastewater treatment with 3-9 cm week-1 is more proper, which is similar to the reaction of the poplar clones except for the poplar 46. The results show that the pollutants can be broken down and turned into nutrients for the growth of the trees treatment with appropriate hydraulic loading and the roots of the well developed trees will provide better interface and available nutrients for the microbes. Once the hydraulic loading exceeds certain scope (>9 cm week-1), soil contaminations increase and soil fertility will reduced, so microbe number and diversity will reduced.
     3. The soil can take up pollutants in the domestic wastewater with the help of microbes, the soil properties was also changed in the process. The Changes in soil properties result in two very different results:in one hand, with the increase the of the nutrient in the soil, the soil became more fertile; in other hand, as the increase of the pollutants such as the content of sodium ion, soil properties will deteriorate and the soil productivity will decrease. This change is closely related with the wastewater hydraulic loading, the appropriate hydraulic loadings can improve soil fertility, while the hydraulic loading keep going up and exceed a certain point, the pollutants in wastewater will deteriorate soil properties. From the influence of the domestic wastewater on soil,3-9 cm week-1 treatments will make significant improvement on the soil fertility. Once the hydraulic loading exceeds this scope, soil fertility will reduced.
     4. When the hydraulic loading is beyond the purification capacity of the soil-vegetation-microorganism system various pollutants including BOD5, COD, ammonia nitrogen, chloride, nitrate and sulfate will lead to serious pollution of groundwater, so the monitoring and evaluation of groundwater is very necessary. When Hydraulic loadings in land treatment exceed 9 cm week-1, the groundwater will be contaminated for the increases of hydraulic loading.
     5. Slow rate land treatment system has a high efficiency on the pollutant removal and can achieve good results for the wastewater treatment. There is low investment and low operation costs in the system, land treatment can get the benefits on the wastewater treatment combined with biomass production in the local region. Slow rate land treatment has high pollutant removal efficiency, access to good treatment results, less investment and lower operating costs. The benefits of wastewater treatment and increased biomass production will be achieved. Slow rate land treatment can speed up the growth of poplar plantation, improve local ecological environment and strengthen the protective effect of plantations, so ecological benefit is significant. As slow rate land treatment have the above advantages, it has a broad prospect in seasonal drought area, especially in the north-central region with the sever drought in spring.
引文
[1]中华人民共和国水利部.2002年水资源公报[DE/OL].中国可持续发展信息网.2004,8.
    [2]牛晓音.人工湿地生态工程净化原理及应用研究[D].浙江大学硕士学位论文,2001,5.
    [3]周彤.污水回用决策与技术[M].北京:化学工业出版社,2002.
    [4]刘昌明,陈志恺.中国水资源现状评价和供需发展趋势分析[M].北京:中国水利水电出版社,2001.
    [5]王德荣.污水灌溉与农用水质控制标准[J].陕西环境,1996,3(3):17-21.
    [6]杨继富.污水灌溉农业问题与对策[J].水资源保护,2000,(2):4-8.
    [7]杨飞,蒋丽娟.浅议污水灌溉带来的问题及对策[J].节水灌溉,2000,(2):23-25.
    [8]庞鹏沙,董仁杰.浅议中国水资源现状与对策[J].水利科技与经济.2004,10(5):267-268.
    [9]张振莲.张家口城市生活污水的监测与分析[J].水资源保护,2003,2:49-50.
    [10]王洪斌.城市生活污水再利用[J].环境保护,2004,3:74.
    [11]城镇污水处理厂污染物排放标准GB18918-2002.中华人民共和国国家标准,2002:3-11.
    [12]污水综合排放标准GB8978-1996.中华人民共和国国家标准,1996:272-290.
    [13]Seong K Y, Won Y A, Geon T K, et al. Pilot-scale evaluation of an integrated membrane system for domestic wastewater reuse on islands. Desalinition,2007,208:113-124.
    [14]Ilan K, Carlos G D. Desalination of domestic wastewater effluents:phosphate removal as pretreatment. 2008,222:230-242.
    [15]夏立江.土壤污染及其防治[M].武汉:华中理工大学出版,2001.
    [16]古生智.利用生活污水进行农田灌溉的可行性[J].节水灌溉,1999(3):31-38.
    [17]刘增进,张建伟.污水灌溉在我国发展的必要性分析[J].安徽农业科学.2008,36(20):8738-8739.
    [18]党酉胜,黄钟,张伯鸣,等.污水土地处理的研究现状及发展趋势[J].陕西环境,2002,9(5):17-19.
    [19]何江涛,钟佐巢,汤呜皋,等.污水土地处理技术与污水资源化[J].地学前缘,2001,8(1):155-162.
    [20]区自清.根据我国污灌现状建设污水土地处理系统[J].农业环境保护,19898(1):42-44.
    [21]郭笃发,姜爱霞.污水土地处理系统的应用分析[J].环境科学进展,1995,6:64-66.
    [22]曾扬,阮晓红,孙敏.土地处理技术在污水资源化处理中的应用分析[J].陕西环境,2002,9(6):19-22.
    [23]金兆丰,徐竟成.城市污水回用技术手册[M].北京:化学工业出版社,2004.
    [24]李慧,王俊岭.污水的土地处理特性分析[J].北方环境,2004,10:36-37.
    [25]蔡思义,郑振华,陆华,等.天津市污水慢渗土地处理系统水力负荷研究[J].中国环境科学,1992,12(6):438-443.
    [26]高拯民,李宪法.城市污水土地处理利用设计手册[M].北京:中国标准出版社,1991.
    [27]孙铁珩,区自清,李培军.城市污水土地处理系统研究[M].北京:科学技术出版社,2001.
    [28]孙铁珩,周思毅.城市污水土地处理技术指南[M].北京:中国环境科学出版社.1997.
    [29]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2001.
    [30]徐亚同.废水中氮磷的处理[M].华东师范大学出版社,1994.
    [31]高拯民,李宪法.城市污水土地处理利用设计手册[M].北京:中国标准出版社,1991.
    [32]贾宏宇,孙铁珩,李培军,等.污水土地处理技术研究的最新进展[J].环境污染治理技术与设备,2001,2(1):62-65,47.
    [33]张建.地下渗滤处理村镇生活污水的中试[J].环境科学,2002,23(6):57-58.
    [34]王绍文,秦华.城市污泥资源利用与污水土地处理技术[M].北京:中国建筑出版社,2007.
    [35]徐亚同.废水生物处理的运行和管理[M].上海:华东师范大学出版社,1989.
    [36]史家裸,徐亚同.环境微生物学[M].上海:华东师范大学出版社,1993.
    [37]Scandura J E, Sobsey M D. Viral and bacterial contamination of groundwater from on-site sewage treatment systems[J].Water Science and Technology,1997,35(11/12):141-146.
    [38]JAmes A, LagagroO JR. Designing without nature:unsewercd residential development in rural Wisconsin[J]. Landscape and Urban Planning,1996,35:1-9.
    [39]Pell M, Nyberg F. Infiltration of wastewater in a newly started pilot sand filter system:I. Reduction of organic matter and phosphorus[J]. Environ. Qual,1989,18:452-457.
    [40]Ouazzani, Bousselhaj K, Abbas Y. Reuse of wastewater treatment by infiltration percolation[J]. Water Science and Technology,1996,33(10/11):401-408.
    [41]孔刚,许昭恰,李华伟,等.地下土壤渗滤法净化生活污水研究进展[J].土壤,2005,37(3):251-257.
    [42]BouwerR H. High-rate land treatment:Ⅱ Water quality and economic aspects of the Flushing Meadows Projects[J].WPCF.1985,46(4):987-993.
    [43]于颖多.毛管逆滤渗污水处理系统原理研究及其室内实验验证[D].北京:中国农业大学,2004.
    [44]何江涛,钟佐巢,汤呜皋,等.污水土地处理技术与污水资源化[J].地学前缘.2001.8(1):155-162.
    [45]崔理华,朱夕珍,李国学,等.北京西郊城市污水人工快滤处理与利用系统[J].中国环境 科学,2000,20(1):45-48.
    [46]张金炳,汤呜皋,陈鸿汉,等.人工快渗系统处理洗浴污水的试验研究[J].岩石矿物学杂志,2001,20(4):539-543.
    [47]齐明亮,王有乐,敬宪科,等.土地快速渗滤系统的水力负荷研究[J].甘肃环境研究与监测,1999,12(4):169-172.
    [48]Sun T H, He Y W, Ou Z Q, et al. Treatment of domestic wastewater by an underground capillary seepage system[J]. Ecological Engineering,1998,11:111-119.
    [49]张建,黄霞,刘超翔,等.地下渗滤处理村镇生活污水的中试[J].环境科学,2002,23(6):57-61.
    [50]杨文涛,刘春平,文红艳.浅谈污水土地处理系统[J].土壤通报,2007,38(2):394-397.
    [51]维蒙特水资源管理集团,维蒙特工业公司年度宣传报告,2003.
    [52]孙铁珩,杨翠芬,赵学群.城市污水土地处理适宜性评价系统.中国环境科学,1998,18(6):506-509.
    [53]杨翠芬,孙铁珩,李培军.城市生活污水土地处理专家系统研究.应用生态学报.1998,9(5):520-524.
    [54]李培军,贾宏宇.城市污水与固体废弃物在大型露天煤矿复垦中的无害化资源化应用.第五届海峡两岸环境保护学术研讨会,1998.
    [55]孙铁珩,姜凤岐.草原矿区开发的环境影响与生态工程.科学出版社,1999.
    [56]杨翠芬,孙铁珩,李培军.污水土地处理生态工程综合效益评价.应用生态学报,1999,10(4):481-484.
    [57]李述刚.荒漠绿洲农业生态系统.气象出版社,1998.
    [58]陈佐忠.典型草原草地畜牧业优化生产模式研究.气象出版社,1998.
    [59]Clapp C E, harson W.E. Sewage Sludge:Land Utilization and the Environment. SSSA Miscellaneous Publication,1993.
    [60]Myers B J, Theiveyanathan S, O'Brien, et al. Growth and water use of Eucalyptus grandis and Pinus radiata plantation irrigated with effluent[J]. Tree Physiol,1996.
    [61]李玫,章金鸿,陈桂珠.生活污水排放对红树林植物生长的影响[J].防护林科技,2002.
    [62]陈桂珠,马骅,黄玉山,等.人工污水对桐花树的生长影响[J].中山大学学报(自然科学版),1998.
    [63]Jill A. Zalesny, Ronald S. Zalesny Jr, et al. Growth and biomass of Populus irrigated with landfill leachate[J]. Forest Ecology and Management,2007,248:143-152.
    [64]胡国臣,王忠.城市污水处理厂二级出水用于城市绿化的研究[J].农业环境与发展,1999.
    [65]J.M.Murillo, R.Lopez J E, Fernandez, et al. Olive tree response to irrigation with wastewater from the table olive industry[J]. Irrig Sci,2000.
    [66]Miyamoto S, and J.White. Foliar Salt Damage of Landscape Plants Induced by Sprinkler Irrigation [J]. Texas Water Resources Inst,2002, TR:1202.
    [67]Aronsson, Katrin H, Kurth P, et al. Spatial variation in above-ground growth in unevenly wastewater-irrigated willow Salix viminalis plantations [J]. Ecological Engineering,2002.
    [68]Assadian, L B, Fenn M A, Flores-Ortiz. Spatial variability of solutes in a pecan orchard surface-irrigated with untreated effluents in the upper Rio Grande River basin[J]. Agricultural Water Management,1999.
    [69]Borga P, Elowson T, Liukko K. Environmental loads from water-sp rink led softwood timber. 2.Influence of tree species and water characteristics on wastewater discharges[J]. Environ toxic chem,1996.
    [70]皮运正,吴天宝,陈维芳.土壤含水层处理去除可吸附有机卤化物的试验研究[J].重庆环境科学,2000,22(1):31-33.
    [71]Nema P, Ojha C S P, Kumar A, et al. Technoeconomic evaluation of soil-aquifer treatment using primary effluent at Ahmedabad[J]. India. Water Research,2001,35:2179-2190.
    [72]蒋展鹏.环境工程学[M].北京:高等教育出版社,1992:199-205.
    [73]孙刚,许昭怡,李伟华,等.地下土壤渗滤法净化生活污水研究进展[J].土壤,2005,37(3):251-257.
    [74]Poll M, Nybcrg F. Infiltration of wastewater in a newly started pilot sand filter system: I.Reduction of organic matter and phosphorus [J]. Journal of Environment Quality,1989,18:452-457.
    [75]Kong H N, Kimochi Y, Mizuochi M, et al. Study of the characteristics of Cl- and N2O emission and methods of controlling their emission in the soil-trench wastewater treatment process[J]. The Science of the Total Environment,2002,290:59-67.
    [76]姜翠玲,夏自强,刘凌.污水灌溉土壤及地下水三氮的变化动态分析[J].水科学进展,1997,8(2):183-188.
    [77]刘忠翰,彭江艳.污水土地处理中水田氮素的迁移特征[J].土壤学报,2000,37(3):428-432.
    [78]E. Ramirez-Fuentes, C. Lucho-Constantion, E. Escamilla-Silva, et al. Characteristics, and carbon and nitrogen dynamics in soil irrigated with wastewater for different lengths of time[J]. Bioresource Technology,2002.85:179-187.
    [79]刘凌,夏自强,刘凌,等.污水灌溉中氮化合物迁移转化过程的研究[J].水资源保护,1995,4:40-45.
    [80]Bouchaib El Hamouri. Use of wastewater for crop production under arid and saline conditions: yield and hygienic quality of the crop and soil contaminations[J]. Wat.Sci.Tech,1996,33(10-11): 327-334.
    [81]刘凌,陆桂华.含氮污水灌溉实验研究及污染风险分析[J].水科学进展,2002,13(3):313-320.
    [82]王亚男,王红旗,舒艳.含磷污水淋滤条件下土壤中磷迁移转化模拟实验[J].环境科学学报,2001,21(6):737-741.
    [83]Jan V. The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic:10 years experience[J]. Ecological Engineering,2002,18:633-646.
    [84]Biswas T K, Higginson FR. I.Shannon. Effluent nutrient management and resource recovery in intensive rural industries for the protection of natural water [J]. Wat.Sci.Tech,1999,40(2):19-27.
    [85]姜翠玲,夏自强,刘凌,等.奎河污灌区的氮、磷污染[J].环境科学,1997,3:23-25.
    [86]Filip Z. International approach to assessing soil quality by ecologically-related biological parameters. Agric[J]. Ecosyst. Environ,2002,88:69-174.
    [87]Schloter M, Dilly O, Munch, J C. Indicators for evaluating soil quality[J]. Agric. Ecosyst. Environ, 2003,98:255-262.
    [88]Bending G D, Turner, M K, Rayns F, et al. Microbial and biochemical soil indicators and their potential for differentiating areas under contrasting agricultural management regimes[J]. Soil Biol. Biochem,2004,36:1785-1792.
    [89]Sparling G P, Schipper L A, Bettjeman W, et al. Soil quality monitoring in New Zealand:practical lessons from a 6-year trial [J]. Agric. Ecosyst. Environ,2004,104:523-534.
    [90]Truu M, Truu J, Ivask M. Soil microbiological and biochemical properties for assessing the effect of agricultural management practices in Estonian cultivated soils[J]. Eur. J. Soil Biol,2008,44: 231-237.
    [91]Brzezinska M, Tiwari S C, Stepniewska Z, et al. Variation of enzyme activities. CO2 evolution and redox potential in an Eutric Histosol irrigated with wastewater and tap water. Biol[J]. Fertil. Soils,2006,42:131-135.
    [92]Filip Z, Kanazawa S, Berthelin J. Distribution of microorganisms, biomass ATP, and enzyme activities in organic and mineral particles of a long-term wastewater irrigation soil[J]. J. Plant Nutr. Soil Sci,2000,163:143-150.
    [93]Marika T, Jaak T, Katrin H. Changes in soil microbial community under willow coppice:The effect of irrigation with secondary-treated municipal wastewater[J]. Ecological Engineering,2009, 35:1011-1018.
    [94]Oved T, Shaviv A, Goldrath T, et al. Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil[J]. Appl. Environ. Microbiol,2001,67:3426-3433.
    [95]Paranychianakis N V, Angelakis A N, Leverenz H, et al. Treatment of wastewater with slow rate systems:a review of treatment processes and plant functions. Crit. Rew. Environ[J]. Sci. Tech, 2006,36:187-259.
    [96]Lohmus K, Truu M, Truu J, et al. Functional diversity of culturable bacterial communities in the rhizosphere in relation to fine-root and soil parameters in alder stands on forest, abandoned agricultural, and oil-shale areas[J]. Plant Soil,2006,283(1-2):1-10.
    [97]Dick RPA. Review:long-term effects of agricultural systems on soil bio-chemical and microbial parameters[J]. Agric Ecosyst Environm,1992,40:25-36.
    [98]赵章元.地下水污染不容忽视[J].环境经济杂志,2006(4):28-37.
    [99]孙博.浅谈地下水污染及其防治[J].科技情报开发与经济.2008,18(3):122-123.
    [100]田春卢,李云峰,郑书彦.关下盆地环境水文地质问题[M].西安:陕西科学技术出版社.1995.
    [101]鑫裳.环境土壤学[M].武汉:华中师范大学出版社.1985.
    [102]Wang D S. The application base of N isolope ratio((15)N-(14)N) in the study of groundwater N pollution[J].Acta Geoscientia Sinica,1997,18(2):21-26.
    [103]Schalscha E B. Nirtrate movement in a Chilean a Chilean agriculture with untreated sewage water[J]. J Environ Qual.1979,8(1):27-30.
    [1]曹连海,宋刚福,陈南祥.城市生活污水排放量的影响因子分析及关联性研究[J].环境科学’与技术,2009,32(1):102-103.
    [2]丁宏翔.昆明市主城区生活污水现状分析与控制对策[J].环境科学导刊2009,28(2):45-47.
    [3]孟国霞,胡焱.污水资源化与山西省农业可持续发展[J].山西水利科技,2002,32(1):79.
    [4]曹优明.美人蕉人工湿地对城市生活污水的净化研究[J].环境科学与技术,2009,32(7):120-122.
    [5]付融冰,杨海真,顾国维,等.潜流人工湿地对农村生活污水氮去除的研究[J].水处理技术,2006,32(1).
    [6]Wu B G, Qi Y, Ma C, Zhang H Q. Harvest Evaluation Model and System of Fast-Growing and High Yield Poplar Plantation[J]. Mathematical and computer modeling.2009,10:1-2.
    [7]Isebrands JG, Karnisky DF. Environmental benefits of poplar culture. In:Dickmann DI, Isebrands JG, Eckenwalder JE, Richardson J editors. Poplar Culture in North America. Ottawa, Ontario, Canada[M]:NRC Research Press,2001:207-218.
    [8]Westphal L M, Isebrands J G. Phtoremediation of Chicago's brownfields-consideration of ecological approaches and social issues[J]. Proceeding Brownfields 2001 Conference, Chicago, IL, USA,2001. BB-11-02.
    [9]王木林.论城市森林的范围及经营对策[J].林业科学,1998,34(4):39-47.
    [10]张燕余雪标.城市林业的研究现状与发展[J].华南热带农业大学学报,2007,13(1):38-41.
    [11]M. Hupfer. Phosphous retention mechanisms in the sediment of an eutrophic mining lake[J]. Water, Air, Soil Pollut.1998.
    [12]郑世锴,李玉敏,鲁新政.杨树品种介绍(三)[M].林业实用技术,2003,1:12.
    [13]郑世锴,高瑞桐,刘奉觉,等.杨树丰产栽培[M1.北京:金盾出版社,2007:27.
    [14]宫俊华,刘印河,马样波,等.速生杨新品种—2001杨.天津林业科技,2001,162(4):41.
    [1]孙铁珩,杨翠芬.城市污水土地处理适宜性评价系统.中国环境科学[J],1998,18(6):506-509.
    [2]蔡思义,郑振华,陆华,等.天津市污水慢渗土地处理系统水力负荷研究.中国环科学[J],1992,12(6):438-442.
    [3]贺士元,邢其华,尹祖棠.北京植物志[M].北京:北京出版社,1993.
    [4]Gordon MP, Choe N, Duffy J, et al. Phytoremediation of trichlorethylene with hybrid poplars. Environ Health Persp[J],1998,106:1001-1004.
    [5]Lepp NW. Effects of heavy metal pollution plants. London. Applied Science publishers[M],1981, 25-29.
    [6]Rugh CL, Senecoff JF, Meagher RB, et al. Development of transgenic yellow poplar for mercury phytoremediation.Nat.Biotechnol[J],1998.16:925-928.
    [7]王文全,贾渝彬,胥丽敏,等.杨树根系分布的研究.河北农业大学学报[J],1997:20.
    [8]向师庆,赵相华.北京主要造林树种的根系研究.北京林学院学报[J],1981,2:19-32.
    [9]崔浪军,梁宗锁,韩蕊莲,等.沙棘-杨树混交林生物量、林地土壤特性及其根系分布特征研究.林业科学[J],2003,39(6):1-7.
    [10]陈洁,孟波.RS系统工艺设计的几个必备要素—石屏县城市污水土地处理工程例析[J].云南环境科学,1999,18(3):25-27.
    [11]杨翠芬.中国北方地区污水土地处理适宜性研究[D].博士学位论文,1997.
    [12]高拯民,李宪法.城市污水土地处理利用设计手册[M].北京:中国标准出版社,1990.
    [13]刘汉湖,李天宇,陈建刚,等.城市生活污水土地处理场地勘察及适宜性评价方法[J].污染防治技术,2002,15(3):4-6.
    [14]《城镇污水处理厂污染物排放标准》.国家环境保护总局与国家质量监督检验检疫总局.2002,12.
    [15]《污水综台排放标准》.国家环境保护局.1996.
    [1]郑世锴,李玉敏,鲁新政.杨树品种介绍(三)[M].林业实用技术,2003,1:12.
    [2]郑世锴,高瑞桐,刘奉觉,等.杨树丰产栽培[M].北京:金盾出版社,2007:27.
    [3]宫俊华,刘印河,马样波,等.速生杨新品种—2001杨.天津林业科技,2001,162(4):41.
    [4]沈国舫,罗菊春,翟明普,等.森林培育学[M].北京:中国林业出版社,2003:98.
    [5]Ioannis D, Par A, Martin W. Stress tolerance of five willow clones after irrigation with different amounts of landfill leachate. Biosource technology, Bioresource Technology[J],2006,97:150-157.
    [6]鲍玉旦.土壤农化分析[M].中国农业出版社,2000:263-275.
    [7]Anne P, Mawri F, Gladstone S, et al. Is fluctuating asymmetry a reliable biomonitor of stress. A test using life history parameters in soybean[J]. International Journal of Plant Sciences,1998,159 (4): 559-565.
    [8]Alados C L, Navarro T, Esco's J, et al. Translational and fluctuating asymmetry as tools to detect stress in stress-adapted and nonadapted plants[J]. International Journal of Plant Sciences,2001, 162(3):607-616.
    [9]Hochwender C G, Fritz R S. Fluctuating asymmetry in a Salix hybrid system:the importance of genetic versus environmental causes[J]. Evolution,1999,53 (2):408-416.
    [10]Lars B P, Jorgen B H. A comparison of litterfall and element fluxes in even aged Norway spruce, sitka spruce and beech stands in Denmark[J]. Forest Ecology and Management,1999,114:55-70.
    [11]Larcher W. Physiological Plant Ecology[D]. Springer, Berlin,1995.
    [12]王葆芳,朱灵益.干旱区杨树人工用材林灌溉量与土壤水分的关系[J].林业科学研究,1995,8(1):94-100.
    [13]Aronsson P. Nitrogen retention in vegetation filters of shortrotation willow coppice[D]. Ph.D. thesis, Silvestria 161, Swedish University of Agricultural Sciences,2000.
    [14]Morabito D, Mills D, Prat D, et al. Response of clones of Eucalyptus microtheca to NaCl in vitro[J]. Tree Physiology,1994,14 (2):201-210.
    [15]Sun D, Dickinson G R. Survival and growth response ofa number of Australian tree species planted on a saline site in tropical north Australia[J]. Journal of Applied Ecology,1995,32(4):817-826.
    [16]Dickmann D I. An overview of the genus Populus[M]. Part A. In:Dickmann D I, Isebrands J G, Eckenwalder J E, et al, Poplar Culture in North America. NRC Research Press, National Research Council of Canada, Ottawa, (chapter 1),2001, pp:1-42.
    [1]李法云,曲向荣,吴龙华.污染土壤生物修复理论基础及技术[M].北京:化学工业出版社,2006,1:96-98.
    [2]Filip Z, Kanazawa S, Berthelin J. Distribution of microorganisms, biomass ATP, and enzyme activities in organic and mineral particles of a long-term wastewater irrigation soil[J]. Plant Nutr. Soil Sci,2000.163:143-150.
    [3]Schloter M, Dilly O, Munch J C. Indicators for evaluating soil quality. Agric. Ecosyst[J]. Environ, 2003,98:255-262.
    [4]Bending G D, Turner M K, Rayns F, et al. Microbial and biochemical soil indicators and their potential for differentiating areas under contrasting agricultural management regimes[J]. Soil Biol, Biochem,2004,36:1785-1792.
    [5]Sparling G P, Schipper L A, Bettjeman W, et al. Soil quality monitoring in New Zealand:practical lessons from a 6-year trial. Agric[J]. Ecosyst. Environ,2004,104:523-534.
    [6]Truu M, Truu J, Ivask M. Soil microbiological and biochemical properties for assessing the effect of agricultural management practices in Estonian cultivated soils[J]. Eur. J. Soil Biol,2008,44,231-237.
    [7]Gupta V V S R, Rogers S, Naidu R. Effects of secondary treated sewage effluent application on the populations of microfauna in a hardwood plantation soil:Bolivar HIAT trial, Geoderma,1998,84: 249-263.
    [8]Tam N F Y. Effects of wastewater discharge on microbial populations and enzyme activities in mangrove soils[J], Environ. Pollut,1998,102:233-242.
    [9]M.W. Yim, N.F.Y. Tam. Effects of Wastewater-borne heavy metals on mangrove plants and soil microbial activities [J]. Mar. Pollut. Bull,1999,39:179-186.
    [10]姚槐应,黄昌勇,等.土壤微生物生态学及其实验技术[M].科学出版社,2006:5.
    [11]董艳,董坤,郑毅,等.种植年限和种植模式对设施土壤微生物区系和酶活性的影响.农业环境科学学报[J],2009,28(3):527-53.
    [12]Zak J, MR W, Moorherd DJ, et al. Functional diversity of microbial communities. Soil[J]. Biol. Biochem,1994,26:1101-1108.
    [13]Lijbert, Brussaard土壤中的生物多样性与生态系统功能(?)[J].Ambio,1997,26(8):555-562.
    [14]鲍碧娟.钾素的营养作用和提高钾肥肥效的途径[J].磷肥和复合肥,1995,10(3):71-73.
    [15]吴洵.茶园施钾肥的理论与实践[J].茶叶通讯,1998(2):18-21.
    [16]季鹏章.物钾肥及其在农业上的应用[J].云南热作科技,1999,22(1):45-46.性研究[J].山东农业科学,2008(1):71-73.
    [17]曲忠诚,孙冬梅,迟莉.解钾微生物K3与K4的分离及特性研究[J].黑龙江农业科学2009(5):17-19.
    [18]李繁、涂然、陈三凤.7株解有机磷细菌的分离和鉴定[J].农业生物技术学报,2006,14(4):600-605.
    [19]蒋宝贵,赵斌.解磷解钾自生固氮菌的分离筛选及鉴定[J].华中农业大学学报,2005,24(1):43-48.
    [20]中国科学院微生物研究所.新门杰氏细菌鉴定手册翻译组泽.伯杰氏细菌鉴定手册(第8版)[M].北京:科学出版社,198.
    [21]Killham K. Heterotrophic nitrification[M. Prosser J I, Nitrification[C]. Oxford:IRL Press,1986.
    [22]Prosser J I. Autotrophic nitrifcation in bacteria[J]. Adv Mi—crob Physiol,1989,30:125-181.
    [23]Abbasi M K, Adams W A. Loss of nitrogen in compactedgrassland soil by simultaneous nitrification and denitrification[J]. Plant Soil,1998:200,265-277.
    [24]Daum M, Zimmer W, Papen H, et al. Physiological and molecular biological characterization of ammonia oxidation of the heterotrophic nitrifier Pseudomonas putida[J]. Curr Mierobiol,1998, 37(4):281-288.
    [25]Lang E, Jagnow G. Fungi of a forest soil nitrifying at low pH values[J]. FEMS Microbiol Ecol, 1986,38:257-265.
    [26]李兰贵.地表水环境恶化的危害及治理对策[J].地下水,2002,24(4):243-245.
    [27]Hanaki K, W antawin C, Ohgaki S. Effects of the activity of heterotrophs on nitrification in a suspendedgrowth reactor[J]. Water Res,1990,24:289-296.
    [28]曹国民,张彤,龚剑丽,等.固定化细胞单级生物脱氮研究[J].中国环境科学,2000,20(3):237-240.
    [29]Dong Y L, Adela R, Lee M, et al. Appl Environ Mierobiol[M],2002,68(5):2140-2147.
    [30]李慧,陈冠雄,杨涛,等.沈抚灌区含油污水灌溉对稻田土壤微生物种群及土壤酶活性的影响[J].应用生态学报,2005,16(7):1355-1359.
    [31]Li H, Zhang Y, Zhang C G, et al. Effect of petroleum-containing wastewater irrigation on bacterial diversities and enzymatic activities in a paddy soil irigation area[J]. Journal Environmental Quality,2005,34:1073-1080.
    [32]岳中辉,王博文,王洪峰,等.松嫩平原西部盐碱草地土壤多酚氧化酶活性及其与主要肥力因子的关系阴.2009,18(4):251-255.
    [33]Gianfreda L, Rao A M, Piotrowska A, et al. Soil enzyme activities as affected by anthropogenie alterations:intensive agricultural practice and organic pollution[J]. Science and the Total Environment,2005,341:265-279.
    [34]Shen G P, Lu Y T, Zhou Q X, et al. teraction of polycyclic aromatic hydroearbons and heavy metals and soil enzyme[J]. Chemosphere,2005,61:1175-1182.
    [35]于群英.土壤磷酸酶活性及其影响因素研究[J].安徽技术师范学院学报,2001,15(4):5-8.
    [36]刘恩科,赵秉强,李秀英,等.长期施肥对土壤微生物量及土壤酶活性的影响[J].植物生态学报,2008,32(1):176-180.
    [1]郭笃发,姜爱霞.污水土地处理系统的应用分析[J].环境科学进展,1995,6:64-66.
    [2]皮运正,吴天宝,陈维芳.土壤含水层处理去除可吸附有机卤化物的试验研究[J].重庆环境科学,2000,22(1):31-33.
    [3]Nema P,Ojha C S P, Kumar A, et al. Technoeconomic evaluation of soil-aquifer treatment using primary effluent at Ahmedabad, India[J]. Water Research,2001,35:2179-2190.
    [4]刘光崧.土壤理化分析与剖面描述[M].北京:中国标准出版社,1996,33-37.
    [5]章家恩.生态学常用实验研究方法与技术[J].北京:化学工业出版社,2007:250.
    [6]林大仪.土壤学实验指导[M].北京:中国林业出版社,2004:165-168.
    [7]尹刚强,田大伦,方晰,等.不同土地利用方式对湘中丘陵区土壤质量的影响.林业科学,2008,44(8):10-14.
    [8]刘世梁,傅伯杰,吕一河,等.坡面土地利用方式与景观位置对土壤质量的影响.生态学报,2003,23(3):414-420.
    [9]张庆费,宋永吕,由文辉.浙江天童植物群落次生演替与土壤肥力的关系.生态学报,1999,19(2):174-178.
    [10]刘世梁,傅伯杰,陈利顶,等.两种土壤质量变化的定量评价方法比较.长江流域资源与环境,2003,12(5):422-426.
    [11]孙向阳.土壤学[M].北京:中国林业出版社,2005:214.
    [12]刘忠翰,彭江艳.污水土地处理中水田氮素的迁移特征[J].土壤学报,2000,37(3):428-432.
    [13]E. Ramirez-Fuentes, C. Lucho-Constantion, E. Escamilla-Silva, et al. Characteristics, and carbon and nitrogen dynamics in soil irrigated with wastewater for different lengths of time[J]. Bioresource Technology,2002,85: 179-187.
    [14]Bouchaib El Hamouri. Use of wastewater for crop production under arid and saline conditions:yield and hygienic quality of the crop and soil contaminations[J]. Wat.Sci.Tech,1996,33(10-11):327-334.
    [15]刘凌,陆桂华.含氮污水灌溉实验研究及污染风险分析[J].水科学进展,2002,13(3):313-320.
    [16]王亚男,王红旗,舒艳.含磷污水淋滤条件下土壤中磷迁移转化模拟实验[J].环境科学学报,2001,21(6):737-741.
    [17]Jan Vymazal. The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience[J]. Ecological Engineering,2002,18:633-646.
    [18]T.K.Biswas, F.R.Higginson, I.Shannon. Effluent nutrient management and resource recovery in intensive rural industries for the protection of natural water[J]. Wat. Sci.Tech,1999,40(2):19-27.
    [19]姜翠玲,夏自强,刘凌,等.奎河污灌区的氮、磷污染.环境科学,1997,3:23-25.
    [20]Neuman D S, Wagner M, Braatne J H, et al. Stress physiology-abiotic. Part Ⅱ. In:Stettler, R.F, Bradshaw, Jr, H D, Heilman,P E, Hinckley, T M (Eds.), Biology of Populus and its Implications for Management and Conservation. NRC Research Press, National Research Council of Canada, Ottawa(chapter 17)[M],1996, pp: 423-458.
    [21]Rengasamy P, Olsson K A. Sodicity and soil structure.Aust. J.Soil Res,1991,29:935-952.
    [22]Townsend A R, Vitousek P M, Trumbore S E. Soil organic matter dynamics along gradients in temperature and land use on the island of Hawaii. Ecology,1995,76:721-733.
    [23]Adejuwon J O, Ekanade O. A comparison of soil properties under different land use types in a part of the Nigerian Cocoa Belt.Catena.1988,15:319-331.
    [24]So H B, Aylmore L A G. How do sodic soils behave? The effects of sodicity on soil physical behavior. Aust. J.Soil Res,1993,31:761-777.
    [25]Kong H N, Kimochi Y, Mizuochi M, et al. Study of the characteristics of CH4 and N2O emission and methods of controlling their emission in the soil-trench wastewater treatment process. The Science of the Toal Environment,2002,290:59-67.
    [26]Frenkel H, Goertzen J O, Rhoades J D. Effects of clay type and content, exchangeable sodium percentage, and electrolyte concentration on clay dispersion and soil hydraulic conductivity. Soil Sci. Soc. Am. J,1978,42: 32-39.
    [27]蒋展鹏.环境工程学.北京:高等教育出版社,1992:199-205.
    [1]中华人民共和国国家标准地下水质量标准(GB/T1148848-9).中华人民共和国地质矿产部,1993.
    [2]许树柏.实用决策方法—层状分析法原理[M].天津:天津大学出版社,1988:13-40.
    [3]杨翠芬,孙铁珩,李培军.污水土地处理生态工程综合效益评价[J].应用生态学报,1999,10(4):481-484.
    [4]孙铁珩,姜凤岐.草原矿区开发的环境影响与生态工程[M].北京:科学出版社,1999.
    [5]杨翠芬,孙铁珩,李培军.城市生活污水土地处理专家系统研究[J].应用生态学报.1998,9(5):520-524.
    [6]杨翠芬,孙铁珩,李培军.污水土地处理生态工程综合效益评价[J].应用生态学报,1999,10(4):481-484.
    [7]邢晨曦.污水的土地一植物处理系统技术研究[D].南京理工大学硕士学位论文,2007:50.
    [8]高拯民,李宪法等.城市污水土地处理利用设计手册[M],北京:中国标准出版社,1991.
    [9]李培军,贾者宇.城市污水与固体废弃物在大型露天煤矿复垦中的无害化资源化应用.第五届海峡两岸环境保护学术研讨会,1998.
    [1]中华人民共和国水利部.2002年水资源公报[DE/OL].中国可持续发展信息网.2004:8.
    [2]刘昌明,陈志恺.中国水资源现状评价和供需发展趋势分析[M].北京:中国水利水电出版社,2001.
    [3]Wu B G, Qi Y, Ma C, et al. Harvest Evaluation Model and System of Fast-Growing and High-Yield Poplar Plantation. Mathematical and computer modeling.2009,10:1-2.
    [4]Isebrands JG, Karnosky DF. Environmental benefits of poplar culture. In:Dickmann DI, Isebrands JG, Eckenwalder JE, Richardson J editors. Poplar Culture in North America. Ottawa, Ontario, Canada:NRC Research Press.2001:207-218.
    [5]孙铁珩,杨翠芬.城市污水土地处理适宜性评价系统.中国环境科学[J],1998,18(6):506509.
    [6]杨翠芬.中国北方地区污水土地处理适宜性研究[D].博士学位论文,1997.
    [7]刘汉湖,李天宇,陈建刚,等.城市生活污水土地处理场地勘察及适宜性评价方法[J].污染防治技术,2002,15(3):4-6.
    [8]董艳,董坤,郑毅,等.种植年限和种植模式对设施土壤微生物区系和酶活性的影响.农业环境科学学报,2009,28(3):527-531.
    [9]何艺,谢志成,朱琳.不同类型水浇灌对已污染土壤酶及微生物量碳的影响.农业环境科学学报,2008,27(6):2227-2232.
    [10]关松荫等.土壤酶及其研究法[M].北京:农业出版社,1986:274-320.
    [11]中华人民共和国国家标准地下水质量标准(GB/T148848-9).中华人民共和国地质矿产部,1993.