固体双功能催化剂作用下甘油的转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘油作为一种副产物,其大量过剩的问题因生物柴油产业的迅速发展而变得越来越严重,如何寻找新的途径来合理地利用这些过剩的粗甘油,从而推动整个生物柴油产业的可持续发展,是当今生物柴油产业发展中面临的重大问题。甘油氢解来生产二元醇是目前认为最具有发展潜力的有效利用甘油的新途径。
     本论文主要采用不同方法制备了固体酸碱负载的金属作为双功能催化剂来催化甘油氢解生成丙二醇,结合多种表征手段考察了催化剂载体的酸碱性、金属的种类、表观形态及催化剂的结构对催化剂反应性能的影响,探讨了催化剂的活性中心性质及催化作用机制等问题。取得的主要结果如下:
     采用浸渍法制备了负载量为2wt.%的Pt/HZSM5、Pt/HBeta、Pt/Al2O3、Pt/MgO和Pt/水滑石(Mg:Al=3:1)等双功能催化剂,并考察了它们的催化反应性能。结果表明:2wt.%的Pt/水滑石相比其他催化剂表现出更好的催化性能,在优化的反应条件下(220℃,3.0MPaH2,20h,0.5g催化剂,20wt%甘油水溶液20.0g),甘油的转化率可达到92.1%,1,2-丙二醇的选择性为93.0%;催化剂易于分离并可以循环使用。结合XRD、TEM、CO2-TPD和H2-TPD等表征结果,我们认为催化剂载体的碱性以及铂颗粒的大小是影响催化剂活性的主要因素;载体的碱性对催化剂的活性有明显的促进作用,小颗粒的铂在碱性的载体上要比在酸性载体上表现出更好的活性。
     通过共沉淀和等体积浸渍等不同方法制备了不同铜负载量的Cu/MgO双功能催化剂,并考察了其催化反应的性能。结果表明:共沉淀法制备的Cu/MgO催化活性要比等体积浸渍法制备的Cu/MgO催化活性好;其中共沉淀法制备的15wt.%Cu/MgO表现出最好的催化反应性能,在反应条件180℃,3.0MPa H2,20h,1.0g催化剂,75wt.%甘油水溶液8.0g下,甘油的转化率能够达到72.0%,1,2-丙二醇的选择性为97.6%;少量NaOH的加入进一步提高了催化剂的活性,使得甘油的转化率达到82.0%;结合表征结果,我们推测催化剂的活性主要取决于铜颗粒和氧化镁颗粒的大小,铜颗粒和氧化镁颗粒越小,对甘油氢解生成1,2-丙二醇的催化活性就越好。
     通过等体积浸渍、离子交换和共沉淀法原位合成等不同方法制备了不同铜含量的Cu-Mg-Al类水滑石前躯体,然后经过焙烧制得了固体碱负载铜基双功能催化剂。结果表明:共沉淀法原位合成的CU0.4Mg5.6Al2(OH)16CO3类水滑石经过焙烧制得了高分散的Cu/solid-base双功能催化剂(Cu0.4/Mg5.6Al209),并且这种高分散的Cu/solid-base催化剂对甘油氢解生成1,2-丙二醇极其有效,在反应条件180℃,3.0MPaH2,20h,1.0g催化剂,75wt.%甘油水溶液8.0g下,甘油的转化率能够达到80.0%,1,2-丙二醇的选择性为98.2%;结合表征结果,我们认为由于Cu0.4Mg5.6Al2(OH)16CO3具有很好的Mg-Al水滑石的晶体结构,经焙烧还原后铜颗粒高度均匀的分散在了水滑石的层状结构中,高度分散的铜以及水滑石载体的碱性导致了合成的双功能催化剂(Cu0.4/N4g5.6Al2O9)表现出了对甘油氢解生成1,2-丙二醇的良好性能。
     通过浸渍-燃烧法制备了超强碱(复合碱土氧化物)负载的高分散的Cu/MgO/CaO和Cu/MgO/SrO催化剂,并考察了其催化性能。结合XRD、TEM、 N2O-adsorption、N2-adsorption等表征结果,认为浸渍燃烧法可以很好地将CaO和SrO负载在沉淀沉积法制备的Cu/MgO催化剂上,不但很好的保留了前躯体Cu/MgO中高分散的铜,而且增加了催化剂的比表面积和碱性。CO2-TPD和反应活性数据结果表明,由于CaO和SrO的添加,催化剂的碱性大大增强,从而催化剂的活性增强。在负载量10wt.%的Cu/MgO/SrO的催化作用下(160℃,3.0MPa H2,15h,1.0g催化剂,75wt.%甘油水溶液8.0g),甘油的转化率达到88.6%,1,2-丙二醇的选择性为91.0%。各种表征手段结果表明,在铜颗粒变化不大的情况下,载体碱性增强可以促进甘油氢解生成1,2-丙二醇的活性。
     通过复分解反应制备了磷钨酸铜盐,然后经过干燥焙烧制备了磷钨酸负载的氧化铜催化剂,并将其用于甘油催化氢解反应制备丙二醇(乙醇为溶剂)。反应结果表明没有任何加氢产物的生成,反而主要生成了甘油和乙醇的醚化产物,即甘油和乙醇在酸催化剂的作用下生成了单醚化、双醚化和三醚化的产物。继而我们以甘油和乙醇为反应物、考察了固体酸(H-ZSM5, H-Beta,磷钨酸,Si02负载的磷钨酸,FeCl3, AlCl3及硫酸)和固体碱(稀土金属氧化物,MgO)等催化剂上的反应效果。结果表明,固体碱催化剂对这个反应没有任何效果,然而磷钨酸和Si02负载的磷钨酸在所有考评的催化剂中对此反应表现出最好的的催化效果,甘油的转化率达到97.1%。
Propanediols (1,2-propanediol and1,3-propanediol) are valuable final products and also very important chemical intermediates. They are widely used in food, medicine and chemical industry. Recently, large amounts of surplus glycerol were produced in the process of biodiesel production. How to find out new outlets in order to make good use of this surplus glycerol and thereby promoting the development of whole biodiesel production is a serious problem. Hydrogenolysis of glycerol to1,2-PDO is considered as an effective method to make good use of surplus glycerol.
     Different methods to prepare solid base supported metal as a bifunctional catalyst for hydrogenolysis of glycerol to1,2-PDO were tried in this dissertation. The alkalinity of the support, the structure of the catalyst, metal species and their apparent configuration were characterized. The relationship between the activity and the structure of the catalyst were discussed. The main achievements gained as follows:
     Bi-functional catalysts Pt/HZSM5、Pt/HBeta、Pt/Al2O3、Pt/MgO and Pt/HLT(Mg:Al=3:1) were prepared via impregnation. The catalytic performances of these catalysts for hydrogenolysis of glycerol were examined. It was found that Pt/HLT performed the best activity for hydrogenolysis of glycerol among all the catalysts. Under the optimized conditions (220℃,3.0MPaH2,20h,0.5g catalyst,20wt.%glycerol solution,20.0g), the conversion of glycerol reached92.1%, the selectivity of1,2-PDO was93.0%. Characterization results indicated that the alkalinity of the catalyst and the particle size of Pt play a crucial role for this reaction; the alkalinity of support promoted the activity, and smaller Pt particle is more active on basic support than it on acidic support.
     Bi-functional Cu/MgO catalysts with different amounts of Cu were prepared by co-precipitation and impregnation. These results indicate that Cu/MgO prepared by co-precipitation shows better activity than that of Cu/MgO prepared by impregnation; Cu/MgO with copper loading amount15wt.%prepared by co-precipitation showed the best activity among all tesed catalysts, the conversion of glycerol reaches72.0%and the selectivity of1,2-PDO is97.6%; small amounts of NaOH further enhanced the activity of the catalyst. Characterization results indicated that the activity of the the catalyst mainly depends on the particle size of Cu and MgO, smaller particle sizes of Cu and MgO particles are, the more activity of the catalysts are.
     Hydrotalcite precursor as like Cu-Mg-Al with different copper loading amount was prepared by impregnation, ion-exchange and co-precipitation. The prepared precursors were converted into solid base supported copper bi-functional catalyst, and their activity for hydrogenolysis of glycerol was examined. The results indicate that Cu0.4Mg5.6Al2(OH)16CO3prepared by co-precipitation was changed into highly dispersed copper particles supported on solid base (Cu0.4/Mg5.6Al2O9). This highly dispersed Cu/solid-base catalyst was extremely active for glycerol hydrogenolysis. Characterization results indicated that prepared Cu0.4Mg5.6Al2(OH)]6CO3has the characteristic Mg-Al-hydrotalcite structure, after calcination, the copper particles dispersed highly in the lamellar structure of hydrotalcite. Due to the highly dispersed copper particles and alkalinity of hydrotalcite, the synthesized bi-functional catalyst (Cu0.4/Mg5.6Al2O9) shows extremely activity for glycerol hydrogenolysis to1,2-PDO.
     Super solid-base supported copper catalysts Cu/MgO/CaO and Cu/MgO/SrO were prepared via impregnation-combustion method, and the activity was examined. Characterization results indicated that CaO and SrO particles dispersed highly on precursor catalyst Cu/MgO prepared by impregnation-combustion method, and the high dispersion of copper remained. CO2-TPD and reaction results indicate that the alkalinity of the catalyst was enhanced obviously and the activity of catalyst increased. The detected glycerol conversion is88.0%with a93.0%selectivity of1,2-PDO. It was concluded that alkalinity strength of catalyst increased its activity.
     Cu/HPW catalyst was prepared and used for glycerol hydrogenolysis to1,2-PDO (ethanol as the solvent). But it was found that mainly etherification products of glycerol and ethanol were detected. Several solid/aqeous acids (H-ZSM5, H-Beta, HPW, HPW/SiO2, FeCl3, AlCl3and H2SO4) and solid bases (rare earth metal oxides, MgO) were tested for the etherification reaction. It was found that solid bases are inactive for this reaction, whereas HPW and HPW/SiO2exhibited the best activity for this reaction among all the tested catalysts, a97.1%glycerol conversion was obtained. The rection conditions were investigated such as reaction temperature, reation time, the mol ratio of ethanol to glycerol, and catalyst used amount.
引文
[1]闵恩泽.化学进展2006,18(2P3):131-141.
    [2]闵恩泽.绿色化学技术南昌:江西科学技术出版社2001,1-28.
    [3]P. Tundo, P. Anastas, D. StC, B., et al. Synthetic pathways and processes in green chemistry. Pure Appl. Chem.2000,72 (7):1207-1228.
    [4]G. J. Suppes, M. A. Dasari, E. J. Doskocil et al. Transesterification of soybean oil with zeolite and metal catalysts. Annl. Catal. A:Gen.2004,257:213-223.
    [5]李昌珠,蒋丽娟,程树棋.生物柴油-绿色能源.北京:化学工业出版社2005,1-20.
    [6]陈波水,方建华.生物柴油若干应用技术问题及对策.能源工程2008,(3):21-24.
    [7]许赞珍,欧先金,郭妮妮等.生物柴油副产物甘油的高附加值利用.过程工程学报2008,8(4):695-702.
    [8]何延青,吴永强,闻建平.生物柴油生产及其副产物甘油的有效利用.中国油脂2007,32(5):47-51.
    [9]B.H. Hameed, L.F. Lai, L.H. Chin. Production of biodiesel from palm oil (Elaeis guineensis) using heterogeneous catalyst:An optimized process. Fuel Processing Technology.2009, 90:606-610.
    [10]X. Liu, H. He, Y. Wang, et.al. Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel.2008,87:216-221.
    [11]张涨.华新,柏益尧等.中国生物柴油原料供应前景研究.河南科学2008,26(8):987-991.
    [12]孙纯,梁玮.我国生物柴油开发生产现状.新能源2008,28(9):123-125.
    [13]K. Bozbas. Biodiesel as an alternative motor fuel:Production and policies in the European Union. Renewable and Sustainable Energy Reviews.2008,121:542-552.
    [14]L.C. Meher, R. Gopinath, S. N. Naik, et al. Catalytic Hydrogenolysis of Glycerol to Propylene Glycol over Mixed Oxides Derived from a Hydrotalcite-Type Precursor. Industrial&Engineering Chemistry Research.2009,48:1840-1846.
    [15]M. Balaraju, V. Rekha, P.S.S. Prasad, et al. Selective Hydrogenolysis of Glycerol to 1,2-Propanediol Over Cu-ZnO Catalysts. Catalysis letters.2008,126:119-124.
    [16]C. Liang, Z. Ma, L. Ding, et al. Template Preparation of Highly Active and Selective Cu-Cr Catalysts with High Surface Area for Glycerol Hydrogenolysis. Catalysis Letters, 2009,130(1-2):169-176.
    [17]张泅文.国内外生物燃料发展现状及对联动相关产业影响分析.化学工业2007,25(9):5-15.
    [18]沈伟.甘油的生产应用现状及技术开发新进展.广州化工2009,37(6):62-67.
    [19]高荫愉,郭磊,林向阳等.生物柴油副产物甘油与综合利用前景.农产品加工-学刊2007,106:26-29.
    [20]W. H. Zartman, H. Adkins. Hydrogenolysis of Surgars. J. Am. Chem. Soc.1933,55: 4559-4563.
    [21]孙晓东,吕伟峰等.1,3-丙二醇的生产与应用[J]1.化学工程师2004,(3):21-22.
    [22]胡斌,殷元骥.环氧乙烷淡基合成1,3-轻基丙醛和1,3-PDO的方法.中国1299803[P].2001-06-20.
    [23]杨菊群,王幸宜.1,3-丙二醇的合成工艺进展[J]1.化学工业与工程技术2002,23(2):11-151.
    [24]白雪峰.1,3-丙二醇的生产技术[J]1.现代化工2003,23(6):10131.
    [25]郭立群.生物合成1,3-PDO [J] 1.精细与专用化学品2001,24:25-27.
    [26]刘海军,张代佳.微生物发酵法中试生产1,3-PDO[J].现代化工2007,27(2):56-581.
    [27]江琦,李向升,黎钦源等.碳酸丙烯酷和甲醇酷交换制备DMC的研究[J].天然气化工1997,5(22):576-581.
    [28]C.W. Lenth, R.N. Dupuis. Ind. Eng. Chem.1945,37:152-157.
    [29]W.M. Kruse. US 3 935 284,1976.
    [30]B.J. Arena. US 4 380 679,1983.
    [31]Sirkarak. US 4 380 678,1983.
    [32]M. Dubeck, G.G. Knapp. US 4 476 331,1984.
    [33]L.W. Wright. US 3 965 199,1976.
    [34]S.M.Andrew. S.A. AKlaeren. US 5 026 927,1991.
    [35]L. Schuster, W. Hininiele. US 5 210 335,1993.
    [36]B. Casale, L. Marini. EP 0 510 238A1,1992.
    [37]G. Gubitosa, B.Casale. US 5 326 912,1994.
    [38]G. Gubitosa, B.Casale. US 5 354 914,1994.
    [39]G. Gubitosa, B.Casale. US 5 600 028,1997
    [40]S.P. Chopade, D.J. Miller, J.E. Jackson, et al. US 6 291 725B 1,2001.
    [41]C. TM. US 4 642 394,1987.
    [42]B.Casale, A.M. Gomez. US 5 276 181,1994.
    [43]L. Schuster, M. Eggersdorfer. US 5 616 817,1997.
    [44]许赞珍,欧先金,郭妮妮等.生物柴油副产物甘油的高附加值利用.过程工程学报2008,8(4):695-702.
    [45]L. Huang, Y. Zhu. H. Zheng, et al. Direct Conversion of Glycerol into 1,3-Propanediol over Cu-H4SiW12040/SiO2 in Vapor Phase. Catalysis letters.2009,131:312-320.
    [46]T. Kurosaka, H. Maruyama, I. Naribayashi, et al. Production of 1,3-propanediol by hydrogenolysis of glycerol catalyzed by Pt/WO3ZrO2. Catalysis Communications.2008, 9:1360-1363.
    [47]Y. Nakagawa, Y. Shinmi, S. Koso, et al. Direct hydrogenolysis of glycerol into 1,3-propanediol over rhen ium-modified iridium catalyst. Journal of Catalysis.2010,272: 191-194.
    [48]Y. Shinmi, S. Koso, T. Kubota, et al. Modification of Rh/SiO2 catalyst for the hydrogenolysis of glycerol in water. Applied Catalysis B Environmental.2010,94:318-326.
    [49]R.K. Saxena, P. Anand, S. Saran, et al. Microbial production of 1,3-propanediol:Recent developments and emerging opportunities. Biotechnology Advances.2009,27:895-913.
    [50]G. Paulo, D. Silva, M. Mack, J. Contiero. Biotechnology Advances.2009.27:30-39.
    [51]宋如,钱仁渊,李成.甘油新用途研究进展.中国油脂2008,33(5):40-44.
    [52]陈正中,张健丁,张建红.生物柴油副产物甘油的充分利用.中国胶粘剂2007.16(12):52-54.
    [53]R.K. Saxena, P. Anand, S. Saran, et al. Microbial production of 1,3-propanediol:Recent developments and emerging opportunities. Biotechnology Advances.2009,27:895-913.
    [54]殷福珊,木村洋,玛丙欧帕格俐罗等.甘油深加工技术.日用化学品科学2007,31(3):30-35.
    [55]解从霞,于世涛,刘仕伟.生物柴油副产物甘油深加工的研究现状.生物质化学工程2008,42(4):35-42.
    [56]郭翔海,杨晓霞,王日杰等.碳酸丙烯酸醋水解催化剂及工艺条件的研究.石油化工2005,34:425-428.
    [57]M.A. Dasari, P.P. Kiatsimkul, G.J. Suppes, et al. Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl. Catal. A:Gen.2005,281:225-231.
    [58]C. Montassier, J.C. Menezo, L.C. Hoang et al. Aqueous polyol conversions on ruthenium and on sulfur-modified ruthenium. Journal of Molecular Catalysis.1991,70(1):99-110.
    [59]G. Wen, Y. Xu, H. Ma et al. Production of hydrogen by aqueous-phase reforming of glycerol. International Journal of Hydrogen Energy.2008,33(22):6657-6666.
    [60]J. W. Shabaker, G. W. Huber, J. A. Dumesic. Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts. Journal of Catalysis.2003,222(1):180-191.
    [61]G.W. Huber, RDC, J. A. Dumesic. Renewable Alkanes by Aqueous-Phase Reforming of Biomass-Ddrived Oxygenates. Angewandte Chemie-International Edition.2004,43: 1549-1551.
    [62]G.W. Huber, J.W. Shabake, J. A. Dumesic. Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons. Science.2003,300:2075-2078.
    [63]J. Cao. G.D. Xia, A. Platon et al. Low temperature aqueous phase reforming of sorbitol for hydrogen production. Abstract Pap Am Chem Soc.2006,231:216-220.
    [64]N. Luo, X. Fu, F. Cao. Glycerol aqueous phase reforming for hydrogen generation over Pt catalyst-Effect of catalyst composition and reaction conditions. Fuel.1987(12/13): 3483-3489.
    [65]A. Iriondo, V. L. Barrio, J. F. Cambra et al. Influence of La2O3 modified support and Ni and Pt active phases on glycerol steam reforming to produce hydrogen. Catalysis Communications.2009,10(8):1275-1278.
    [66]R.D. Cortight, R.R. Davda, J.A. Dumesic. Hydrogen from catalytic refroming of biomass-derived hydrocarbons in liquid water. Nature.2002,418:965-968.
    [67]A. Iriondo, V. Barrio, J. Cambra et al. Hydrogen Production from Glycerol Over Nickel Catalysts Supported on Al2O3 Modified by Mg, Zr, Ce or La. Topics in Catalysis.2008,49: 46-58.
    [68]T. Miyazawa, Y. Kusunoki, K. Kunimori et al. Glycerol conversion in the aqueous solution under hydrogen over Ru/C+an ion-exchange resin and its reaction mechanism. Journal of Catalysis.2006,240(2):213-221.
    [69]J. Chaminand, L. aurent Djakovitch, P. Gallezot et al. Glycerol hydrogenolysis on heterogenous catalysts. Green Chemistry.2004,6:359-361.
    [70]Y. Kusunoki, T. Miyazawa, K. Kunimori et al. Highly active metal-acid bifunctional catalyst system for hydrogenolysis of glycerol under mild reaction conditions. Catalysis Communications.2005,6(10):645-649.
    [71]M. Schlaf, P. Ghosh, R.M. Bullock, et al. Metal-catalyzed selective deoxygenation of diols to alcohols. Angewandte Chemie-International Edition.2001,40:3887-3890.
    [72]D.G. Lahr, B.H. Shanks. J.Catal.2005,232:386-394.
    [73]D.G. Lahr, B.H. Shanks. Ind. Eng. Chem. Res.2003,42:5467-5472.
    [74]K.Y. Wang, M.C. Hawley, T.D. Furney. Ind. Eng. Chem. Res.1995,34:3766-3770.
    [75]Y.J. Kuo, B.J. Tatarchuk. J.Catal.1988,112:229-249.
    [76]Y.J. Kuo, R.A. Cocco, B.J. Tatarchuk. J.Catal.1988,112:250-266.
    [77]C. Montassier, J.M. Dumas, P. Granger, et al. Appl.Catal.A:Gen.1995,121:231-244.
    [78]T.M. Che, N.J. Westfield. Production of propandiols. US 4642394 1987.
    [79]E. Drent, W.W. Jager. Process and catalysts for the hydrogenolysis of glycerol into 1,3-propanediol and acolein. US 6080898,2000.
    [80]E. Drent, W.W. Jager. Process and catalysts for the hydrogenolysis of glycerol into 1,3-propanedioland acrolein. W09905085,1999.
    [81]E.S. Vasiliadou, E. Heracleous, I.A. Vasalos, A.A. Lemonidou. Ru-based catalysts for glycerol hydrogenolysis—Effect of support and metal precursor. Appl. Catal. B.2009, 92:90-99.
    [82]L. Ma, Y. Li, D. He. Glycerol Hydrogenolysis to Propanediols over Ru-Re/SiO2:Acidity of Catalyst and Role of Re. Chinese Journal of Catalysis.2011,32:872-878.
    [83]Y. Shinmi, S. Koso, T. Kubota, Y. Nakagawa, K. Tomishige. Modification of Rh/SiO2 catalyst for the hydrogenolysis of glycerol in water. Appl. Catal. B.2010,94:318-326.
    [84]I. Gandarias, P.L. Arias, J. Requies, M.B. Guemez, J.L.G. Fierro. Hydrogenolysis of glycerol to propanediols over a Pt/ASA catalyst:The role of acid and metal sites on product selectivity and the reaction mechanism. Appl. Catal. B.2010,97:248-256.
    [85]Y. Nakagawa, Y. Shinmi, S. Koso, K. Tomishige. Direct hydrogenolysis of glycerol into 1,3-propanediol over rhenium-modified iridium catalyst. J. Catal.2010,272:191-194.
    [86]M. Balaraju, V. Rekha, B.L.A. Prabhavathi Devi, R.B.N. Prasad, P.S. Sai Prasad, N. Lingaiah. Surface and structural properties of titania-supported Ru catalysts for hydrogenolysis of glycerol. Appl. Catal. A.2010,384:107-114.
    [87]L. Gong, Y. Lu, Y. Ding, R. Lin, J. Li, W. Dong, T. Wang, W. Chen. Selective hydrogenolysis of glycerol to 1,3-propanediol over a Pt/WO3/TiIO2/SiO2 catalyst in aqueous media. Appl. Catal. A.2010,390:119-126.
    [88]C. L. Lautenschalger, M. Bockmuhl, G. Ehrhart et al. Verfahren zur hydrierung von polyxyverbindungen. DE 541362,1931.
    [89]A. T. Werpy, J. Frye, G. J. et al. Hydrogenolysis of 6-carbon sugars and other organic compounds, US 6841085,2005.
    [90]G. Centi, A. Santen. Catalysis for renewables. Weinheim:Wiley-VCH 2007.
    [91]A. Perosa, P. Tundo. Selective Hydrogenolysis of Glycerol with Raney Nickel. Industrial&EngineeringChemistryResearch.2005,44(23):8535-8537.
    [92]W. Yu, J. Zhao, H. Ma, H. Miao, Q. Song, J. Xu. Aqueous hydrogenolysis of glycerol over Ni-Ce/AC catalyst:Promoting effect of Ce on catalytic performance. Appl. Catal. A.2010, 383:73-78.
    [93]S.D. Otto. Verfahren zur ueberfuehrung von hoeherwertigen alkoholen in niedrigerwertige [P]. DE 524101,1931.
    [94]R. Connor, K. Folkers, H. Adkins. The preparation of copper-chromium oxide catalysts for Hydrogenation [J]. Journal of the American Chemical Society.1932,54:1138-1145.
    [95]T. Fleckenstein, G. Gerd, C. Franz-Josef. Preparation of propylene glycol from re-generable fossil fuel sources [P]. DE 4302464,1994.
    [96]G.J. Suppes, W R. Sutterlin, M.A. Dasari. Method of producing lower alcohols from glycerol. International Publication [P]. WO 2005095536,2005.
    [97]C. Montassier, D. Giraud, J. Barbier. Polyol conversion by liquid phase catalysis over metals [J], Heterogeneous Catalysis and Fine Chemicals.1988,41:165-170.
    [98]B. Casale, A.M. Gomez. US 5 214 219,1993.
    [99]陈长林,徐南平,杜智群,李迎宾,甘油催化加氢连续制备1,2—丙二醇的方法[P].CN101012149A,2007.
    [100]M. Balaraju, V. Rekha, P. S. Prasad et al. Selective Hydrogenolysis of Glycerol to 1,2-Propanediol Over Cu-ZnO Catalysts. Catalysis Letters.2008,126(1):119-124.
    [101]Z. Huang, F. Cui, H. Kang et al. Highly Dispersed Silica-Supported Copper Nanoparticles Prepared by Precipitation-Gel Method:A Simple but Efficient and Stable Catalyst for Glycerol Hydrogenolysis. Chemistry of Materials.2008,20:5090-5099.
    [102]S.A. Wang, H.C. Liu, Catalysis Letters.2007,117:62-67.
    [103]Z.W. Huang, F. Cui, H.X. Kang, J. Chen, X.Z. Zhang, C.G. Xia. Highly dispersed silica-supported copper nanoparticles prepared by precipitation-gel method:a Simple but efficient and stable catalyst for glycerol hydrogenolysis [J]. Chemistry of Materials.2008,20: 5090-5099.
    [104]E.P. Maris, R.J. Davis. Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalvsts. Journal of Catalvsis.2007,249:328-337.
    [105]E.P. Maris, W.C. Ketchie, M. Murayama et al. Glycerol hydrogenolysis on carbon-supported PtRu and AuRu bimetallic catalysts. Journal of Catalysis.2007,251 (2):281-294.
    [106]J. Feng, J. Wang, Y. Zhou et al. Effect of base additives on the selective hydrogenolysis of glycerol over Ru/TiO2 catalyst. Chemistry Letters.2007,36:1274-1275.
    [107]X. Guo, Y. Li, R. Shi, Q. Liu, E. Zhan, W. Shen. Co/MgO catalysts for hydrogenolysis of glycerol to 1,2-propanediol. Appl. Catal. A.2009,371:108-113.
    [108]B.M. Choudary, M.L. Kantam, P.L. Santhi. New and ecofriendly options for the production of speciality and fine chemicals[J]. Catal Today.2000,57:17-32.
    [109]解革,朱建华,淳远等.微波法研制CaO/NaY强碱性沸石催化新材料[1].催化学报2001,22(5):445-448.
    [110]D. Brunel. Functionalized micelle-templated silicas (MTS) and their use as catalysts for fine chemicals [J]. Microporous and Mesoporous Material.1999,27:329-344.
    [111]李向召,江琦.固体碱催化剂研究进展.天然气化工2005,30:42-49.
    [112]朱洪法.催化剂载体制备及应用技术[M].北京:石油工业出版社2002.
    [113]H. Hattori. Solid base catalysts:generation of basic sites and application to organic synthesis[J]. Appl Catal A:General.2001,222(1/2):247-259.
    [114]H. Hattori. Heterogeneous basic catalysis [J]. Chem Rev.1995,95 (3):537-558.
    [115]G. Zhang, H. Hattori, K. Tanabe. Aldol addition of acetone, catalyzed by solid base catalysts: magnesiumoxide, calcium oxide, strontium oxide, barium oxide, lanthanum(Ⅲ)oxide and zirconium oxide[J]. Appl Catal.1988,36(1/2):189-197.
    [116]K. Akutu, H. Kabashirna, T. Seki et al. Nitroaldol reaction over solid base catalysts [J]. Appl Catal A:General.2003,247(1):65-74.
    [117]赵雷洪,郑小明,费金华.稀土氧化物固体碱催化剂的表面性质[J].催化学报1996,17(3):227-231.
    [118]田部浩三,御园生诚,小野嘉夫等.新固体酸和碱及其催化作用[M].北京:化学工业出版社1992.
    [119]陈忠明,陶克毅.固体碱催化剂的研究进展[J].化工进展1994(2):18-25.
    [120]H. zhang, R. QI, D.G. Evans, et al. Synthesis and characterization of a novel nano-scale magnetic solid base catalyst involving a layered double hydroxide supported on a ferrite core [J]. Journal of Solid State Chemistry.2004,177:772-780.
    {121] S.E. Lee, J.S. Kim, I.R. Kennedy, et al. Biotransformation of an organochlorine insecticide, endosulfan by anabaena species [J]. J Agric Food Chem.2003,51(5):1336-1340.
    [122]M. Park, C.I. Lee, E.J. Lee, et al. Layered double hydroxides as potential solid base for beneficial remediation of endosulfan-contaminated soils [J]. Journal of Physics and Chemistry of Solids.2004,65:513-516.
    [123]F. Cavani, F. Trifiro, A. Vaccari. Hydrotalcite-type anion is clays:preparation, properties and applications [J]. Catal Today.1991,11 (2):173-301.
    [124]M.J. Climent, A. Corma, S. Iborra, et al. Activated hydrotalcites as catalysts for the synthesis of chalcones of pharmaceutical interest [J]. J Catal.2004,221(2):474-482.
    [125]M.J. Climent, A. Corma, S. Iborra, et al. Base catalysis for fine chemicals production: Claisen-Schmidt condensationon zeolites and hydrotalcites for the production of chalcones and flavanones of pharmaceutical interest [J]. J Catal.1995,151(1):60-66.
    [126]H. Caldararu, A. Caragheorgheopol, A. Corma, et al. One eletron donor sites and their strength distribution on some hydrotalcite and MgO surfaces as studied by EPR spectroscopy [J]. J Chem Soc Faraday Traps.1994,90 (1):213-218.
    [127]A. Corma, V. Fornes, F. Rey. Hydrotalcites as base catalysts:influence of the chemical composition and synthesis conditions on the dehydrogenation of isopropanol [J]. J Catal. 1994,148(1):205-212.
    [128]J. Weitkamp, M. Hunger, U. Rymsa. Base catalysis on microporous and mesoporous materials:recent progress and perspectives [J]. Microporous and Mesoporous Materials.2001, 48:255-270.
    [129]徐景士,王红明,吴志明等.微波法制备的固体碱催化丁醛自缩合反应[J].精细化工2002,19(11):644-646.
    [130]王英,朱建华,淳远等.氧化错负载含氧酸钾盐研制固体超强碱[J].石油学报(石油加工)2000,16(1):1-6.
    [131]J.H. Zhu, Y. Wang, Y. Chun, et al. Dispersion of potassium nitrate and the resulting basicity on alumina and zeolite NaY[J]. J Chem Soc Faraday Trans.1998,94 (8):1163-1169.
    [132]朱月香,庄伟,江德恩等.碱土金属化合物在氧化锆上的分散与碱性[J].催化学报2000,21(1):52-54.
    [133]D. Jiang, G. Pan, B. Zhao et al. Preparation of ZrO2 supported MgO with high surface area and its use in mercaptan oxidation of jet fuel[J]. Appl Catal A:General.2000, 201(2):169-176.
    [134]E. Ruckenstein, A.Z. Khan. Effects of superbasic catalysts prepared by promoting MgO with bialkali metal compounds on the oxidative coupling of methane [J]. J Catal.1993,141(2): 628-647.
    [135]J. Runeberg, A. Baiker, J. Kijenski. Appl.Catal.1985,17:309-319.
    [136]S.C. Montas, D. Giraud, J. Barbier. Stud. Surf.Sci.Catal.1988,41:165-170.
    [137]M. Pagliaro, R. Ciriminna, H. Kimura, M. Rossi, C.D. Pina. From Glycerol to Value-Added Products, Angew Chem Int Ed.2007,46:4434-4440.
    [138]A. Behr, J. Eilting, K. Irawadi, J.L. Leschinski, F. Lindner. Improved utilisation of renewable resources:New important derivatives of glycerol, Green Chem.2008,10:13-30.
    [139]C.W. Chiu, M.A. Dasari, W.R. Sutterlin, G.J. Suppes. Removal of Residual Catalyst from Simulated Biodiesel's Crude Glycerol for Glycerol Hydrogenolysis to Propylene Glycol, Ind Eng Chem Res.2006,45:791-795.
    [140]I. Furikado, T. Miyazawa, S. Koso, A. Shimao, K. Kunimori, K. Tomishige. Catalytic performance of Rh/SiO2 in glycerol reaction under hydrogen, Green Chem.2007,9:582-588.
    [141]E.P. Maris, R.J. Davis. Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts, J Catal.2007,249:328-337.
    [142]E.P. Maris, W.C. Ketchie, M. Murayam, R.J. Davis. Glycerol hydrogenolysis on carbon-supported PtRu and AuRu bimetallic catalysts, J Catal.2007,251:281-294.
    [143]Z. Yuan, P. Wu, J. Gao, X. Lu, Z, Hou, X. Zheng. Pt/solid-base:a predominant catalyst for glycerol hydrogenolysis in a base-free aqueous solution, Catal. Lett.2009,130:261-265..
    [144]L.Y. Guo, J.X. Zhou, J.B. Mao, X.W. Guo, S.G. Zhang. Supported Cu catalysts for the selective hydrogenolysis of glycerol to propanediols, Appl. Catal. A.2009,367:93-98.
    [145]D.G. Lahr, B.H. Shanks. Kinetic analysis of the hydrogenolysis of lower polyhydric alcohols: glycerol to glycols. Ind. Eng. Chem. Res.2003,42:5467-5472.
    [146]J.A. Anderson, C. Marquez-Alvarez, M.J. Lopez-Munoz, I. Rodriguez-Ramos, A. Guerrero-Ruiz. Reduction of NOx in C3H6/air mixtures over Cu/Al2O3 catalysts, Appl.Catal.B 1997,14:189-202.
    [147]P. Carniti, A. Gervasini, V. Modica, N. Ravasio. Catalytic selective reduction of NO with ethylene over a series of copper catalysts on amorphous silicas, Appl. Catal. B 2000,28: 175-185.
    [148]Y.W. Suh, S.H. Moon, H.K. Rhee. Active sites in Cu/ZnO/ZrO2 catalysts formethanol synthesis from CO/H2, Appl. Catal. B 2000,63:447-452.
    [149]H. Kobayashi, N. Takezawa, C. Minochi. Methanol-reforming reaction over copper-containing catalysts-The effects of anions and copper loading in the preparation of the catalysts by kneading method, J. Catal.1981,69:487-494.
    [150]P.H. Matter, D.J. Braden, U.S. Ozkan. Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts, J. Catal.2004,223:340-351.
    [151]B.L. Kniep, F. Girgsdies, T. Ressler. Effect of precipitate aging on the microstructural characteristics of Cu/ZnO catalysts for methanol steam reforming, J. Catal.2005,236:34-44.
    [152]V.Z. Fridman, A.A. Davydov. Dehydrogenation of Cyclohexanol on Copper-Containing Catalysts:Ⅰ. The Influence of the Oxidation State of Copper on the Activity of Copper Sites, J.Catal.2000,195:20-30.
    [153]K.V.R. Chary, G.V. Sagar, D. Naresh, K.K. Seela, B. Sridhar. Characterization and Reactivity of Copper Oxide Catalysts Supported on TiO2-ZrO2, J. Phys. Chem. B.2005,109: 9437-9444.
    [154]J.H. Fei, Z.Y. Hou, B. Zhu, H. Lou, X.M. Zheng. Synthesis of dimethyl ether (DME) on modified HY zeolite and modified HY zeolite-supported Cu-Mn-Zn catalysts, Appl. Catal. A. 2006,304:49-54.
    [155]D.F. Jin, B. Zhu, Z.Y. Hou, J.H. Fei, H. Lou, X.M. Zheng. Dimethyl ether synthesis via methanol and syngas over rare earth metals modified zeolite Y and dual Cu-Mn-Zn catalysts, Fuel.2007,86:2707-2713.
    [156]F.T. Scheur, B. Linden, M.C. Mittelmeijer-Hazeleger, J.G. Nazloomian, L.H. Staat. Structure-activity relation and ethane formation in the hydrogenolysis of methyl acetate on silicasupported copper catalysts. Appl. Catal. A.1994,111:63-77.
    [157]L. Obalova, K. Karaskova, K. Jiratova, F. Kovanda. Effect of potassium in calcined Co-Mn-Al layered double hydroxide on the catalytic decomposition of N2O, Appl. Catal. B. 2009,90:132-140.
    [158]G. Carja, G. Delahay. Catalytic combustion of hydrogen for mitigating hydrogen risk in case of a severe accident in a nuclear power plant:study of catalysts poisoning in a representative atmosphere, Appl. Catal. B.2004,47:46-59.
    [159]S. Bennici, A. Gervasini. Catalytic activity of dispersed CuO phases towards nitrogen oxides (N2O, NO, and NO2), Appl. Catal. B.2006,62:336-344.
    [160]P.W. Park, J.S. Ledford. The influence of surface structure on the catalytic activity of cerium promoted copper oxide catalysts on alumina:oxidation of carbon monoxide and methane, Catal. Lett.1998,50:41-48.
    [161]X. Tang, B. Zhang, Y. Li, Y. Xu, Q. Xin, W. Shen. CuO/CeO2 catalysts:Redox features and catalytic behaviors, Appl. Catal. A.2005,288:116-125.
    [162]Z. Wang, Q. Liu, J. Yu, T. Wu, G. Wang. Surface structure and catalytic behavior of silica-supported copper catalysts prepared by impregnation and sol-gel methods, Appl. Catal. A 2003,239:87-94.
    [163]J.L. Shumaker, C. Crofcheck, S.A. Tackett, E. Santillan-Jimenez, T. Morgan, Y.Y. Ji, M. Crocker, T.J. Toops. Biodiesel synthesis using calcined layered double hydroxide catalysts, Appl. Catal. B 2008,82:120-130.
    [164]E. Li, Z.P. Xu, V. Rudolph. MgCoAl-LDH derived heterogeneous catalysts for the ethanol transesterification of canola oil to biodiesel, Appl. Catal. B.2009,88:42-49.
    [165]Q. Li, M. Meng, N. Tsubaki, X.G. Li, Z.Q. Li, Y.N. Xie, T.D. Hu, J. Zhang. Performance of K-promoted hydrotalcite-derived CoMgAlO catalysts used for soot combustion NO* storage and simultaneous soot-NOx removal, Appl. Catal. B.2009,91:406-415.
    [166]J.S. Valente, F. Tzompantzi, J. Prince, J.G.H. Cortez, R. Gomez. Adsorption and photocatalytic degradation of phenol and 2,4-dichlorophenoxiacetic acid by Mg-Zn-Al layered double hydroxides, Appl. Catal. B.2009,90:330-338.
    [167]K.K. Rao, M. Gravelle, J.-S. Valente, F. Figueras. Activation of Mg-Al Hydrotalcite Catalyst for Aldol Condensation Reactions, J. Catal.1998,173:115-121.
    [168]B.M. Choudary, M.L. Kantam, A. Rahman, V.C. Reddy, K.K. Rao. The First Example of Activation of Molecular Oxygen by Nickel in Ni-Al Hydrotalcite:A Novel Protocol for the Selective Oxidation of Alcohols, Angew. Chem. Int. Ed.2001,40:763-766.
    [169]D. Tichit, B. Cop. CATTECH 7.2003,206-217.
    [170]S. Narayanan, K. Krishna. Hydrotalcite-supported palladium catalysts:Part II. Preparation, characterization of hydrotalcites and palladium hydrotalcites for CO chemisorption and phenol hydrogenation, Appl. Catal. A.2000,198:13-21.
    [171]R. Kalouskova, M. Novotna, Z. Vymazal. Investigation of thermal stabilization of poly (vinyl chloride) by lead stearate and its combination with synthetic hydrotalcite, Polym. Degrad. Stab.2004,85:903-909.
    [172]F. Cavani, F. Trifiro, A. Vaccari, Hydrotalcite-type anionic clays:Preparation, properties and applications, Catal. Today.1991.11:173-301.
    [173]P.S. Braterman, Z.P. Xu, F. Yarberry, M. Dekker. Handbook of Layered Materials, Marcel Dekker, New York,2004, p.373.
    [174]Z. Yuan, J. Wang, L. Wang, W. Xie, P. Chen, Z. Hou, X. Zheng. Biodiesel derived glycerol
    hydrogenolysis to 1,2-propanediol on Cu/MgO catalysts, Bioresour. Technol.2010,101: 7088-7092.
    [175]S. Kannan, A. Dubey, H. Knozinger. Synthesis and characterization of CuMgAl ternary hydrotalcites as catalysts for the hydroxylation of phenol, J. Catal.2005,231:381-392.
    [176]I. Cruz, N. Ribeiro, D. Aranda, M. Souza. Hydrogen production by aqueous-phase reforming of ethanol over nickel catalysts prepared from hydrotalcite precursors, Catal. Commun.2008,9:2606-2611.
    [177]F.M. Labajos, V. Rives, M.A. Ulibarri. Effect of hydrothermal and thermal treatments on the physicochemical properties of Mg-Al hydrotalcite-like materials, J. Mater. Sci.1992,27: 1546-1552.
    [178]S. Miyata. Physico-Chemical Properties Of Synthetic Hydrotalcites In Relation To Composition. Clays Clay Miner.28 (1980) 50-56.
    [179]J. Zhang, Y.F. Xu, G. Qian, Z.P. Xu, C. Chen, Q. Liu. Reinvestigation of Dehydration and Dehydroxylation of Hydrotalcite-like Compounds through Combined TG-DTA-MS Analyses, J. Phys. Chem. C.2010,114:10768-10774.
    [180]S. Kannan, A. Dubey, H. Knozinger. Synthesis and characterization of CuMgAl ternary hydrotalcites as catalysts for the hydroxylation of phenol, J. Catal.2005,231:381-392.
    [181]C.J.G. Van Der Grift, A.F.H. Wielers, B.P.J. Jogh, J. Van Beunum, M. De Boer, M. Versluijs-Helder, J.W. Geus. Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles, J. Catal.1991,131:178-189.
    [182]S. Wang, H. Liu. Selective hydrogenolysis of glycerol to propylene glycol on Cu-ZnO catalysts, Catal. Lett.2007,117:62-67.
    [183]T. Miyazawa, S. Koso, K. Kunimori, K. Tomishige. Glycerol hydrogenolysis to 1,2-propanediol catalyzed by a heat-resistant ion-exchange resin combined with Ru/C, Appl. Catal. A.2007,329:30-35.
    [184]I. Gandarias, P.L. Arias, J. Requies, M.B. Guemez, J.L.G. Fierro. Hydrogenolysis of glycerol to propanediols over a Pt/ASA catalyst:The role of acid and metal sites on product selectivity and the reaction mechanism, Appl. Catal. B.2010,97:248-256.
    [185]F. Ma, M.A. Hanna. Biodiesel production:a review, Bioresour, Technol.1999,70:1-15.
    [186]Y. Duan, Y. Xiang, D. Xia. Removal of hydrogen sulfide from light oil with solid base, Fuel Process. Technol.2004,86:237-244.
    [187]K. Masato, T. Michito, Y. Shinya, H. Jusuke. Solid base catalysis of calcium oxide for a reaction to convert vegetable oil into biodiesel. Adv. Powder Technol.2010,21:488-494.
    [188]F. King, G.J. Kelly. Combined solid base/hydrogenation catalysts for industrial condensation reactions, Catal. Today.2002,73:75-81.
    [189]H. Kabashima, T. Hideto, H. Hattori. Michael addition of methyl crotonate over solid base catalysts, Appl. Catal. A.1997,165:319-325.
    [190]Z. Yuan, L. Wang, J. Wang, S. Xia, P. Chen, Z. Hou, X. Zheng. Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts, Appl. Catal. B.2011,101: 431-440.
    [191]Z. Huang, F. Cui, H. Kang, J. Chen, X. Zhang, C. Xia. Highly Dispersed Silica-Supported Copper Nanoparticles Prepared by Precipitation-Gel Method:A Simple but Efficient and Stable Catalyst for Glycerol Hydrogenolysis, Chem. Mater.2008,20:5090-5099.
    [192]Z. Huang, F. Cui, H. Kang, J. Chen, X. Zhang, C. Xia. Characterization and catalytic properties of the CuO/SiO2 catalysts prepared by precipitation-gel method in the hydrogenolysis of glycerol to 1,2-propanediol:Effect of residual sodium. Appl. Catal. A 2009, 366:288-298.
    [193]M. Balaraju, V. Rekha, P.S. Sai Prasad, B.L.A. Prabhavathi Devi, R.B.N. Prasad, N. Lingaiah. Influence of solid acids as co-catalysts on glycerol hydrogenolysis to propylene glycol over Ru/C catalysts. Appl. Catal. A.2009,354:82-87.
    [194]H. Hibbert, J. A. Timm. Studies On The Reactions Relation To Carbohydrates And Polysaccharides X. Synthesis And Relative Stability Of Cyclic Acetals From 1,2-And 1,3-Glycols,J.Am. Chem. Soc.1924,46:1283-1290.
    [195]Y. Gu, A. Azzouzi, Y. Pouilloux, F. Jerome, J. Barrault. Heterogeneously catalyzed etherification of glycerol:new pathways for transformation of glycerol to more valuable chemicals, Green Chem.2008,10:164-167.
    [196]J. C. Ball, M. A. Gonzalez, C. Lapin, E. Liney. SAE Tech. Pap. Ser.2001,1:3627-3630.
    [197]E. B. Hallgren, J. B. Heywood. SAE Tech. Pap. Ser.2001,1:648-653.
    [198]X. Lu, J. Yang, W. Zhang, Z. Huang. Improving the Combustion and Emissions of Direct Injection Compression Ignition Engines Using Oxygenated Fuel Additives Combined with a Cetane Number Improver, Energy Fuels.2005,19:1879-1888.
    [199]W. Chalmers, A. C. Wood, A. J. Shaw, J. J. Majnarich, U.S.Patent 3,294,639,1966.
    [200]M. P. Haynes, H. R. Buckley, M. L. Higgins, R. A. Pieringer. Synergism between the antifungal agents amphotericin B and alkyl glycerol ethers, Antimicrob. Agents Chemother. 1994,38:1523-1529.
    [201]S. Pariente, N. Tanchoux, F. Fajula. Etherification of glycerol with ethanol over solid acid catalysts, Green Chem.2009,11:1256-1261.
    [202]M. Hajek, F. Skopal. Treatment of glycerol phase formed by biodiesel production, Bioresour. Technol.2010,101:3242-3245.
    [203]F. Frusteri, F. Arena, G. Bonura, C. Cannilla, L. Spadaro, O. Di Blasi. Catalytic etherification of glycerol by tert-butyl alcohol to produce oxygenated additives for diesel fuel, Appl. Catal., A.2009,367:77-83.
    [204]D. Jin, Z. Hou, Y. Luo, X. Zheng. Synthesis of dimethyldiphenylmethane over supported 12-tungstophosphoric acid (H3PW12O40), J. Mol. Catal. A:Chem.2006,243:233-238.
    [205]D. Srinivas, P. Ratnasamy, L. Saikia. WO Patent 2009113079 A1,2009.
    [206]N. Essayem, R. Lopes de Souza, B. Hamad, G. Sapaly, P. Priesde Oliveira, W. Gonzalez. WO Patent 2930779 A1,2009.
    [207]Da Silva, C. R. B.; Goncalves, V. L. C.; Lachter, E. R.; Mota, C. J. A. J. Braz. Chem. Soc. 2009,20,201-204.
    [208]N. Ozbay, N. Oktar, G. Dogu, T. Dogu. Int. J. Chem. React. Eng.2010,8, A18.
    [209]Z. Hou, T. Okuhara. Catalytic synthesis of diphenylmethane from benzene and formalin with water-tolerant solid acids, Appl. Catal., A 2001,216:147-155.
    [210]O. I. Gordiyenko, T. P. Linnik, E. O. Gordiyenko. Erythrocyte membrane permeability for a series of diols, Bioelectrochemistry.2004,62:115-118.
    [211]D. Jin, Z. Hou, L. Zhang, X. Zheng. Selective synthesis of para-para'-dimethyldiphenylmethane over H-beta zeolite, Catal. Today.2008,131: 378-384.
    [212]Z. Hou, T. Okuhara. Condensation of benzene and aqueous formaldehyde to diphenylmethane in a biphasic system consisting of an aqueous phase of heteropolyacid, J. Mol. Catal. A:Chem.2003,206:121-130.