烟曲霉胞外聚合物与水中重金属Cu~(2+)Cd~(2+)和Pb~(2+)的相互作用及机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胞外聚合物(Extacellular Polymeric Substances, EPS)是一定环境条件下由细菌、真菌、藻类细胞分泌的高分子聚合物,对重金属具有良好的吸附效果。研究证明真菌菌体对重金属具有良好的吸附性,真菌易得易培养,可作为良好的生物吸附材料。细胞壁是生物吸附过程中金属离子的主要富集场所,真菌细胞壁上的附着物质,主要为胞外聚合物,占总附着物质含量的75%左右。一直以来,人们的研究主要集中在活性污泥EPS及细菌EPS方面,而较少涉及真菌EPS。但不同来源的EPS具有不同的结构和组分,其对重金属的吸附能力和作用机理不同。为此,本文以课题组筛选的烟曲霉菌株为研究对象,研究了不同提取方法对烟曲霉EPS组分的影响规律,分析了其主要成分及含量,采用极谱法测定其络合容量、结合位点数和条件稳定常数;通过批式实验确定了其吸附重金属(Cu~(2+)、Cd~(2+))的影响因素及最佳吸附条件,并考察了解吸性能。同时,利用红外光谱、X射线能量散射光谱探讨了EPS吸附去除金属离子Cu~(2+)、Cd~(2+)的过程机理。
     通过比较分析H_2SO_4法、NaOH法、EDTA法和离子交换法(CER法)提取EPS的成分得出离子交换法提取的烟曲霉EPS多糖含量较高,对细胞破坏程度较小。确定了优化的CER法提取烟曲霉EPS的条件为:树脂投加量为70g g~(-1)、振荡速度为200r min~(-1)、振荡时间2h、液相pH6-8。提取的烟曲霉EPS用截留分子量为3500Da的透析袋透析纯化,纯化后EPS中多糖、蛋白质、核酸和脂类的含量分别为392±8、17.6±2、18.3±2、25.7±2.8mg g~(-1)DWEPS。
     用微分脉冲极谱DPP(Differential Pulse Polarography)法得到了不同pH下Cu~(2+)、Cd~(2+)和Pb~(2+)的滴定曲线。结果表明在pH值4.0-7.0范围内烟曲霉EPS结合Cu~(2+)和Cd2离子能力随着pH值的增加而增加,Pb~(2+)在pH6.0和7.0时与EPS反应产生白色凝胶状沉淀物。EPS对不同金属离子的结合能力也有差异,EPS对Cu~(2+)、Cd~(2+)和Pb~(2+)结合能力排序为Cu~(2+)>Pb~(2+)> Cd~(2+)。并用Ruzic方法对Cu~(2+)、Cd~(2+)和Pb~(2+)的滴定曲线进行拟合,得到m/(CM-m)对m的Ruzic拟合曲线,拟合的结果与DPP法是一致的。
     以提纯的烟曲霉EPS为吸附剂,考察了pH值、EPS投加量、吸附时间、温度、盐度及共存离子等对EPS吸附水中Cu~(2+)、Cd~(2+)的影响规律、热力学及动力学吸附特征,结果表明,pH值、EPS浓度、金属离子的初始浓度、NaCl浓度及共存离子对EPS吸附Cu~(2+)、Cd~(2+)有明显影响。在pH7.0、温度25℃、Cu~(2+)和Cd~(2+)初始浓度5mg L~(-1)和7mg L~(-1), EPS投加量为135mg L~(-1)时,Cu~(2+)和Cd~(2+)的吸附去除率分别为90.6%和96.7%。EPS对Cu~(2+)、Cd~(2+)的吸附过程均可分为快速吸附--慢速吸附--吸附平衡三个阶段,达到吸附平衡的时间为3h,Freundlich和Langmuir吸附模型均能较好地拟合烟曲霉EPS对Cu~(2+)和Cd~(2+)的等温吸附实验数据,由Langmuir吸附模型得到的EPS对Cu~(2+)和Cd~(2+)的的最大吸附容量分别为40mg g~(-1)和85.5mg g~(-1)。Freundlich常数n值分别为4.04和3.59。烟曲霉EPS对Cu~(2+)、Cd~(2+)的吸附为一个吸热的自发过程。烟曲霉EPS的吸附动力学符合拟二级动力学模型。
     探讨了烟曲霉EPS中Cu~(2+)、Cd~(2+)的解吸性能。结果表明,pH对解吸烟曲霉EPS上的Cu~(2+)、Cd~(2+)的影响非常明显。随着pH的降低解吸率升高,最大解吸率都超过90%,确定解吸的最佳pH为1.0。而NaCl对解吸烟曲霉EPS上的Cu~(2+)、Cd~(2+)的效果不佳,NaCl浓度达到2.0mM时,Cu~(2+)和Cd~(2+)的解吸率分别只达到50.3%和53.8%。
     红外光谱(FTIR)分析表明,烟曲霉EPS吸附Cu~(2+)、Cd~(2+)过程中多聚糖中的羟基、羧基和C-O-C等是起作用的主要官能团。X射线能量散射光谱(EDX)分析表明EPS主要元素包括C和O,还含有P、S、K、Ca、Mg、Al和Na等元素,当EPS与Cu~(2+)离子作用后,EPS中Ca、Mg元素峰消失;与Cd~(2+)作用后,EPS中Ca元素峰明显减弱,Mg元素峰消失。同时分别在8keV和3.1keV处出现了Cu、Cd元素峰,在吸附过程中Ca、Mg被Cd~(2+)、Cu~(2+)交换下来,说明离子交换是EPS吸附Cd~(2+)、Cu~(2+)的机理之一。烟曲霉EPS与金属离子相互作用的机理还包括络合作用和静电作用,是几种机理共同作用的结果,而以络合作用为主。
Extacellular polymeric substances (EPS), produced by many microorganisms, such asalgae, bacteria, and fungi, play a crucial role in the biosorption of heavy metals. A number ofstudies showed that fungi were very effective for heavy metal adsorption. Moreover, fungican be easily cultured and obtained from a number of industrial by-products. Heavy metalsare accumulated mainly in cell wall in the process of biosrption. About75%of thecomponents of fungi cell wall are EPS. In recent years, some researchers have focused onEPS extracted from activated sludge and pure bacterial strains and investigated differentcombinations of metal ions, microorganisms and experimental conditions. But the biosorptionproperties of EPS from fungi remain less explored. The components of EPS are differentfrom microorganisms and results in different biosorption capacity and mechanism. In thepresent study, Aspergillus fumigatus, an isolated fungus in our lab, was used for EPSextraction. This study aims to investigate the sorption behaviour of the EPS for Cu~(2+)and Cd~(2+)in aqueous solutions. The equilibrium isotherms and the effect of various factors, such as pHand initial metal concentration, on binding of these metals were studied. The presence offunctional groups in the EPS which may play a role in sorption process was confirmed byFTIR. And EDX analysis was used for further confirmation of the mechanism of the sorptionof heavy metals by the EPS.
     The efficacies of extracting EPS from Aspergillus fumigatus using H2SO4, NaOH, EDTAand CER (cation exchange resin) under various conditions were compared. Results showedthat CER was most effective in extracting EPS from Aspergillus fumigatus. The content ofpolysaccharide in EPS extracted by CER was very high. While, nucleic acids were very low,suggesting the EPS extracted were not contaminated by intracellular substances. So, CERwas chosen as extracting reagent and the optimal conditions were as follows: CER dosage70g g~(-1), oscillating speed200r min~(-1), extracting time2h and pH6-8. The contents of thecarbohydrate, protein nucleic acid and lipids in EPS were392±8、17.6±2、18.3±2、25.7±2.8mg g~(-1)DWEPS, respectively.
     Biosorption of Cu~(2+), Cd~(2+)and Pb~(2+)of EPS was investigated as a function of pH usingdifferential pulse polarography (DPP) and the Ruzic model. Results showed that the EPSbiosorption capacity determined using either the direct titration curves i=f (CM) or the methodproposed by Ruzic were coincident. Cu~(2+)had the highest affinity with EPS followed by Pb~(2+)and Cd~(2+). The total number of binding sites for Cu~(2+)and Cd~(2+)increased with pH in the range of4.0-7.0. Similar trend was observed for Pb~(2+)at pH4.0-5.0, while precipitates wereobserved at pH6.0and7.0.
     Sorption of Cu~(2+)and Cd~(2+)onto the extracellular polymeric substances (EPS) producedby Aspergillus fumigatus was investigated for the initial pH of the solution, EPSconcentrations, contact time, NaCl concentration, initial metal ion concentration and thepresence of other ions in the solution. The results showed that the adsorption of metal ionswas significantly affected by pH, EPS concentrations, initial metal concentration, NaClconcentration and co-ions. When pH was7.0, temperature was25℃, the initial Cu~(2+)andCd~(2+)concentration was5mg L~(-1)and7mg L~(-1), EPS dosage was135mg L~(-1), the removalefficiency of Cu~(2+)and Cd~(2+)reached90.6%and96.7%, respectively. The sorption processesof Cu~(2+)and Cd~(2+)with EPS both have two steps: fast sorption and slow sorption, sorptionequilibrium time was about3hours. Both the Langmuir and Freundlich adsorption modelscould describe the thermodynamic sorption processes of Cu~(2+)and Cd~(2+). The maximumsorption capacities of A. fumigatus EPS were40mg g~(-1)EPS and85.5mg g~(-1)EPS. Values of ncalculated from the Freundlich model were4.04and3.59for Cu~(2+)and Cd~(2+), respectively.The sorption was a spontaneous endothermic process. The sorption kinetics fitted well topseudo-second-order kinetic model.
     The desoption of Cu~(2+)and Cd~(2+)absorbed in EPS was investigated. Results revealed thatdesorption of Cu~(2+)and Cd~(2+)from EPS was significantly affected by pH. The desorptionpercentage was increased with decrease of pH. The maximum desorption percentage washigher than90%for both Cu~(2+)and Cd~(2+). The optimal desorption pH was1.0. However, thedesorption percentage for both Cu~(2+)and Cd~(2+)was low when using NaCl as desorptionreagent. When concentration of NaCl was2.0mM, the desorption percentage for Cu~(2+)andCd~(2+)was50.3%and53.8%, respectively.
     Analysis of FTIR spectra demonstrated that hydroxyl, carboxyl and C-O-C ofpolysaccharide were the main functional groups in the reaction between metal and EPS.Energy dispersive X-ray (EDX) system analysis revealed that C and O were the dominantelements in EPS, and P, S, K, Ca, Mg, Al and Na were also included in. The EDX pattern forthe Cu~(2+)-loaded and Cd~(2+)-loaded EPS revealed distinctive peaks for the respective metals.However, Ca and Mg were not detected in the EDX spectrum of Cu~(2+)-loaded EPS.Furthermore, for the Cd~(2+)-loaded EPS, the Ca content was found to be lower and Mg was notdetected. The results showed that the ion-exchange was an important mechanism involved inthe Cu~(2+)and Cd~(2+)sorption process taking place on EPS. Complexation and electrostaticinteractions were also involved in. There were several mechanisms responsible for the sorption of Cu~(2+)and Cd~(2+)together. And complexation was the main mechanism.
引文
[1] Wang W. X., Ke C. H. Dominance of dietary intake of cadmium and zinc by twomarine predatory gastropods [J]. Aquat. Toxicol.,2002,56(3):153-165
    [2]毕春娟,陈振楼,许世远,等.长江口潮滩大型底栖动物对重金属的累积特征[J].应用生态学报,2006,17(2):309-314
    [3] Gopalakrishnan S., Thilagam H., Raja P. V. Comparison of heavy metal toxicity in lifestages (spermiotoxicity, egg toxicity, em-bryotoxicity and larval toxicity) of Hydroideselegans[J]. Chemosphere,2008,71(3):515-528
    [4] Debelius B., Forja J. M., Delvalls á., et al. Toxicity and bioaccumulation of copper andlead in five marine microalgae[J]. Ecotoxicol. Environ. Saf.,2009,72(5):1503-1513
    [5]张融,范文宏,唐戈,等.水体中重金属镉和锌对大型蚤联合毒性效应的初步研究[J].生态毒理学报,2008,3(3):286-290
    [6]陈娜,郝家胜,王莹,等.铜、铅、镉、锌、汞和银离子复合污染对水螅的急性毒性效应[J].生物学杂志,2007,24(3):32-35
    [7]周怀东,彭文启,杜霞,等.中国地表水水质评价[J].中国水利水电科学研究院报.2004,2(4):255-264
    [8] Wingender J., Neu T. R., Flemming H. C. Microbial Extracellular PolymericSubstances: Characterization, Structure, and Function [M]. Germany:Springer-Verlag Telos,1999
    [9] Liu H., Fang H. H. P. Characterization of electrostatic binding sites ofextracellular polymers by linear programming analysis of titration data [J].Biotechnol. Bioeng.,2002,80:806-811
    [10] Sponza D. T. Investigation of extracellular polymer substances (EPS) andphysicochemical properties of different activated sludge flocs under steady stateconditions [J]. Enzyme Microb. Technol.,2003,32:375-385
    [11] Comte S., Guibaud G., Baudu M. Biosorption properties of extracellularpolymeric substances (EPS) towards Cd, Cu and Pb for different pH values [J]. J.Hazard. Mater.,2008,151(1):185-193
    [12] Brown M. J., Lester J. N. Role of bacterial extracellular polymers in metal uptake inpure bacterial culture and activated sludge-I[J].Water Res.,1982,16:1539-1548
    [13] Brown M. J., Lester J. N. Role of bacterial extracellular polymers in metal uptake inpure bacterial culture and activated sludge-II [J]. Water Res.,1982,16:1549-1560
    [14] Guibaud G., Tixier N., Bouju A., et al. Relation between extracellular polymerscomposition and its ability to complex Cd, Cu and Pb[J]. Chemosphere,2003,50:1701-1710
    [15] Liu Y., Lam M.C., Fang H. H. P. Adsorption of heavy metals by EPS of activatedsludge [J]. Water Sci. Technol.,2001,43(6):59-66
    [16] Gutierrez A., Martinez M. J., Almendros G., et al. Hyphal-sheath polysaccharides infungal deterioration [J]. Sci. Total Environ.,1995,167(1-3):315-328
    [17] Volesky B. Biosorption of heavy metal [M], Boca Raton, FL, USA:CRC press,1993,105-109
    [18]叶锦韶,尹华.重金属的生物吸附研究进展[J].城市环境与城市生态,2001,14(3):30-32
    [19] Zhang X. Z.,Luo S. G.,Yang Q. Accumulation of uranium at low concentration by thegreen alga Scenedesmus obliquus [J]. J. of Appl. Phycol,1997,9:65-71
    [20] Omar H. H. Adsorption of zinc ions by Scenedesmus obliquus and S. quadricauda andits effect on growth and metabolism[J]. Biol. Plantarum,2002,45(2):261-266
    [21] da Costa A. C. A., de Franca F. P. The behavior of the microalgae Tetraselmis chuii incadmium-contaminated solutions [J]. Aquacult. Int.,1998,6:57-66
    [22] Schiewer S. Modelling complexation and electrostatic attraction in heavy metalbiosorption by Sargassum biomass [J]. J. Appl. Phycol.,1999,11:79-87
    [23] Esteves A. J. P., Valdman E., Leite S. G. F. Repeated removal of cadmium and zinefrom and industrial effluent by waste biomass Sargassum sp[J]. Biotechnol. Lett.,2000,22:499-502
    [24]尹平河,赵玲, YU Q.,等.海藻生物吸附水中铅、铜和镉的研究[J].海洋环境科学,2000,19(3)∶11-15
    [25] Matheickal J. T., Yu Q. Biosorpt ion of lead from aqueous solutions by marine algaEcklonia radita [J].Water Sci. Technol.,1996,34:1-7
    [26] Gardea-Torresdey J. L., Tiemann K. J., Gonzalez J. H., et al. Ability of Medicagosativa(alfalfa) to remove nickel ions from aqueous solution[C]. Proceedings of the10thAnnual Conference on Hazardous Waste Research.1996.239-247
    [27]李志勇,郭祀远,李琳,等.利用藻类去除与回收工业废水中的金属[J].重庆环境科学,1997,19(6):27-32
    [28]赵玲,尹平河, Yu Q.,等.海洋赤潮生物原甲藻对重金属的富集机理[J].环境科学,2001,22(4):42-45
    [29] Darnall D. W., Greene B., Henzl M.T. Selective recovery of gold and other metal ionsfrom an algal biomass[J]. Environ. Sci. Technol.,1986,20(2):206-208
    [30] Aksu Z., Acikel U. A single-staged bioseparation process for simultaneous removal ofcopper (II) and chromium (VI) by using C-vulgaris [J]. Process Biochem.,1999,34(6-7):589-599
    [31] El-Helow E. R.,Sabry S. A.,Amer R. M. Cadmium biosorption by a cadmium resistantstrain of Bacillus thuringiensis: regulation and optimization of cell surface affinity formetalcations [J]. BioMetals,2000,13:273-280
    [32] Hafez M. B.,Ibrahim M. K. Biosorptio of some ions on different bacterial species fromaqueous and radioactive waste solutions [J]. J. Radioanal. Nucl. Chem.,2002,252(1):179-185
    [33] Figueira M. M., Volesky B., Ciminelli V. S. T. Assessment of interference inbiosorption of a heavy metal [J]. Biotechnol. Bioeng.,1997,54(4):344-350
    [34] Wong P. K.,So C. M. Copper accumulation by a strain of Pseudomonas putida [J].Microbios,1993,73:113-121
    [35] Ehrlich H. L. Microbes and metals [J]. Appl. Microbiol. Biotechnol.,1997,48:687-692
    [36] Taniguchi J., Hemmi H., Tanahashi K., et al. Zinc biosorption by a zinc-resistantbacterium, Brevibaterium sp. Strain HZM-l[J]. Appl. Microbiol. Biotechnol.,2000,54:581-588
    [37] Vecchio A., Finoli C., Simine D. D., et al. Heavy metal biosorption by bacterial cells[J]. Fresenius J. Anal. Chem.,1998,361:338-342
    [38] Nies D. H. Microbial heavy-metal resistance [J]. Appl. Microbiol. Biotechnol.,1999,51:730-750
    [39]刘月英,傅锦坤,李仁忠,等.细菌吸附Pd2+的研究[J].微生物学报,2000,40(5):535-539
    [40]董新姣,陈文海.预处理的铜绿假单胞菌对Cu2+的生物吸附研究[J].重庆环境科学,24(6):44-46
    [41]李清彪,刘刚,胡月琳,等.黄孢展齿革菌对镉离子的吸附[J].离子交换与吸附,2001,17(6):501-506
    [42]汤岳琴,林军,王建华.生物吸附研究进展[J].四川环境,2001,20(2):12-17
    [43] Lu W. B., Shi J. J., Wang C. H., et al. Biosorption of lead, copper and cadmium by anindigenous isolate Enterobacter sp J1possessing high heavy-metal resistance[J]. J.Hazard. Mater.,2006,134(1-3):80-86
    [44] Chen X. C., Shi J. Y., Chen Y. X. Tolerance and biosorption of copper and zinc byPseudomonas putida CZ1isolated from metal-polluted soil [J]. Can. J. Microbiol.,2006,52(4):308-316
    [45] Yilmaz E. I. Metal tolerance and biosorption capacity of Bacillus circulans strain EB1[J]. Res. Microbiol.,2003,154(6):409-415
    [46] Tsezos M., Velosky B. The mechanism of uranium biosorptionby Rhizopus arrhizus [J].Biotechnol. Bioeng.,1982,29:385-401
    [47] Tsezos M., Velosky B. The mechanism of thorium biosorptionby Rhizopus arrhizus [J].Biotechnol. Bioeng.,1982,29:955-969
    [48] Adela K., Aleksander P. Comparison of Rhizopus nigricans in a pelleted growth formwith some other types of waste microbial biomass as biosorbents for metal ions [J].World J. Microbiol. Biotechnol.,2001,17:677-685
    [49]汤岳琴,牛慧,林军,等.产黄青霉菌对铅的吸附机理研究—参与铅生物吸附的化学物质及功能团的确定[J].四川大学学报(自然科学版),2001,33(3):50-54
    [50] Ruchi G. Saxena R. K., Rani G. Fermentation waste of Aspergillus terreus:a potentialcopper biosortion[J]. World J. Microbiol. Biotechnol.,2002,18:397-401
    [51]黄民生,施华丽,郑乐平.曲霉对水中重金属的吸附去除[J].上海环境科学,2002,21(2):89-92
    [52]董新娇,潘瑞通,林宣兴.无花果曲霉对铅的吸附研究[J].四川环境,2002,21(1):12-15
    [53]杨远友,张太明.黑曲霉孢子和菌丝吸附241Am的研究[J].四川大学学报(自然科学版),2002,39(2):333-338
    [54]李明春,姜恒,侯文强,等.酵母菌对重金属离子吸附的研究[J].菌物系统,1998,17(4):367-373
    [55]刘恒,王建龙,文湘华.啤酒酵母吸附重金属离子铅的研究[J].环境科学研究,2002,15(2):26-29
    [56]李峰,张西平,黄昆,等.产阮假丝酵母细胞壁对铜离子吸附机理研究[J].微生物学杂志,2000,20(1):11-14
    [57] Eboigbodin K.E., Biggs C. A. Characterization of the Extracellular PolymericSubstances Produced by Escherichia coli Using Infrared Spectroscopic, Proteomic, andAggregation Studies[J]. Biomacromol.,2008,9:686-695
    [58] Nielsen P.H., Jahn A., Palmgren R. Conceptual model for production and compositionof exopolymers in biofilms [J].Water Sci. Technol.,1997,36(1):11-19
    [59] Yang S.F., Li X.Y. Influences of extracellular polymericsubstances (EPS) on thecharacteristics of activated sludge under non-steady-state conditions [J]. ProcessBiochem.,2009,44(1):91-96
    [60] Li X. Y., Yang S. F. Influence of loosely bound extracellular polymeric substances (EPS)on the flocculation, sedimentation and dewater-ability of activated sludge [J]. WaterRes.,2007,1(5):1022-1030
    [61] Laspidou C. S., Rittmann B. E. A unified theory for extracellular polymeric substances,soluble microbial products, and active and inert biomass [J].Water Res.,2002,36:2711-720
    [62] Morgan J. W., Forster C. F., Evison L. A comparative study of the nature ofbiopolymers extracted form anaerobic and activated sludges [J]. Water Res.,1990,24(6):743-750
    [63] Benetti A. D. Composition, fate and transformation of extracellular polymers inwastewater and sludge treatment processes [D]. A Dissertation presented to the Facultyof the Graduate School of Comell University for the Degree of Doctor of Philosophy,2000
    [64] Brown M. J., Lester J. N. Metal removal in activated sludge: the role of bacterialextracellular polymers [J]. Water Res.,1979,13:817-837
    [65] Fr lund B., Palmgren R., Keiding K., et al. Extraction of extracellular polymers fromactivated sludge using a cation exchange resin [J]. Water Res.,1996,30(8):1749-1758
    [66] Urbain V., Block J.C., Manem J. Bioflocculation in activated sludge: an analysticapproach[J]. Water Res.,1993,27(5):829-838
    [67] Dignac M. F., Urbain V., Rybacki D., et al. Chemical description of extracellularpolymers: implication on activated sludge floc structure [J]. Water Sci. Technol.,1998,38(8-9):45-53
    [68] Vallom J. K., McCloughlin A.J. Lysis as a factor on sludge flocculation [J]. Water Res.,1984,18(11):1523-1528
    [69] Wilkinson J.F. The extracellular bacterial polysaccharides [J]. Bacteriol. Rev.,1958,(22):46-73
    [70] Zhang X.Q., Bioshop P. L. Measurement of polysaccharides and protein in biofilmextracellular polymers [J]. Water Sci. Technol.,1998,37(4-5):345–348
    [71] Mayer C., Moritza R., Kirschner C., et al. The role of intermolecular interactions:studies on model systems for bacterial biofilms [J]. Int. J. Biol. Macromol.,1999,26(1):3-16
    [72] Finlayson J. C., Liao B., Droppo I. G., et al. The relationship between the structure ofactivated sludge flocs and the sorption of hydrophobic pollutants [J]. Water Sci.Technol.,1998,37,(4-5):353-357
    [73]刘瑞霞,汤鸿霄,劳伟雄.重金属的生物吸附机理及吸附平衡模式研究[J].化学进展.2002,14(2):87-89
    [74] Rudd T., Sterritt R. M., Lester J. N. Complexation of heavy metals by extracellularpolymers in the activated sludge process [J].Water Pollut. Control Fed.,1984,56:1260-1268
    [75] Brown M.J., Lester J.N. Comparison of Bacterial Extracellular Polymer ExtractionMethods. Appl. Environ. Microbiol.,1980,40:179-185
    [76] Zhang X.Q., Bishop P.L., Kinkle B. K. Comparison of Extraction Methods forQuantifying Extracellular Polymers in Biofilms [J]. Water Sci. Technol.,1999,39:211-218
    [77] Friedman B.A., Dugan P. R., Pfister R. M., et al. Fine structure and composition of theZoogloeal Matrix Surrounding Zoogloea Ramigera [J]. J. Bacterial.,1968,96(6):2144-2153
    [78]高峰,于亚莉,刘静波,等.超声波提取北冬虫夏草多糖的工艺[J].食品研究与开发,2010,31(6):107-110
    [79]吴建国,王岚.从总状毛霉中超声波提取壳聚糖的工艺研究[J].中国酿造,2011,1:94-96
    [80] Liu H., Fang H. H. P. Extraction of extracellular polymeric substances (EPS) of sludges[J]. J. Biotechnol.,2002,95:249-256
    [81] Comte S., Guibaud G., Baudu M. Relations between extraction protocols for activatedsludge extracellular polymeric substances (EPS) and EPS complexation properties. PartI. Comparison of the efficiency of eight EPS extraction methods [J]. Enzyme Microb.Technol.,2006,38:237–245
    [82] Jorand F. G., Urbain P. V. Hydrophobicity of activated sludge flocs andlaboratory-gown bacteria. Water Sci. Technol.,1994,30:211-218
    [83] Goodwin. J. A. S., Forster C. F. A further examination into the composition ofactivated sludge surfaces in relation to their settlement characteristics [J]. Water Res.,1985,19(4):527-533
    [84]王红武,李晓岩,赵庆祥.活性污泥的表面特性与其沉降脱水性能的关系[J].清华大学学报(自然科学版),2004,44(6):766-769
    [85]李久义,左华,栾兆坤,等.不同基质条件对生物膜细胞胞外聚合物组成和含量的影响[J].环境化学,2002,21(6):546-551
    [86] Pavoni J. L., Tenney M. W., Echelberger W. F. Bacterial exocellular polymers andbiological flocculation [J].Water Pollut. Control Fed.,1972,44(3):414-429
    [87] Klock J. H, Wieland A., Seifert R., et al. Extracellular polymeric substances (EPS)from cyanobacterial mats: characterisation and isolation method optimization [J]. Mar.Biol.,2007,152:1077–1085
    [88] Jorand F., Zartarian F., Thomas F., et al. Chemical and structural (2D) linkage betweenbacteria within activated sludge flocs [J]. Water Res.,1995,29(7):1639-1647
    [89]刘志杰,谢华,俞毓衅,等.厌氧污泥胞外多聚物的提取、测定法选择[J].环境科学,1993,15(4):23-27
    [90] Jang S. M. K., Kim S. Y., Lee S. G., et al. Effect of Heavy Metals (Cu, Pb, and Ni) onthe Compositions of EPS in Biofilms [J]. Water Sci. Technol.2001,43(6):41-48
    [91] Sheng G. P., Yu H. Q., Yu Z. Extraction of extracellular polymeric substances from thephotosynthetic bacterium Rhodopseudomonas acidophila [J]. Appl. Microbiol.Biotechnol.,2005,67:125-130
    [92] Rudd T., Sterrit R. M., Lester J. W. Extraction of Extracellular Polymers fromActivated Sludge [J]. Biotechnol. Lett.,1983,5:327-332
    [93] Gehr R., Henry J. G. Removal of extracellular material techniques and pitfalls [J].Water Res.,1983,17(12):1743-1748
    [94] Novak J. T., Haugan B. E. Polymer extraction from activated sludge [J]. J. WPCF,1981,53(9):1420-1424
    [95] Grotenhuis J. T. C., Smit M., Van Lammeren A. A. M., et al. Localization andquantification of extracellular polymers in methanogenic granular sludge [J]. Appl.Microbiol. Biotechnol.,1991,36:115-119
    [96] Azeredo J., Lazarova V., Oliveira R. Methods to extract the exopolymeric matrix frombiofilms: a comparative study [J]. Water Sci. Technol.,1999,39(7):243-250
    [97] Wawrzynczyk J., Szewczyk E., Norrl w O., et al. Application of enzymes, sodiumtripolyphosphate and cation exchange resin for the release of extracellular polymericsubstances from sewage sludge. Characterization of the extracted polysaccharides/glycoconjugates by a panel of lectins [J]. J. Biotechnol.,2007,130:274-281
    [98] Aksu Z. Application of biosorption for the removal of organic pollutants: a review [J].Process Biochem.,2005,40(3-4):997-1026
    [99] Veglio F., Beolchini F. Removal of metals by biosorption: a review [J].Hydrometallurgy,1997,44(3):301-316
    [100]周健,苗利利,龙腾锐.胞外聚合物对活性污泥吸附及再生的影响研究[J].环境污染治理技术与设备,2004,5(5):21-24
    [101]金伟,孔旺盛,刘燕.亚甲基兰的生物污泥吸附及胞外聚合物作用[J].同济大学学报:自然科学版,2009,37(11):1508-1512
    [102] Pan X.L., Liu J., Zhang D.Y., et al. Binding of dicamba to soluble and boundextracellular polymeric substances (EPS) from aerobic activated sludge: a fluorescencequenching study [J]. J. Colloid Interface Sci.,2010,345(2):442-447
    [103] Chen J. H., Lion L. W., Ghiorse W. C., et al. Mobilization of absorbed cadmium andlead in aquifer material by bacterial extracellular polymers [J]. Water Res.,1995,29:421-430
    [104] Mohapatra S. P., Siebel M. A., Alaerts G. J. Effect of Bacillus megaterium on removalof copper from aqueous solutions by activated carbon. J Environ. Sci. Health, Part A–Toxic/Hazard. Subst. Environ. Eng.,1993,28:615-629
    [105] Schlekat C. E., Decho A.W., Chandler G. T. Sorption of cadmium to bacterialextracellular polymeric sediment coatings under estuarine conditions [J]. Environ.Toxicol. Chem.,1998,17:1867-1874
    [106] Guibaud G., Comte S., Bordas F. Comparison of the complexation potential ofextracellular polymeric substances (EPS), extracted from activated sludges andproduced by pure bacteria strains, for cadmium, lead and nickel [J]. Chemosphere,2005,59:629-38
    [107]田禹,黄俊,郑蕾,等.剩余活性污泥胞外聚合物对水中Cd2+和Zn2+的吸附效能[J].南京大学学报(自然科学),2006,42(5):543-548
    [108]潘响亮,王建龙,张道勇.硫酸盐还原菌混合菌群胞外聚合物对Cu2+的吸附和机理[J].水处理技术,2005,31(9):25-28
    [109]潘响亮,王建龙,张道勇.硫酸盐还原菌混合菌群胞外聚合物对Zn2+的吸附和机理[J].环境科学研究,2005,18(6):53-55
    [110]张道勇,赵勇胜,潘响亮.胞外聚合物(EPS)在藻菌生物膜去除污水中Cd的作用[J].环境科学研究,2004,17(5):52-56
    [111] Mejare M., Bulow L. Metal-binding proteins and peptides in bioremediation andphytoremediation of heavy metals [J]. Trends Biotechnol.,2001,19:67-73
    [112] Figueira M. M., Volesky B., Mathieu H. J. Instrumental analysis study of iron speciesbiosorption by Sargassum biomass [J]. Environ. Sci. Technol.,1999,33:1840-1846
    [113] Tobin J. M. Development of multimetal binding model and application to binary metalbiosorption onto peat biomass [J]. Water Res.,2003,37(16):3976-3977
    [114] Mashitah M. D., Zulfadhly Z., Bhatia S. Application of oryzae and rhizogus oryzae forCu2+removal [J]. BioTechniques,1999,27(5-6):441-448
    [115] Matheickal J. T., Yu Q. Cu (Ⅱ) binding by marine alga Ecklonia radita biomaterial [J].Environ. Technol.,1997,18:25-34
    [116] Brady J. M., Tobin J. M. Binding of hard and soft metal ions to Rhizopus arrhizbiomass [J]. Microbiol. Technol.,1995,17:791-798
    [117]郑蕾.活性污泥胞外聚合物吸附重金属效能与机制研究[D].哈尔滨:哈尔滨工业大学,2006
    [118] Hosea M., Greene B., Mcpherson R., et al. Accumulation of elemental gold on thealga-Chlorella vulgaris [J]. Inorg. Chim. Acta,1986,23(1):161-165
    [119] Losi M. E., Amrhein C., Frankenberger W. T. Environmental biochemistry ofchromium [J]. Rev. Environ. Contam. Toxicol,1994,136:91-121
    [120]马前,宋卫峰,吴斌,等.含Cr(Ⅵ)废水生物处理技术及其影响因素[J].四川环境,2002,20(4):19-22
    [121] Blackwell K. J., Singleton I., Tobin J. M. A general method for the localization ofenzymes that produce phosphate pyrophosphate [J]. Appl. Microbiol. Biotechnol.,1995,43:579-584
    [122] Bai R. S., Abraham T. E. Studies on enhancement of C(rVI)biosorption by chemicallymodified biomass of Rhizopus nigricans [J]. Water Res.,2002,36(5):1224-1236
    [123]维戈利奥F.综述回收金属的生物吸附法[J].国外金属矿选矿,1998,(12):27-35
    [124] Niu H., Xu X. S., Wang J. H., et al. Removal of lead from aqueous solutionsby Penicillium biomass[J]. Biotechnol. Bioeng.,1993,42(6):785-787
    [125] Kuyucak N., Volesky B. Accumulation of cobalt by marine alga [J]. Biotechnol.Bioeng.,1989,33:809-814
    [126]吴涓,李清彪,邓旭,等.白腐真菌吸附铅的研究[J].微生物学报,1999,39(1):87-90
    [127]朱一民,周东琴,魏德洲. Norcardia amarae菌体对水相中Pb2+的吸附特性[J].东北大学学报,2003,24(10):978-981
    [128]吕英,张鋆,孙宝盛.胞外聚合物对水中Cu2+的吸附研究[J].工业用水与废水,2005,36(5):36-38
    [129]孟令芝,杜传青,龙凯,等.纤维素-铝-硅复合物的制备及对重金属离子的吸附[J].环境科学与技术,2000,89(2):24-26
    [130] Leighton L.R., Forster C.F. The adsorption of heavy metals in an acidogenicthermophilic anaerobic reactor [J]. Water Res.,1997,31(12):2969-2972
    [131]杨志宽,单崇新,苏帕拉.羧甲基壳聚糖对水中Cd2+的絮凝处理研究[J].环境科学与技术,2000,88(1):10-12
    [132]董德明,康春莉,李忠华.天然水中细菌胞外聚合物对重金属的吸附规律[J].吉林大学学报(理学版),2003,41(1):94-96
    [133]苏春彦,康春莉,董德明.天然水生物膜胞外多糖和胞外蛋白吸附镉的特性[J].长春工程学院学报(自然科学版),2005,6(4):67-69
    [134] Herrero R., Lodeiro P., Rey-Castro C., et al. Removal of inorganic mercury fromaqueous solutions by biomass of the marine macroalga Cystoseira baccata[J]. WaterRes.,2005,39:3199-3210
    [135]周永国,杨越冬,齐印阁,等.壳聚糖处理含重金属离子废水的研究[J].河北农业技术师范学院学报,1996,10(2):25-28
    [136] Texier A.C., Andres Y., Le Cloirec P. Selective biosorption of lanthanide (La, Eu, Yb)ions by Pseudomonas aeruginosa[J]. Environ. Sci. Technol.,1999,33,489-495
    [137] Ledin M., Pedersen K., Allard B. Effects of pH and ionic strength on the adsorption ofCs, Sr, Eu, Zn, Cd and Hg by Pseudomonas putida [J]. Water Air Soil Pollut.,1997,93:367-381
    [138] Daughney C. J., Fein J. B. The Effect of Ionic Strength on the Adsorption of H+, Cd2+,Pb2+, and Cu2+by Bacillus subtilis and Bacillus licheniformis:A Surface ComplexationModel[J]. J. Colloid Interface Sci.,1998,198(1):53-77
    [139] Haas J. R., Dichristina T. J. Thermodynamics of U (VI) sorption onto Shewanellaputrefaciens [J]. Chem. Geol.,2001,180(1):33-54
    [140] Aksu Z., Cagatay S. S. Investigation of biosorption of Gemazol Turquise Blue-Greactive dye by dried Rhizopus arrhizus in batch and continuous systems [J]. Sep. Purif.Technol.,2006,48:24-35
    [141] Dhami P. S., Neeta S. Bisorption of radionuclides by Rhizopus arrhizus [J]. Biotechnol.Lett.,1998,20(3):225-228
    [142] Gomes N. C. M, Figueira M. M., Camargos E. R. S., et al. Cyano-metal complexesuptake by Aspegillus niger[J]. Biotechnol. Lett.,1999,21:487-49
    [143] Bhainsa K. C., D′Souza S. F. Biosorption of uranium (Ⅵ) byAspergillus fumigatus [J].Biotechnol. Tech.,1999,13:695-699
    [144] Maurya N. S., Mittal A. K., Cornel P., et al. Biosorption of dyes using dead macrofungi: Effect of dye structure, ionic strength and pH [J]. Bioresour. Technol.,2006,97:512-521
    [145] Cheng, W., Hu, Y.Y. Adsorptive decolorization of azo dyes by Aspergillus pellets HX[J]. Chin J. Appl. Environ. Biol.,2004,10(4):489-492.
    [146] Gerhardt P., Murray R.G.E., Wood W. A., et al. Methods for General and MolecularBacteriology [M]. Washington, DC: American Society for Microbiology,1994,Chapter5
    [147] Bradford, M. M. A rapid and sensitive method for the quantification of microgramquantities of protein utilizing the principle of protein-dye binding [J]. Anal. Biochem.,1976,72:248–254
    [148] Skidmore W. D., Duggan E. L., Gonzales L. J. Determination of the totalphosphorus content of deoxyribonucleic acids in the presence of ethylene glycolby a hydrolysis method[J]. Anal. Biochem.,1964,9:370-376
    [149] Blumenkrantz N., Asboe-Hansen G. A new method for quantitativedetermination of uronic acids [J]. Anal. Biochem.,1973,54:484-489
    [150] Frings, C.S., Dunn, R.T. A colorimetric method for determination of total serumlipids based on the sulpho-phospho-vanilin reaction [J]. Am. J. Clin. Pathol.1970,53:89-91
    [151]龙向宇,龙腾锐,唐然.阳离子交换树脂提取活性污泥胞外聚合物的研究[J].中国给水排水,2008,24(3):29-34
    [152] Sheng G. P, Yu H. Q., Wang C. M. FTIR-spectral analysis of two photosyntheticH2-producing strains and their extracellular polymeric substances[J]. Appl. Microbiol.Biotechnol.,2006,73:204-210
    [153] Buffle J. Complexation Reactions in Aquatic Systems. An Analytical Approach [M].Chichester:Ellis Horwood,1988
    [154] Batley G. E. Trace Element Speciation: Analytical Methods and Problems. CRC Press,Boca Raton, FL.1989
    [155] Ruzic, I. Theoretical aspects of the direct titration of natural waters and its informationyield for trace metal speciation [J]. Anal. Chim. Acta,1982,140:99-113
    [156] Tuschall J.R., Brezonik P.L. Evaluation of the copper anodic stripping voltammetrycomplexometric titration for complexing capacities and conditional stability constants[J]. Analyt. Chem.,1981,53:1986-1989
    [157] Buffle J., Greter F.L., Haerdi W. Measurement of complexation properties of humicand fulvic acids in natural waters with lead and copper ion-selective electrodes [J].Analyt. Chem.,1977,49:216-222
    [158]孙秉一,宁征,王永辰.浮游植物生物法测定海水铜络合容量[J].青岛海洋大学学报,1990,20(4):19-25
    [159] Seitz W.R. Fluorescence methods for studying speciation of pollutants in water [J].Trends Analyt. Chem.,1981,(1):79-83
    [160] Santamaría M., Díaz-Marrero A., Hernández J., et al. Effect of thorium on the growthand capsule morphology of Bradyrhizobium [J]. Environ. Microbiol.,2003,5:916-924
    [161] Morillo J.A., Garc′a-Ribera R., Quesada T., et al. M. Biosorption of heavy metals bythe exopolysaccharide produced by Paenibacillus jamilae[J]. World J. Microbiol.Biotechnol.,2008,24:2699-2704
    [162] Morlay C., Cromer M., Vittori O. The removal of copper (II) and nickel (II) from diluteaqueous solution by a synthetic flocculant: a polarographic study of the complexationwith a high molecular weight poly(acrylic acid) for different pH values [J]. Water Res.,2000,34:455-462
    [163] Ozdemir G., Ozturk T., Ceyhan N., et al. Heavy metal biosorption by biomass ofOchrobactrum anthropi producing exopolysaccharide in activated sludge[J]. Bioresour.Technol.,2003,9:71-74
    [164] Lopez A., Lazaro N., Priego J.M., et al. Effect of pH on the biosorption of nickel andother heavy metals by Pseudomonas fluorescens4F39[J]. J. Ind. Microbiol.Biotechnol.,2000,24:146-151
    [165] Schiewer S., Volesky B. Modelling of the proton-metal ion exchange in biosorption[J].Environ. Sci. Technol.,1995,29:3049-3058
    [166] Bhaskar P.V., Bhosle N. B. Bacterial extracellular polymeric substance (EPS): Acarrier of heavy metals in the marine food-chain [J]. Environ. Int.,2006,32,191-198
    [167] Guibaud G., Hullebusch E.V., Bordas F., et al. Sorption of Cd (Ⅱ) and Pb (Ⅱ)byexopolymeric substances (EPS) extracted from activated sludges and pure bacterialstrains: Modeling of the metal/ligand ratio effect and role of the mineral fraction [J].Bioresour. Technol.,2009,100:2959-2968
    [168] Sag Y., Kutsal T. The selective biosorption of chromium (Ⅵ) and copper (Ⅱ) ionsfrom binary metal mixtures by R. arrhizus [J]. Process Biochem.1996,31,561-572
    [169] Sari, A., Tuzen, M. Kinetic and equilibrium studies of biosorption of Pb (II) and Cd (II)from aqueous solution by macrofungus (Amanita rubescens) biomass[J]. J. Hazard.Mater.,2009,164:1004-1011
    [170] Iqbal M., Edyvean R. G. J., Biosorp tion of lead, copper and zinc ions on loofa spongeimmobilized biomass of Phanerochaete chrysosporium [J]. Miner. Eng.,2004,17:217-223
    [171]王宝娥,胡勇有,谢磊,等. CMC固定化灭活烟曲霉小球吸附活性艳蓝KN-R—批式实验与热力学[J].环境科学学报,2008,28(1):83-88
    [172] Lores E.M., Pennock, J.R. The effect of salinity on binding of Cd, Cr, Cu and Zn todissolved organic matter [J]. Chemosphere,1998,37:861-874
    [173] Acosta M. P., Valdman E., Leite S.G.F., et al. Biosorption of copper by Paenibacilluspolymyxa cells and their exopolysaccharide[J]. World J. Microbiol. Biotechnol.,2005,21:1157-1163
    [174] Choudhary S., Sar P. Characterization of a metal resistant Pseudomonas sp. isolatedfrom uranium mine for its potential in heavy metal (Ni2+, Co2+, Cu2+,and Cd2+)sequestration [J]. Bioresour. Technol.,2009,100:2482-2492
    [175] Ho Y. S., McKay G. Pseudo-second order model for sorption processes [J]. ProcessBiochem.,1999,34:451-465
    [176] Ho Y.S., McKay G. The kinetics of sorption of divalent metal ions onto sphagnummoss peat [J]. Water Res.,2000,34:735-742
    [177] Yurdakoc M., Scki Y., Yuedakoc S. K. Kinetic and thermodynamic studies of boronremoval by Siral5, Siral40, and Srial80[J]. J. Colloid Interface Sci.,2005,286:440-446
    [178] Wu F. C., Tseng R. L., Juang R. S. Kinetic modeling of liquid-phase adsorption ofreactive dyes and metal ions on chitosan[J]. Water Res.,2001,35:613-618
    [179] zer A., Akkaya G., Turabik M. Biosorption of Acid Blue (AB290) and Acid Blue324(AB324) dyes on Spirogyra rhizopus[J]. J. Harzard. Mater.,2006,135:355-364
    [180]李长波,赵国峥,张洪林,等.生物吸附剂处理含重金属废水研究进展[J].化学与生物工程,2006,23(2):10-12
    [181]吴涓,李清彪,邓旭,等.重金属生物吸附的研究进展[J].离子交换与吸附,1998,14(2):180-187
    [182] Tyler G. Accumulation by wood-decaying fungi [J]. Chemospere,1982,11(11):1141-1146
    [183]沈薇,杨树林,李校堃,等.木霉(Trichoderma sp.) HR21活细胞吸附Pb(Ⅱ)的机理[J].中国环境科学,2006,26(1):101-105
    [184] Iqbal M., Saeed A., Zafar S. I. FTIR spectrophotometry, kinetics and adsorptionisotherms modeling, ion exchange, and EDX analysis for understanding themechanism of Cd2+and Pb2+removal by mango peel waste[J]. J. Hazard. Mater.,2009,164:161-171
    [185] Sheng P. X., Ting Y. P., Chen J. P., et al. Sorption of Lead, Copper, Cadmium, Zinc,and Nickel by Marine Algal Biomass: Characterization of Biosorptive Capacity andInvestigation of Mechanisms[J]. J. Colloid Interface Sci.,2004,275:131-141
    [186] Singh N., Asthana R. K., Singh S.P. Characterization of an Exopolysaccharide Mutantof Nostoc Spongiaeforme: Zn2+-sorption and Uptake[J]. World J. Microbiol.Biotechnol.,2003,19:851-857