基于智能算法的若干典型水文水资源问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是生命的源泉,是生态环境系统中最活跃、影响最广泛的因素,又是工农业生产过程中不可取代的重要资源。今天,水资源系统已演变为一个多目标、多属性、多层次、多功能和多阶段的复杂巨系统。随着所研究系统广度与深度的扩大,传统方法对于现代水资源系统的高维、非凸、非线性等复杂问题的处理已日显掣肘。近年来,随着现代应用数学和计算机技术的迅猛发展,人们提出了人工智能计算理论与分析方法以解决复杂系统问题,这些方法的引入极大地促进了系统分析技术和水科学信息分析计算的研究和发展,使这个领域的深入研究具有相当广阔的空间。
     本文在汲取多种新的理论和分析技术的基础上,采用了一些新思路、新方法,在水文水资源研究方面取得了一些进展。其主要研究成果和创新总结如下:
     (1)分析了复Morlet小波变换的时域和频域分析特性,研究了小波变换过程中伸缩因子和平移因子对时频域分辨率的影响,使用了复Morlet小波进行周期性识别的原理和公式。
     (2)从Parseval定理和卷积定理的角度上分别推导了的快速且实用的非正交小波变换系数的计算方法。该方法把非正交小波变换系数的计算转换为频域的计算,充分利用了快速傅里叶变换运算速度快、编程效率高的优点,为复Morlet小波的周期识别提供了算法基础。
     (3)结合小波理论和神经网络各自的优势,建立基于小波理论的神经网络预测模型,利用小波神经网络的非线性模拟能力进行水库年径流量的预测研究,取得了较好的模拟和预测结果。并把预测结果和影响径流的时空因素进行多方位的比较分析。
     (4)针对所建立的水库优化调度模型,提出了结合模拟退火和逐步优化算法的求解方法,证明了此方法处理复杂约束条件优化问题的有效性,改善了智能算法中常见的“局部最优”难题,对水库优化调度决策理论的探索有一定成效。
     (5)因为传统马斯京根河道洪水演进模型参数率定中存在线性化、计算繁琐、精度差等问题,分别引入遗传算法、模拟退火算法和粒子群算法用于马斯京根模型参数率定。对多种算法在马斯京根问题中的应用进行了综合性比较,对实践有较好的指导作用。
Water is the source of life and the most active factor and most extensive affect in the eco-environmental system. Meanwhile, it is an important resource and can not be replaced in industrial and agricultural production process. Today, the water system has evolved into a multi-objective, multi-attribute, multi-level, multi-functional and multi-stage complex giant system. With the breadth and depth of the system expansion, it is difficult for the traditional methods of water resource systems to deal with modern high-dimensional, non-convex and nonlinear complex issues. Recent years, with rapid development of the modern applied mathematics and computer technology, artificial intelligence computation theory and analysis methods have been proposed to solve complex system problems. The introduction of these methods has greatly facilitated the development of systems analysis techniques and water scientific information analysis and calculation. So there is a very wide space for further research in this area.
     Based on learning of a variety of new theories and analysis techniques, some new ideas and new methods are used, and some progress has been made in analysis of hydrology and water resources. In this paper, the research works and innovations are as follows:
     (1) The characteristics analyses of time and frequency domain of the Morlet wavelet transform are studied; The effect of the change of wavelet dilation and translation factor on the time and frequency domain resolution is analyzed; The principle and formula of the Morlet wavelet period recognition are derived.
     (2)A quick, simple and practical algorithm of coefficients of non-orthogonal wavelet transform is derived form the Parseval theorem and convolution theorem.The method turns non-orthogonal wavelet transform coefficient calculation to the frequency domain calculation, takes advantage of the FFT algorithm, has the advantages of high operation speed and high programming efficiency and provides a algorithm basis for identification the period by the Morlet wavelet.
     (3)The method integrating simulated annealing algorithm and progressive optimization algorithm is proposed for the optimal operation model for hydropower system. The effectiveness is proved to be suitable for solving optimization problem with complex constraints by this algorithm; The common "local optimization" problem in intelligent algorithm is solved; The theory of optimization scheduling decisions of hydropower systems is developed.
     (4)The prediction model of neural network is established based on wavelet theory which combines advantages of wavelet theory and neural network. The runoff of river is predicted with the nonlinear simulation capabilities of wavelet neural networks, achieving good results of the simulation and prediction. The multi-faceted comparison and analysis of runoff prediction results and impact of spatial and temporal factors are carried out.
     (5)In order to solve the problem of linearization, complexity and poor accuracy for parameter estimate of Muskingum Routing Model, this paper introduces three modern intelligent algorithms - Genetic Algorithm (GA), Simulated Annealing Algorithm (SA) and Particle Swarm Optimization Algorithm (PSO) for the parameter calibration of Muskingum model. Through specific simulation, the results of five methods are produced. Then according to the calculation, comparison and analysis of five methods comprehensively, it is found that the results of three modern intelligent algorithms are fit significantly and better than traditional methods.
引文
[1]李周直,包晓斌,尹晓青.直面中国水资源短缺.国土资源通讯,2001,(4):44-47.
    [2]吴庆洲.对20世纪中国洪灾的回顾.灾害学,2002,17(2):6-9.
    [3]冯夏庭,刁心宏.智能岩石力学(1)——导论[J].岩石力学与工程学报, 1999, 18(2):222:226.
    [4] Negoita C V. Expert Systems and Fuzzy Systems[M]. Benjammin/Cummings Publishing CompanyInc,1985.
    [5] Asok R, Sekhar T. A nonlinear stochastic model of fatigue crack dynamics[J]. Probabilistic Engineering Mechanics. 1997,12(1):33-40.
    [6] Walker T C, Miller R K. Expert Systems Handbook. An Assessment of Technology Applications[M]. The Fairmont Press Inc, 1990.
    [7]Holland J H.Adaptation in Natural and Artificial Systems.Cambridge:MIT Press,1992.
    [8]Fogel L J,Owens A J,Walsh M J.Artificial Intelligence through Simulated Evolution.NewYork:Wiley,1966.
    [9]Fogel D B,System Identifieation Through Simulated Evolution:A Machine Learning Approach to Modeling.Needham Heights,MA:Ginn,1991.
    [10]Yao X , Evolutionary Computation:Toward a New Philosophy of Machine Intelligence.NewYork:IEEE Press,1995.
    [11]Reehenberg I.Evolution strategies: optimiering technischer systeme nach Prinzipien der biolgischen evolution.Stuttgart:Formmnann-Holzboog Veriag,1973.
    [12]Schwefel H P.Numerical optimization of computer models.Chiehster,U.K.:Wiley,1981.
    [13]Schwefel H P,Evolution and Optimum Seeking.NewYork:Wiley,1995.
    [14] Bezedek J C.Fuzzy Models-What Are They,and Why? IEEE Transactions on Fuzzy Systems,1993,2(l):l-6.
    [15]Millonas M.Swarm,Phase transitions and colleetive intelligenee.In Langton C G,Ed.,Artificial LifeⅢ. Addison Wesley,Reading,MA.1994.
    [16]Fhat-Tothraghan , Madjid.Hildebrand Lars.Complex System Analysis Using Cl-mehtods.Proeeedings of SPIE-The Intemational Society for Optical Engineering,1999,300-341.
    [17]郭健.基于智能算法的非线性模型研究及预测控制[D].武汉:华中科技大学,2008.
    [18]E. Toth,A.Barth,A.Montanari. Comparison of short-term rainfall prediction models for real-time flood forecasting. Journal of Hydrology,2000,239:132-147.
    [19]K.C.Luk,J.E.Ball,A.Sharma. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. Journal of Hydrology,2000,227:56-65.
    [20]李庆国.水文水资源系统计算智能评价与预测方法研究[D].辽宁:大连理工大学,2004
    [21]Nicolies J. Chaos and Information Processing: A Heuristic Outline[M]. Sigpollr World Scientific,1991.
    [22]Saad M,Turgeon A,Bigras P, et al. Learning Disaggregation Technique for the Operation of Long-term Hydroelectric Power Systems[J].Water Resour. Res.,1994,30(11):3195-3202.
    [23]Jiang Chuanwen,Quan Xianzhang, Zhang Yongchuan. Grey Forecasting Model and Performance Analysis of Electric Power Load[J]. International Journal Hydroelectric Energy.1999,17(4):39-41.
    [24]张勇传.优化理论在水库调度中的应用[M].长沙:湖南科学技术出版社,1985.
    [25]何小聪,康玲.南水北调中线工程水源区丹江口水库径流周期分析[J].武汉大学学报(工学版),2010,43(1):30-33.
    [26]史晓峰,顾海燕,马晓剑.基于Marr小波在水文中的应用[J].东北林业大学学报,2008,36(6):96-97.
    [27]桑燕芳,王栋.水文时间序列周期识别的新思路和两种新方法[J].水科学进展,2008,19(3):412-417.
    [28]张闻胜,王银堂,时间序列分解模型在水文要素中长期预报中的应用[J].水文,2001,21(l):21-24
    [29]赵宗慈,王绍武.近百年我国早涝演变的周期性[J].气象,1979,(1):19-22.
    [30]E.T.Jaynes,Information theory and statistical mechanics[J]. phys.Rev.,1957,106:620-630.
    [31] N.R.Dalezios,P.A.Tyraskis,Maximum entropy spectra for regional precipitation analysis and forecasting[J],J.Hydrol.,1989,109:25-42.
    [32] J.O.sonuga,principle of maximum entropy in hydrologic frequency analysis[J],J.Hydrol.,1972,17:177-191.
    [33]G.Padmanabhan,A.R.Rao,Maximum entropy spectra of some rainfall and river flow time series from southern and central India[J],Theo.Appl.Climatol.,1986,37:63-73.
    [34]J.P.Burg , Maximum entropy spectral analys[A] , presented at the 37th Ann.Int.Meet.soe.Explor Geophys[C],Oklahoma City:OK,1967.
    [35]A.R.Rao,G.padmanahan,R.L.Kashyap. Comparison of recently developed methods of spectral analysis[C]. Proc.Third Int.Symposium on Stochastic Hydraullcs,Tokyo,Japan,1980,165-175.
    [36]E.T.Jaynes,On the rationale of maximum entropy methods[J]. proc.TEEE. 1982,70:939-952.
    [37]H.G.pena,On the stability of the moments of the maximum entropy wind wave spectrum[J],Ocean Engr.,1983,10(2):79-86.
    [38]G.Padmanabhan,A.R.Rao,Maximum entropy spectral analysis of hydrologic data[J],Water Resour.Res.,1988,24(9):1519-1533.
    [39]李平,卢文喜,杨忠平.频谱分析法在吉林西部地下水动态预报中的应用[J].水文地质工程地质,2005,(4):70-73.
    [40]吕翠美,吴泽宁.刘文立,胡彩虹.伊河流域径流周期变化特征的小波分析[J].人民黄河,2007,29(5):26-28.
    [41]Y.Meyer. Wavelet with Compact Support[M].New York: Academic Press, 1986:1-8.
    [42]葛哲学,沙威.小波分析理论与MATLAB R2007实现[M].北京:电子工业出版社,2007,9
    [43]S.Mallat. Multiresolution Representation and Wavelets[D]. Ph.D. Thesis, Univ.of Pennsylvania, Philadelphia, 1998.
    [44]I.Daubechies. Orthogonal Bases of Compactly Supported Wavelets[J]. Comm. On Pure and Appl. Math,1988,41(7):909-996.
    [45]J.Lin, L.S.Qu. Feature Extraction Based on Morlet Wavelet and its Application for Mechanical Fault Diagnosis[J].Journal of Sound and Vibration, 2000,23(41):135-148.
    [46] A.Grossesand J.Morlet. Decomposition of Hardy Functions into Square Wavelets of Constant Shape[J]. SIAM J Math.Anal,1984(15):723-726.
    [47]Mallat S. Multiresolution approximations and wavelet orthogonal bases of L2(R),Trans.Amer.Math.Soc.,1989,315:69-87.
    [48]Mallat S.A theory of multiresolution signal decomposion: the wavelet representation.IEEE Trans.PAMI,1989,11:674-693.
    [49]Mallat S. Multiresolution representation and wavelets. Ph.D. Thesis,Univ.of Pennsylvania,Philadelphia,1998.
    [50]R.Coifman,Y.Meyer,R. Quake and M.Wickerhauser. Signal Processing and Compression with WavePackets. In: Proeeedings of the Conference on Wavelets. Marseills,SPring,1989
    [51]Torrance C, Compo G P. A practical guide to wavelet analysis[J]. Bull. Amer. Meteor. Soc. ,1998,79:61-78.
    [52]Bradshaw G A, Mcintosh B A. Detecting climate-induced patterns using wavelet analysis[J]. Environmental Pollution, 1994,83:135-141.
    [53]I.Daubechies.Sigularity delection and function into signals with wavelet.IEEE Trans.1994,45:739-751.
    [54]罗光坤.Morlet小波变换理论与应用研究及软件实现[D].南京:南京航空航天大学,2007.
    [55]刘海青,柳劲松. FOURIER分析和小波分析在信号时域分析中的特性比较[J].平原大学学报,2000,17(3) :71-74.
    [56]Meyer Y. Wavelet with Compact Support,In: Bechner W.Cof in Honor of A Zygnmund New York: Academic Press, 1986: 1-8.
    [57]M.Farge,Y.Guezennee,C.M.Ho and C.Meneveau,Continuous Wavelet Analysis of Coherent Structures,Center for Turbulence Research Proceedings of the Summer Program,1990.
    [58]M.Farge,et al. Wavelet Transform to Detect and Analyze Coherent Structures in Two-Dimensional Turbulent flows,Proc. Scaling Fractals and Nonlinear Variability in Geophysics II Barcelona,1989.
    [59]M.V.Wickerhauser,Lectures on Wavelet Packet Algorithms,The third France wavelet conference papers,1992.
    [60]M.V.Wickerhauser,High-resolution still Picture Compression,The third France wavelet conference papers,1992.
    [61]M.V.Wickerhauser,Entropy Based Methods for Best Basis Selection. IEEE Transactions on Information Theory,1992,38(2).
    [62]H.Kim and H.Ling,Wavelet Analysis of Electromagnetic Back Scattered Data,Electron.Lett.1992,28(3).
    [63]M.Frisch and H.Messer,The Use of Wavelet Transform in the Detection of an Unknown Transient Signals. IEEE Trans. On Information Theory,1992,38(2).
    [64]P.Dutilleux,A.Grossmann,P.K.Martinet,Application of the Wavelet Transform to the Analysis,Transformation and Synthesis of Musical Sounds,Preprint,85th Aes Convention.
    [65]Y.H.Peng,W.B.Wang. The Application of Wavelet Transform in Electromagnetic Object Detection,Proceeding of the Third International Symposium on Antennas and EM Theory,Nanjing,1993.
    [66]Y.H.Peng,Q.Zhou,et al. On the Representation of Integral Operators in Bases of Orthogonal Wavelets , Proc. of the International conference on Computational Electromagnetic and Its Applications.
    [67]康玲,万葳,姜铁兵.基于小波分析的水位流量关系曲线求解方法[J].华中科技大学学报(自然科学版).2003,31(10):30-31.
    [68]Dogaru T.Carin L.Application of haar-wavelet-based multiresolution time domain schemes to lectromagnetic scattering problems[J].Transactions on Antennas Propagation,2002,50(6):774-784.
    [69]NAKKEN M. Wavelet analysis of rainfall-runoff variability isolating climatic from anthropogenic patterns[J]. Environmental Modeling and Software,1999,14:283-295.
    [70]刘俊萍,田峰巍,黄强,佟春生.基于小波分析的黄河河川径流变化规律研究[J].自然科学进展,2003,13(4):383-387.
    [71]Cahill A T. Determination of changes in stream flow variance by means of awavelet-based test[J]. Water Resources Research,2002,38(6):1-14.
    [72]李明新,吕孙云,徐德龙.汉江上游水资源量变化趋势分析[J].2008,39(17): 49-52.
    [73]解苗苗,王文圣,王红芳.灰色自记忆模型在年径流预测中的应用[J].水电能源科学,2007,25(2):8-10.
    [74]王峰,黄春雷,张金华,刘建平.NNBR与SVM耦合模型在径流中长期预报中的应用[J].水电能源科学,2008,26(5):14-16.
    [75]袁潇晨,金菊良,王宗志,张明.基于经验模态分解的年径流自忆性预测模型[J].水电能源科学,2010,28(6):1-3.
    [76]孙映宏.基于均生函数模型的杭州市年降雨量预测[J].水电能源科学,2009,27(2):14-16.
    [77]Sivakumar B, Berndtsson R, Olsson J, et al. Evidence of Chaos in Rainfall-runoff Process [J]. Hydrolody Science, 2001, 46 (1):131-145.
    [78]Jayawardena A W, Lai F. Analysis and Prediction of Chaos in Rainfall and Streamflow Time Series [J] .Journal of Hydrology ,1994 ,153 :23-52.
    [79]Tamea S, Laio F, Ridolfi L. Probabilistic Nonlinear Prediction of River Flows [J]. Water resources research, 2005, 41 (1): 1-9.
    [80]Elshorbagy A, Simonovic S P, Panu U S. Estimation of Missing Streamflow Data Using Principles of Chaos Theory[J]. Journal of Hydrology, 2002, 255:123-133.
    [81]Sajikumar N, Thandavesw B S. A Non-Linear Rainfall-Runoff Model Using an Artificial Neural N etwork [J]. Journal of Hydrology, 1999, 216:32-55.
    [82]Tingsanchali T , Gautam M R. Application of Tank, NAM , ARMA and Neural Network Models to Flood Forecasting [J]. Hydrol. Process. 2000,14: 2473-2487.
    [83]Zhang J ,Lam K C , Yan W ,et al. Time Series Prediction Using Lyapunov Exponent s in Embedding Phase Space [J]. Computers and Electrical Engineering, 2004, 30: 1-15.
    [84]刘勇,王银堂,陈元芳,等.丹江口水库入库径流演变特征研究[J].水电能源科学,2009,27(2):23-25.
    [85]陈华,郭生练,郭海晋,等.汉江流域1951~2003年降水气温时空变化趋势分析[J].长江流域资源与环境,2006,15(3):340-345.
    [86]徐元顺.近75年丹江口水库入库流量时间变化特征与气候成因[J].湖北气象, 2005,(4):21-23.
    [87]赵红莉,陈宁,蒋云钟,等.汉江上游水资源时空演变及成因分析[J].南水北调与水利科技,2009,7(6):90-93.
    [88]张洪刚,王辉,徐德龙,等.汉江上游降水与径流变化趋势研究[J].长江科学院院报,2007,24(5):27-30.
    [89]周惠成,张杨,唐国磊,等.二滩水电站中长期径流预报研究[J].水电能源科学,2009,27(1):5-9.
    [90]Zhang Q.,Using Wavelet Networking Nonparametric Estimation[J].IEEE Transon Neural Network,1997,8(2):227-236.
    [91]Daugman J.,Complete Discrete 2-Dgabor Transforms by Neural Networks for Image Analysis Compression[J].IEEE Transon Acoust, Speech,Signal Proc,1988,36(7):1169-1179.
    [92]Pati Y.C.,Krishnaprasad P.S.,Analysis and Synthesis of Feedforward Neural Network Using Discrete Affine Wavelet Transformations[J].IEEE Trans on Neural Network,1993,4(1):73-85.
    [93]Zhang Q, Benvensite A. ,Wavelet networks[J]. IEEE Trans on Neural Networks, 1992, 3 (6): 889–898.
    [94]Szu H.H.,Telfer B.,Kadambe B.,Neural Network Adaptive Wavelets for Signal Representation and Classification[J]. Optical Engineering, 1992,31(9):1907-1916.
    [95]Baskshi B.R., Step phanopoulous Wavelet-net: A Multi-resolution,Hierarehical Neural Network with Localization Learning. American Institute Chemical. EngineeringJournal, 1993,39(1):57-81.
    [96]I.Daubeehies. Ten Lectures on Wavelets[M]. CBMS-Conference Lecture Notes,SIAM Philadelphia,1992.
    [97]张茁生,刘贵忠,刘峰.一种自适应小波神经网络的构造及学习算法[J].中国科学(E),2001,31(2):172-181.
    [98]J.Zhang,Cz G Walter,Y B. Miao et al. Wavelet neural networks for function learning[J].IEEE Trans. Signal Processing,1995,43(6):1485-1497.
    [99]Y C.Pati and P S. Krishnaprasad. Analysis and synthesis of feed forward neural network using discrete affine wavelet transformations[J].IEEE Trans. Neural Network,1993,4(l):73-85.
    [100]吴耀军,陶宝棋,袁慎芳.B样条小波神经网络[J].模式识别与人工智能,1996,9(3):228-233.
    [101]水鹏朗,保铮,焦李成.一种基于小波神经网络的多尺度差分方程求解新方法[J].电子科学学刊,1997,19(6):733-737.
    [102]员世芬.小波神经网络理论的研究及其在加热炉钢坯温度预报中的应用[D].太原:太原理工大学,2005.
    [103]潘林.基于小波分析与神经网络的股票市场预测应用研究[D].武汉:武汉理工大学,2006.
    [104]Kostka.P.,Tkacz,E.J.,Malota.Z:Malota Z. An Application of wavelet neural networks or heart valve prostheses characteristic Engineering in Medicine and Biology Society [C].Proceedings of the 2nd Annual International Conference of the IEEE,2000 Volume4:2463-2465.
    [105]万星,丁晶,张晓丽.小波神经网络在径流预测中的应用研究[J].人民黄河,2005,27(10):33-36.
    [106]KENDALL M G. A. New Measure of Rank Correlation[J]. Biometrical, 1938 , 430:81-93.
    [107]KENDALL M G. Rank Correlation Methods[M].London:Griffin,1975.
    [108]张璐,周跃.Mann-Kendall检验及其在河流悬沙浓度时间序列分析[J].新疆环境保护,2007,29(3):19-22.
    [109]安全,梁川,刘政.雅砻江中上游径流变化特性的小波分析[J].武汉大学学报(工学版),2008,41(3):20-24.
    [110]李国芳,童奕懿,周姣艳.漳河年径流量的变化趋势研究[J].水电能源科学, 2009, 7(5):1-3.
    [111]Moran.A Probability Theory of Dams and Storage System: Modification of the Release Rule[J].Australian J. of Applied Science,1955(6):116-124.
    [112] Yeh W. Reservoir Management and Operation Models: A State of the Art Review[J].Water Resources Research,1985,21(12):1797-1818.
    [113]Young G K. Finding Reservoir Operating Rules[J].J Hydraulic Div Am Soc Civ Eng,1967,93(6):297-321.
    [114]秦旭宝,董增川,费如君,等.基于逐步优化算法的水库防洪优化调度模型研究[J].水电能源科学,2008,26(4):60-62.
    [115]王万良,周慕逊,管秋,等.基于遗传算法的小水电站优化调度方法的研究与实践[J].水力发电学报,2005,24(3):6-11.
    [116]马细霞,储冬冬.粒子群优化算法在水库调度中的应用分析[J].郑州大学学报(工学版),2006,27(4):121-124.
    [117]D.N.库马尔,韩东平,赵树湘.多功能水库调度的蚁群优化算法研究[J].水利水电快报, 2010, 31(3):17-23.
    [118]纪昌明,苏学灵,周婷,等.梯级水电站群调度函数的模型与评价[J].电力系统自动化, 2010,34(3):33-37.
    [119]刘起方,马光文,刘群英,等.梯级水电站优化调度的分形与混沌嵌套搜索算法[J].水科学进展,2009,20(2):197-203.
    [120]黄云燕.水库生态调度方法研究[D].武汉:华中科技大学,2008.
    [121]Howson H R, Sancho N G F. A new algorithm for the solution of multi-state dynamic programming problems [J], Math.Programm.1975, 8(1):104-116.
    [122]徐小燕,刘光裕,王艳. POA方法在水电站群优化运行中的应用[J].中国农村水利水电,2007,(09):129-134.
    [123]宗航,周建中,张勇传. POA改进算法在梯级电站优化调度中的研究和应用[J].计算机工程, 2003,29(17):105-109.
    [124]Turgeon A. Optimal short-term hydro scheduling from the principle of progressive optimality[J] . Water Resources Research, 1981, 17(3):481-486.
    [125]Turgoen A. A decomposition method for the long-term schedol-ing of reservior in series[J]. Water Resources Research, 1981, 17 (6):322-325.
    [126]康玲,黄云燕,杨正祥,张晓敏.水库生态调度模型及其应用[J].水利学报,2010,41(2):134-141.
    [127]Metropolis N, Rosenbluth A W and Rosenbluth M N,et al. Equations of state calculations by fast computing machines. J Chem Phys.1953, 21:1087-1091.
    [128]S.Kirkpatrick, C.D.Gelatt, M.P.Vecchi. Optimization by simulated annealing[J],Science,1983,220:671-680.
    [129]申建建,程春田,廖胜利,等.基于模拟退火的粒子群算法在水电站水库优化调度中的应用[J].水力发电学报, 2009,28(3):10-15.
    [130]方红远,王浩,程吉林.初始轨迹对逐步优化算法收敛性的影响[J].水利学报, 2002, (11):27-30.
    [131]YANG Zhengxiang,KANG Ling. Application and Comparison of Several intelligent Algorithms on Muskingum Routing Model[C]. Proceedings of the 2010 2ndIEEE International Conference on Information and Financial Engineering,910-914.
    [132]汪芸,涂启玉,陈华.洪水演算中马斯京根法的新改进[J].人民长江,2008,39(24):23-25.
    [133]田学民,解建仓.防洪系统中的洪水演进模型及应用[J].水资源与水工程学报,2009,20(2):60-62.
    [134]张世功,孙廷玺,刘福学,等.沂沭河流域大型水库至下游控制站河道流量演算方案研究[J].水文,2009,29(5):50-54.
    [135]刘文标,傅春.马斯京根法的改进[J].南昌大学学报·工科版,2007,29(3):303-306.
    [136]董晓华,刘冀,徐刚,等.目标函数对马斯京根法河道流量演算精度的影响[J].水文,2009,29(6):9-13.
    [137]陈金庆.马斯京根流量演算法在洪水预报中的应用[J].中国农村水利水电.2005 (5),33-35.
    [138]蓝绍敏.流域洪水演进方法研究与仿真实现[D].武汉:华中科技大学,2009.
    [139]J.H.Holland, Adaption in Natural and Artificial Systems[M].Ann Arbor Univ.of Michigan Press,1975.
    [140]J.H.Holland,Adaptionin Naturaland Artificial Systems[M]. Boston, MIT Press,1992.
    [141]D.E.Goldberg, Genetic Algorithms in Search, Optimization, Machine Learning[M]. Boston: Addison-Wesley,1989.
    [142]周春光,梁艳春.计算智能[M].长春:吉林大学出版社,2001.
    [143]C.A.Coello, Evolutionary Multi-Objective Optimization: Current State and Future Challenges[C].Fifth International Conference on Hybrid Intelligent Systems(HIS'05),Rio de Janeiro,2005.
    [144]Kennedy,J.Eberhart.R.C. Particle swarm optimization[C].In: Proc.of the IEEE International Conference on Neural Networks. Piscataway, NJ, Perth, Australia:IEEEservice center,1995:1942-1948.
    [145]水利部水利信息中心.水文情报预报规范[M].北京:中国水利水电出版社,2008,8:11-16.