北极径流变化的关键气候因子及其对北冰洋海冰变化影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北冰洋是地球系统的一部分,它直接影响着全球尺度的大气环流、海洋环流和气候变异,因而成为全球气候变化的驱动器之一。近30年来北冰洋海冰的快速减少最为引人注目,而入海径流是北冰洋重要的淡水来源。入海径流的变化直接影响到北冰洋盐跃层的生长和消退,进而影响海冰的热力过程和海洋温盐环流。而且由北冰洋的海冰输出又直接影响北大西洋北部深层对流的强度,进而影响全球海洋温盐环流,对气候变化具有显著影响。
     在前人研究的基础上,本论文1)对径流的季节和年代际变化规律、影响径流的关键气候因子、径流与海冰的关系三个问题进行了资料分析;2)利用全球海冰-海洋耦合模式探索了入海径流对北冰洋上层海水结构、海水-海冰间的通量交换、海冰分布和北大西洋深层水生成的影响及可能机制;3)初步建立高分辨率的北冰洋区域海冰-海洋耦合模式模拟气候态北冰洋海冰和海洋的状态,并进一步研究入海径流对北冰洋海冰-海洋的影响。
     首先,通过对径流资料的分析发现:第一,北极地区的径流表现出剧烈的季节变化,并且近30年的年际变化明显:最大的四条河流在冬季、春季径流量增加明显,在夏季径流则减少明显,年平均径流量变化趋势与秋季变化趋势完全相同,反应了融冰期提前,本属于夏季径流的冰雪融水叠加到了冬春季的流量中。第二,利用多元线性回归分析表明:春季,影响入海径流变化的主要因子是气温;夏季,影响Ob和Yenisei河径流量变化的因子依次是积雪覆盖面积和降水,而对于Lena河和Mack河,降水是最主要的影响因子;与欧亚大陆的三条河流不同,大气环流对Mackenzie河起着不可忽略的影响。第三,分析了径流与海冰的关系:入海径流与海冰相关的显著区域一般出现在河口区和海冰边缘区域。春季,四条河流在河口附近为负相关,夏季,在春季负相关区域外侧为正相关。格陵兰寒流区域在春季与Ob河正相关,夏季与Lena河正相关,秋季与Ob、Mackenzie河负相关,冬季与Lena、Ob河负相关。
     其次,通过数值实验研究了径流的季节变化对海冰海洋的影响,与资料分析结果相似,对海冰的影响主要集中在海冰边缘区,东格陵兰寒流是主要的海冰输出流系,径流对此处海冰的影响代表了对海冰输出的影响,当冬春季径流量增加时,东格陵兰寒流等地的海冰密集度和冰厚增加,而在斯瓦尔巴岛与新地岛之间(大西洋暖水和北冰洋表层水的锋面区)的海冰密集度和冰厚则减少。而夏季径流减少同样能引起斯瓦尔巴岛与新地岛之间的海冰密集度和冰厚减少。径流的季节变化对盐度的影响最剧烈的地区在河口附近,河口区盐度的变化和月径流量有很好的相关性,当径流量小于年平均流量时,盐度为正值,反之为负值,盐度随径流量反相变化,并且有一到两个月滞后。淡水输入的多少是河口区盐度变化的最直接、最主要的原因。但对河口区的温度影响并不明显。值得注意的是格陵兰岛南侧下沉流的区域,当冬春季径流减少,夏秋季径流增大时,温度和盐度同时降低,下沉流有增强的趋势,而近30年来,径流在冬春季明显增加,在夏季明显减少,因此减弱了下沉流,阻碍了大西洋深层水的生成。
     最后,建立了北冰洋区域冰海耦合模式,利用与全球模式完全一样的初始场和强迫场,来模拟北冰洋的温盐结构和海冰情况,并与观测资料和全球模拟结果对比。结果表明:模拟的海冰基本体现了12个月的海冰形态和变化规律,在冬季春季模拟效果比全球模式要好,尤其在格陵兰海和巴伦支海地区,而在拉布拉多海和巴芬湾地区则不如全球模式。在夏秋季节,区域模式对楚科奇海的海冰模拟偏少。模拟的温盐也基本体现了表层还是低温低盐,次表层水高温高盐的特征,但在表层盐度的模式上存在一定的不足,北冰洋中心盐度偏高1psu,冷盐跃层的模拟优于全球模式,与观测结果吻合较好。
The Arctic can be viewed as an integrated system, characterized by intimate couplings between it atmosphere, ocean and sea ice, linked in turn to the larger global system. River inflow is the major part of the Arctic freshwater budget, and of special importance in the Arctic Ocean. This paper discusses the seasonal and decadal variation, dominant climate factors of the arctic runoff, and association between the arctic runoff and sea ice; then using a coupled ice-ocean model studies the impacts on the ocean and sea ice; finally sets up arctic regional model to simulate the climate mean sate of the Arctic Ocean and sea ice.
     The results suggest that the arctic runoff exhibits an increasing trend for spring and winter and a decreasing trend in summer. The surface air temperature is the dominant factor in influencing for all the four rivers in spring. In summer, snow cover is the most important factor for the Ob and Yenisei rivers, while precipitation is the most important factor for Lena and Mackenzie. For Mackenzie, atmospheric circulation does play an important role for all the seasons, which is not the case for the Eurasian rivers. We further discuss the relationships between the Arctic runoff and sea ice. It shows significant relation in estuaries and sea ice edge, such as east Greenland current, Siberian coast and so on. It is noteworthy that Lena impacts the sea ice along east Greenland remarkably, negatively correlated in spring and winter, positively correlated in summer and autumn.
     The model results are similar to the observation results. The influence to sea ice is in its edge, such as east Greenland current and the sea area between Svalbard and Novaya Zemlya, an oceanic front. The sea ice concentration and thickness increase along east Greenland, decrease between Svalbard and Novaya Zemlya as the runoff rises in spring and winter. The summer and autumn situation are similar to the spring when the summer runoff reduces. The main affected zone to salinity is estuarine area. Relations between salinity and runoff are obvious anti-phase changed. When runoff increase in spring and winter, decrease in summer and autumn, the downwelling in the north Atlantic becomes weaken.
     The regional model and global model have merits and demerits. Regional model sea ice results are better in winter, while global model results are better in summer. For the salinity and temperature simulations, regional model is better in Atlantic layer and global model in surface.
引文
[1]冯士筰.海洋科学导论.北京:高等教育出版社,2003. 35~40
    [2]史久新,赵进平,矫玉田,等.太平洋入流及其与北冰洋异常变化的联系.极地研究,2004,16(3):253~260
    [3]王学忠.北极海冰气候变率的模拟研究:[博士学位论文] .南京:南京气象学院,2004
    [4]曹雅静.北极海域海冰年际变化的数值模拟:[硕士学位论文] .青岛:中国海洋大学, 2006
    [5] Walsh, J. E. Role of sea ice in climate variability: theories and evidence. Atmos-Ocean, 1983, 21,229~242
    [6] Aagaard, K. and E. C. Carmack. The role of sea ice and other freshwater in the Arctic circulation. J. Geophys. Res., 1989,94, 14485~14498
    [7] Barry, R. G., M. C. Serreze, J. A. Maslanik, R. H. Preller. The Arctic sea-ice climate system: Observations and modeling. Rev. Geophys., 1993, 31, 397~422.
    [8] Rind, D., Healy, R., Parkinson C. and Martinson, D. The role of sea ice in 2xCO2 climate model sensitivity. Part 1: the total influence of sea ice thickness and extent. J. Climate,1995,8, 449~463
    [9] Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden and X. Dai, Eds. Climate Change 2001: The Scientific Basis. IPCC Third Assessment Report, Cambridge University Press, UK, pp.944
    [10] Vinje, T., Nordlund, N. and Kvambekk, A.. Monitoring ice thickness in Fram Strait. J. Geophys. Res., 1998,10, 10437~10450
    [11] Hakkinen, S.. An arctic source for the great salinity anomaly: A simulation of the arctic ice-ocean system for 1955-1975, J. Geophys. Res., 1993, 98, 16397~16410
    [12] Delworth, T. L., Manabe, S. and Stouffer, R.. Multidecadal climate variability in the Greenland Sea and surrounding regions: a coupled simulation. Geophys. Res. Lett., 1997,24, 257~260
    [13] Josefino C. Comiso. Warming trends in the Arctic from clear shy satellite observations Journal of Climate. 2003,16, 3,498~3,510
    [14] Meier, W. N., J. Stroeve, and F. Fettter. Whither Arctic sea ice? A clear signal of decline regionally, seasonally, and extending beyond the satellite record. Annals of Glaciology. 2007,46, 428~434
    [15] Parkinson, C. L., D. J. Cavalieri, P. Gloersen, H. J. Zwally, J. C. Comiso. Arctic sea ice extents, areas, and trends, 1978-1996. J. Geophys. Res., 1999,104, 20,837~20,856
    [16] Liu J., J. A. Curry, Y. Hu. Recent Arctic sea ice variability: Connections to the Arctic Oscillation and the ENSO. Geophys. Res. Lett., 2004,31, doi: 10.1029/2004GL019858
    [17] Jennifer A. Francis and Elias Hunter. Drivers of declining sea ice in the Arctic winter: A tale of two seas. GRL, 2007, Vol:34, L17503
    [18] Meier, W. N., J. Stroeve, and F. Fettter. Whither Arctic sea ice? A clear signal of decline regionally, seasonally, and extending beyond the satellite record. Annals of Glaciology, 2007,46, 428~434
    [19] Stroeve J C. Fetterer F. Tracking the Arctic's Shrinking Ice Cover: Another Extreme Minimum in 2004. AGU Fall Meeting, 2004
    [20] Josefino C. Comiso. Abrupt Decline in the Arctic Winter Sea Ice Cover. Geophysical Research Letters , 2006, 33,18,18504-1-18504-5
    [21] Josefino C. Comiso. Arctic warming signals from satellite observations. Weather,2006,Vol: 61, No:3, 70~76
    [22] Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock., Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 2008, 35, L01703, doi: 10.1029/2007GL031972
    [23] Jinlun Zhang, Ron Lindsay, Mike Steele, Axel Schweiger. What drove the dramatic retreat of arctic sea ice during summer 2007? GRL, 2008, VOL: 35, L11505, doi: 10.1029/2008GL034005.
    [24] Hassol, S. J. Impacts of a Warming Arctic: Arctic Climate Impact Assessment. Cambridge Univ. Press, New York. 2004. 139 pp
    [25] W. Dorn, K. Dethloff. The recent decline of the arctic summer sea-ice cover in the context of internal climate variability. The Open Atmospheric Science Journal, 2008,2,91~100
    [26] Julienne Stroeve, Marika M. Holland 2007 Arctic sea ice decline: Faster than forecast. GRL, 2007, Vol:34, L09501, doi: 10.1029/2007GL029703
    [27] Gascard, J. C., and Coauthors. Exploring Arctic transpolar drift during dramatic sea ice retreat. Eos, Trans. Amer. Geophys. Union, 2008,89, 21~28
    [28] Kwok, R.. Summer sea ice motion from the 18 GHz channel of AMSR-E and the exchange of sea ice between the Pacific and Atlantic sectors, Geophys. Res. Lett ., 2008,35, L03504, doi:10.1029/2007GL032692, 2008
    [29] J. Richter-Menge, J. Overland, M. Svoboda. Arctic Report Card 2008. October 2008
    [30] Meier, W. N., J. Stroeve, and F. Fettter. Whither Arctic sea ice? A clear signal of decline regionally, seasonally, and extending beyond the satellite record. Annals of Glaciology, 2007, 46, 428~434
    [31] Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock. Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 2008, 35, L01703, doi: 10.1029/2007GL031972
    [32] Rothrock D A, Yu Y, Maykut G A. Thinning of the Arctic Sea-ice Cover. GEOPHYSICAL RESEARCH LETTERS, 1999, Vol:26, P3469~3472
    [33]史久新,赵进平.北冰洋盐跃层研究进展.地球科学进展,2003,Vol:18,No:3,351~357
    [34] Mclaughlin F A, Carmack E C, Macdonald R W, et al. Physical and geochemical Properties across the Atlantic/Pacific water mass front in the southern Canadian basin. Journal of Geophysical Research, 1996, 101(C1),1183~1197
    [35] Morison J, Steele M, Andersen R. Hydrography of the upper Arctic Ocean measured from the Nuclear submarine USS Pargo. Deep-sea Research, 1998, 45,15~38
    [36] Steele M, Boyd T. Retreat of the cold halocline layer in the Arctic Ocean. Journal of Geophysical Research, 1998, 103(C5): 10419~10435.
    [37] McPhee, M.G., Stanton, T. P. Morison, J. H. and Martinson, D. G. Freshening of the upper ocean on the Arctic: Is perennial sea ice disappearing? Geophys. Res. Lett., 1998, 25, 1729~1732.
    [38] Aaggaard K, Coachman L K, Carmack E. On the halocline of the Arctic Ocean Deep-Sea Research, 1981, 28,529~545.
    [39] B. Rudels,L. G. Anderson. Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean. J. Geophys. Res., 1996,101(C4), 8807~8821
    [40] SHIKLOMANOV I.A, R.B. LAMMERS, B.J.PETERSON. The dynamics of river waterinflow to the Arctic Ocean. The freshwater budget of the arctic ocean, 2000, 281~296
    [41] Aagaard, K. and E. C. Carmack, The role of sea ice and other freshwater in the Arctic circulation. J. Geophys. Res., 1989, 94, 14485~14498
    [42] Barry R G, Serreze M C. Atmospheric components of the Arctic Ocean freshwater balance and their interannual variability. In E.L. Lewis et al. (eds.) "The Freshwater Budget of the Arctic Ocean". 2000. Kluwer, pp. 45~56
    [43] Barry, R. G., M. C. Serreze, J. A. Maslanik, R. H. Preller. The Arctic sea-ice climate system: Observations and modeling. Rev. Geophys., 1993,31, 397~422
    [44] W.E. Grabs, F. Portmann. Discharge observation networks in arctic regions: computation of the river runoff into the Arctic Ocean, its seasonality and variability. The Freshwater Budget of the Arctic Ocean, 2000,249~267
    [45] I.P. Semiletov, N.I. Savelieva. The dispersion of Siberian river flows into coastal waters: Meteorological, hydrological and hydrochemical aspects. The freshwater budget of the Arctic Ocean, 2000, 323~366
    [46] Arnell, N.W. Implication of climate change for freshwater inflows to the Arctic Ocean. J.Geophys.Res., , 2005,110, D0715
    [47]隋翠娟,张占海,刘骥平.北极径流变化及影响因子分析.海洋学报,2008,Vol:30,No:4, 39~47
    [48] Dorothea Bauch, Peter Schlosser, and Richard G. Fairbanks. Freshwater balance and the sources of deep and bottom waters in the Arctic Ocean inferred from the distribution of H218O. Progress In Oceanography, 1995,Vol:35, Issue:1, 53~80
    [49] Bruce. J. Peterson, Robert M. Holmes, James W.Mc Clelland. Increasing River Discharge to the Arctic Ocean. SCIENCE, 2002, Vol:298,2171~2173.
    [50] Daqing Yang, Baisheng Yeb and Douglas L. Kane. Stream flow changes over Siberian Yenisei river basin. Journal of Hydrology,2004, Vol: 296, Issues :1-4, 59~80
    [51] Daqing Yang, Douglas L. Kane, Larry D. Hinzman, Xuebin Zhang, Tingjun Zhang. Siberian Lena River hydrologic regime and recent change. JGR, 2002, Vol: 107, No:D23, 4694, doi: 10.1029/2002JD002542.
    [52] Erik Stokstad. River flow could derail crucial ocean current. SCIENCE. 2002,Vol:298,2110
    [53] Treshnikov, A. F., Atlas of the Arctic. Moscow, 1985.204 pp.
    [54] Cattle H. Diverting Soviet rivers: Some possible repercussions for the Arctic Ocean. Polar Rec., 1985, 22,485~498
    [55] Aagaard, K. and E. C. Carmack. The role of sea ice and other freshwater in the Arctic circulation. J. Geophys. Res., 1989, 94, 14485~14498.
    [56] Miller, J. R., and G. L. Russell. The Impact of Global Warming on River Runoff. J. Geophys. Res., 1992, 97(D3), 2757~2764
    [57] Steele, M. and T. Boyd. Retreat of the cold halocline layer in the Arctic Ocean. J. Geophys. Res., 1998. 103, 10,419~10,435
    [58] Barry, R.G. and M.C. Serreze. Atmospheric components of the Arctic Ocean freshwater balance and their interannual variability. In E.L. Lewis et al. (eds.) "The Freshwater Budget of the Arctic Ocean". Kluwer, 2000, 45~56
    [59] I.H. Harms, M.J. Karcher, D.Dethleff. Modelling Siberian river runoff-implications for contaminant transport in the Arctic Ocean. JMS, 2000, 95~115
    [60] Brenda Ekwurzel, Peter Schlosser, Richard A. Mortlock,and Richard G.Fairbanks. Riverrunoff, sea ice meltwater, and Pacific water distribution and mean residence times in the Arctic Ocean. JGR, 2001, Vol:106,No:C5,9075~9092
    [61] Boyd, T. J., M. Steele, R. D. Muench, and J. T. Gunn. Partial recovery of the Arctic Ocean halocline. Geophys. Res. Lett., 2002, 29(14), 1657, doi: 10.1029/2001GL014047
    [62] Guay, Christopher K. H. Wind-driven transport pathways for Eurasian arctic river discharge. JGR, 2001, Vol: 106 Issue: C6,11469~11480.
    [63] Daqing Yang, Douglas L. Kane. Siberian Lena river hydrologic regime and recent change. JGR, 2002,Vol:107 No:D23,1~10
    [64] Matthias Prange, Gerrit Lohmann. Effects of mid-Holocene river runoff on the Arctic ocean/sea-ice system: a numerical model study. The Holocene, 2003,Vol:13, No:3, 335~342 DOI: 10.1191/0959683603hl626rp
    [65] Bruno Rudolf. The observed arctic hydrological cycle, ACSYS,2004
    [66] Odd Helge Ottera, Helge Drange. A possible feedback mechanism involving the arctic freshwater, the arctic sea ice, and the north Atlantic drift. Advances in Atmospheric Sciences,2004, Vol:21, No:5,784~801
    [67] Prange, M., and R. Gerdes. The role of surface freshwater flux boundary conditions in Arctic Ocean modelling. Ocean Modelling, 2006, 13, 25~43.
    [68] Hibler III, W. D. A Dynamic Thermodynamic Sea Ice Model. J. Phys. Oceanogr., 1979,9 ,815~846
    [69]蔡天鸣.北极海冰热力学系统的可变区域分解及动边界的辨识:[硕士学位论文] .大连:大连理工大学,2006
    [70]宋洁. 1979-1998年北极海冰的数值模拟:[硕士学位论文] .南京:南京气象学院,2004
    [71] Hunke, E. C., and J. K. Dukowicz. An Elastic-Viscous-Plastic Model for Sea Ice Dynamics. J. Phys. Oceanogr. , 1997,27, 1849~1867
    [72] Maykut G.A.,and N.Untersteiner. Some results from a time-dependent thermodynamic model of sea ice. JGR. , 1971, 76,1550~1575
    [73] Semtner A. J. A model for the thermodynamic growth of sea ice in numerical investigations of climate. JPO, 1976, 6, 379-389.
    [74] Semtner A. J. On modeling the seasonal thermodynamic cycle of sea ice in studies of climatic change. Clim. Change, 1984, 6, 27~37
    [75] Parkinson C. L. and W. M. Wahington. A large-scale numerical model of sea ice. JGR., 1979, 84(C1), 311~337
    [76] Lemke P. A coupled one-dimensional sea ice-ocean model. JGR., 1976,92(C12), 13164~13172
    [77] Bitz C. M., and W. H. Lipscomb. An energy-conserving thermodynamic model of sea ice. JGR., 1999,104(C7), 15669~15677
    [78] Kreyscher M., Harder M., Lemke P. Results of the sea ice model intercomparison project: Evaluation of sea ice rheology schemes for use in climate simulations. JGR., 2000, 105(C5): 11299~11320
    [79] Hunke E. C., and J. K. Dukowicz. An elastic-viscous-plastic model for sea ice dynamics. JPO, 1997,27, 1849~1867
    [80] Murray R J. Explicit generation of orthogonal grids for ocean models. Journal Computational Physics, 1996, 126,251~273
    [81] Greatbatch R J, Lu Y and Cai Y. Relaxing the Boussinesq approximation in ocean circulationmodels. Journal of Atmospheric and Oceanic Technology, 2001,18,1911~1923
    [82] McDougall T J, Jackett D R and Wright D G, et al. Accurate and computationally efficient algorithms for potential temperature and density of seawater. Journal of Atmospheric and Oceanic Technology, 2003,20,730~741
    [83] Holland W R, Chow J C and Bryan F O. Application of a third-order upwind scheme in the ncar ocean model. Journal of Climate, 1998, 11,1487~1493
    [84] Griffies S M, Gnanadesikan A and Pacanowski R C. Isoneutral diffusion in a z-coordinate ocean model. Journal of Physical Oceanography, 1998, 28, 805~830
    [85] Griffies S M. The Gent-McWilliams skew-flux. Journal of Phusical Oceanography, 1998, 28,831~841
    [86] Bryan K and Lewis L J. A water mass model of the world ocean. Journal of Geophysical Research, 1979, 84,2503~2517
    [87] Pacanowski R C and Philander G. Parameterization of vertical mixing int numericak models of the tropical ocean. Journal of Physical Oceanography, 1981,11,1442~1451
    [88] Large W G, McWilliams J C, and Doney S C. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 1994,32,363~403
    [89] Griffies S M and Hallberg R W. Biharmonic friction with a Smagorinsky viscosity for use in large-scale eddy-permitting ocean models. Monthly weather Review, 2000,128, 2935~2946
    [90] Large W G, Danabasoglu G, McWilliams J C, et al. Equatorial circulation of a global ocean climate model with anisotropic horizontal viscosity. Journal of Physical Oceanography, 2001, 31, 518~536
    [91] Smith R D and McWilliams J C. Anisotropic horizontal viscosity for ocean models. Ocean Modelling, 2003, 5,129~156
    [92] Campin J M and Goosse H. Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinate. Tellus, 1999, 51A, 412~430.
    [93]魏泽勋,乔方利,方国洪,崔秉昊.全球大洋环流诊断模式研究——流场及流函数.海洋科学进展,2004,Vol:22,No:1, 1~14
    [94]雷霁,杨海军.海洋垂直混合系数对大洋环流影响的敏感性研究.北京大学学报,2008 ,Vol:44,No:6,864~870
    [95]魏泽勋.中国近海环流及其季节变化的数值模拟:[博士学位论文] .青岛:国家海洋局第一海洋研究所,2004
    [96]闫巨盛.赤道太平洋对大气热力和风应力强迫响应的比较研究: [硕士学位论文] .南京:南京信息工程大学,2006
    [97]黄嘉佑.气象统计分析与预报方法.北京:气象出版社,2004
    [98]王文中. Excel在统计分析中的应用.北京:中国铁道出版社,2003
    [99]刘京娟.多元线性回归模型检验方法。湖南税务高等专科学校学报,2005,Vol:18,No:5,48~50
    [100] Jennifer A. Francis and Elias Hunter. Drivers of declining sea ice in the Arctic winter: A tale of two seas, GRL, 2007, Vol:34, L17503,1~5
    [101]马禹,储长江,王旭.气候因子对南疆浮尘日数变化的影响.干旱区地理,2006,Vol:29,No:12,464~469
    [102]南忠仁,李吉均.几种统计学方法在环境影响因子辨识中的应用.农村生态环境,2001,17(2),59~63
    [103]田忠志.应用“多元线性回归分析法”建立洪泽湖水质预测模型的尝试.治淮,1985,03,28~31
    [104]石磊.线性回归模型复相关系数的影响评价.云南大学学报,1995,Vol:17,No:2,136~139
    [105]刘其根,陈立侨,陈勇.千岛湖水华发生与主要环境因子的相关性分析.海洋湖沼通报,2007,No:1,117~124
    [106] Wang, J., J. Zhang, E. Watanabe, M. Ikeda, K. Mizobata, J. E. Walsh, X. Bai, and B. Wu. Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent?, Geophys. Res Lett., 2009,36, L05706, doi:10.1029/2008GL036706
    [107] Rawlins, M.A., M. Steele, M.C. Serreze, C.J. Vorosmarty, W. Ermold, R.B. Lammers, K.C. McDonald, T.M.Pavelsky, A. Shiklomanov, and J. Zhang. Tracing freshwater anomalies through the air-land-ocean system: A case study from the Mackenzie River basin and the Beaufort Gyre. Atmosphere-Ocean, 2009,47(1), 79~97, doi:10.3137/OC301
    [108] Zhang, J., M. Steele, and R. Woodgate. The role of Pacific water in the dramatic retreat of arctic sea ice during summer 2007. J. Polar Science, 2008, accepted
    [109] Zhang, J., R.W. Lindsay, M. Steele, and A. Schweiger, What drove the dramatic retreat of Arctic sea ice during summer 2007? Geophys. Res. Lett., 2008, 35, L11505, doi:10.1029/2008GL034005
    [110]朱大勇,赵进平,史久新.北极楚科奇海海冰面积多年变化的研究.海洋学报, 2007,29(2),24~33
    [111]刘海文.北极海冰及其与气候变化的关系研究进展.陕西气象,2005,7~10
    [112]谢小萍,刘玉洁.利用FY-1D全球数据监测北极冰雪覆盖.南京气象学院学报,2007,Vol:30,No:1,57~62
    [113]董新宁,孙照渤.北极海冰变化及其与中国秋季气温的相关分析.南京气象学院学报,2006,Vol::29,No:1,82~87
    [114]徐兴奎,林朝晖.气象因子与地表植被生长相关性分析.生态学报,2003,Vol:23,No:2,221~230 .