细胞壁在海州香薷铜耐性中的作用及解毒机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜是世界范围内广泛分布的重金属之一,近年来随着工农业的发展和三废的排放,使得环境中的铜含量迅速增加,造成土壤环境中的铜污染日益严重。当植物生长在铜污染的区域中,植物细胞壁不仅仅起到隔绝铜污染的土壤环境与植物内部细胞的屏障作用,而且在植物对重金属铜的防御反应中发挥至关重要的作用。然而,关于植物细胞壁中的铜的积累、耐性、解毒及信号转导的细胞学机理有待进一步的研究。海州香薷(Elsholtzia splendens)是一种高铜耐性植物,其体内铜的积累量高达1000mg/kg的铜,可生存在高铜污染的区域中,是一种铜污染土壤修复的优选植物。因此,本文以海州香薷的细胞壁为研究对象,从亚细胞、蛋白质组学的水平上阐释了海州香薷细胞壁对铜吸收累积与耐性解毒的分子机理,并构建了细胞壁中压力胁迫的蛋白信号通路。本研究为细胞壁中的压力胁迫应答机制研究提供新的视野,并为土壤铜污染的植物修复提供理论依据和科学支撑。主要研究成果如下:
     1、采用分级离心法分离细胞不同组份,明确了不同浓度铜胁迫下的铜离子在海州香薷根、茎、叶中亚细胞分布特征及其化学结合形态。细胞壁是Cu的主要积累位点(68%),其次为液泡(26.6%),只有少量的Cu分布在叶绿体等细胞器中。随着铜离子浓度的增加,亚细胞各个组分中的铜含量也相应的增加。铜离子在海州香薷体内尤其是根系中的形态分布和特征与其对铜离子的耐性有着密切的联系。铜离子在海州香薷各组织中结合的化学形态是不同的,在根中,铜离子主要以水溶性有机酸盐结合态铜或难溶性磷酸盐结合态铜的形式存在;在茎和叶中铜离子以难溶性磷酸盐结合态铜占绝对优势,其次为无机盐、蛋白结合态铜为主的形态存在。随着铜胁迫浓度的增加,铜离子由活动性较强的可溶性盐类,蛋白结合态铜向难溶的磷酸盐及草酸盐结合态转化。铜离子与低活性的磷酸盐及草酸盐结合被固定是海州香薷铜耐性和解毒的重要机制。聚类分析证实了铜离子在不同的亚细胞器官中具有不同的化学结合形态,各化学形态和亚细胞分布于铜的迁移能力及生物活性密切相关。
     2、利用细胞壁化学改性结合吸附动力学试验和红外光谱学研究了海州香薷根细胞壁及其组份对铜离子的吸附动力学特征,以及它们吸附固定铜离子的功能基团。吸附动力学表明,海州香薷根细胞壁对Cu2+具有较高的亲和力,吸附300min后,根细胞壁的铜吸附量已接近于饱和水平,吸附量可以达到最大吸附量的90%左右,500mmin达到吸附饱和,饱和吸附量为5.85mg/g细胞壁。当细胞壁进行化学改性后,如果胶甲基化程度降低,及去除细胞壁中的纤维素后显著降低根细胞壁对铜的吸附量。红外光谱研究也表明,在海州香薷根细胞壁吸附Cu2+的过程中,羟基、羧基和氨基是Cu2+的主要结合位点。其中纤维素和半纤维素为Cu2+的结合提供了羧基官能团,果胶提供了羟基官能团,而细胞壁蛋白提供了氨基官能团等结合位点。细胞壁中果胶和纤维素是铜离子主要吸附结合部位,分别吸附了19.85%和25.48%的铜。此外,蛋白质与果胶,果胶和半纤维素之间存在协同作用共同吸附固定铜。根细胞壁及其各组份对铜离子具有较高的吸附固定能力是海州香薷根系Cu耐性的重要机制。
     3、分析了细胞壁多糖的组成、含量和分布特征与海州香薷铜耐性之间的关系,测定了三种典型的细胞壁多糖指标(总糖、半乳糖醛酸及3-脱氧-D-甘露-2-辛酮糖酸)。细胞壁多糖含量变化与细胞解毒过程密切相关。海州香薷通过改变细胞壁组份如(果胶,半纤维素,纤维素)的含量增加对铜的耐受性。多糖为铜离子提供了较多的羧基结合位点,是细胞壁多糖解毒的重要机制。随着铜离子胁迫的增加,细胞壁多糖组分的含量发生变化。其中根,叶中总果胶,半纤维素总糖含量极显著增加(P<0.01),而茎中其含量显著减少,在根、茎、叶中纤维素总糖含量均显著降低(P<0.05);而根、茎、叶中果胶及纤维素中的半乳糖醛酸含量略微增加,根、叶中半纤维素的半乳糖醛酸含量降低,同时,茎中半纤维素的半乳糖醛酸含量增加。根、茎、叶细胞壁果胶的KDO含量随着铜胁迫的增加均略微增加。植物通过这种行为把大量的铜聚集在细胞壁上,避免了对内部细胞器的胁迫,这也是海州香薷对铜离子胁迫解毒的一种生理响应,同时也揭示了细胞壁特别是细胞壁多糖在海州香薷对铜解毒方面发挥着重要的作用。
     4、分离海州香薷细胞壁,优化细胞壁蛋白的提取方法,探究海州香薷细胞壁蛋白含量与细胞壁中铜积累量之间的相关性分析。结果显示:在根细胞壁中随着铜离子胁迫浓度的增加,根细胞壁中铜的积累量也是逐步增加的。当铜离子浓度为100μm0l/L时,细胞壁中的铜离子浓度达到最大值1.41mg/g细胞壁干重。根细胞壁蛋白随着铜胁迫浓度的升高先增加后减少,在50μmol/L铜胁迫下,根细胞壁蛋白含量达到最高值,26.85μg/g细胞壁干重。铜在根细胞壁中积累引起细胞壁对铜的一系列响应,包括基因的调控等,从而引起细胞壁蛋白含量的波动性变化。细胞壁蛋白含量变化的波动趋势与细胞壁铜积累量的波动趋势相同,由此说明细胞壁蛋白含量的变化与海州香薷耐铜性的表现趋于一致。在SDS-PAGE蛋白谱图中,根细胞壁蛋白有超过25个蛋白谱带被分离,大多落在标准分子量为10-170kD范围内,在50μmol/L铜胁迫下,根细胞壁蛋白在10-25kD范围内与对照相比条带明显增多。
     5.iTRAQ技术结合LC-ESI-MS质谱技术分离鉴定了在50μmol/L铜胁迫48h后海州香薷根细胞壁蛋白表达情况。共479个表达蛋白被分离鉴定,其中55个蛋白显著差异表达,其中22个蛋白上调,33个蛋白下调。对根细胞壁差异表达蛋白进行GO分析,探究这些蛋白参与的生物学过程及分子功能,研究表明:23.24%参与了代谢过程,16.20%参与了细胞学过程及14.79%参与了应激反应;41.38%为结合蛋白,31.03%为催化活性蛋白及11.49%为转运蛋白。由此可见细胞壁差异表达蛋白具有多种分子功能,并参与了多种生物学过程。上调蛋白主要参与了抗氧化胁迫、细胞壁多糖修改及修饰及一些代谢过程,下调蛋白主要参与了信号转导、能量及蛋白合成等代谢过程。细胞壁蛋白是外界环境胁迫和细胞壁骨架间交换信息的媒介和桥梁,丰富的细胞壁内部应激相关信号通路及各种代谢过程相互作用共同构建了一个复杂的应激反应网络抵抗铜离子的胁迫。
Copper is a widespread heavy metal in the world, as a consequence of industrial and agricultural activities in recent years, which are released to the environment. The accumulation of Cu within soils is becoming a major environmental problem. When plant grew on the copper-contaminated areas, cell wall not just provided a physical barrier between copper-contaminated soils and the internal contents of plant cells, also played a crucial role in plant defense response to toxic metals. However, the cytological mechanism in cell wall of Cu uptake, accumulation, detoxification, tolerance and signals transduction is needed for further research. Elsholtzia splendens as a copper-tolerant plant can survive extremes in a high copper content area, which may serve as a good candidate for phytoremediation of copper-contaminated soils. It can accumulate over1000mg/kg of Cu in the body. In this study, we elucidated the mechanisms of Cu uptake, accumulation, tolerance and detoxification in E. splendens cell wall at the cytological and proteome levels for the first time and proposed a possible protein interaction network in response to copper stress of cell wall. Our research would give new insights into stress response in cell wall and could provide theoretical and scientific basis for phytoremediation of copper contaminated soil. The main results were summarized as follows:
     1. Using of the grading centrifugation method, it was found that the subcellular distribution and the chemical form of copper ions in roots, stems and leaves under different copper concentration. The highest proportion of Cu was stored in the cell walls (68%) and vacuoles (26.6%), only a small amount of Cu was stored in cell organelles such as chloroplasts. With the increasing of Cu concentration, subcellular copper content of each component also increased. The distribution characteristic of Cu especially in roots was closely related to its tolerance. Meanwhile, Cu taken up by E. splendens existed in different chemical forms. In roots, the majority of Cu was in the forms of water-soluble and un-dissolved phosphate, while most of Cu was in the forms of un-dissolved phosphate, inorganic salts and proteins in stems and leaves. In addition, increasing Cu supply, the binding capacity of Cu to soluble salt or protein reduced but that to insoluble oxalate or un-dissolved phosphate increased. Cu ions integrated with low bio-available compounds, such as un-dissolved phosphate or oxalate which contributed to the metal tolerance and detoxification of E. splendens. Cluster analysis, based on copper abundance levels revealed that the correlations with the chemical forms and intracellular location which indicated the relationship between their migration activity and the toxicity.
     2. Chemical modification of cell wall, adsorption dynamic experiments and the FTIR spectroscopy analysis were combined to explore adsorption kinetic characteristics and the functional groups of the cell wall and its components under copper stress. The adsorption dynamic experiments showed that the copper content adsorbed by the root cell wall was close to its saturation level after300minutes, which was about90%of the maximum adsorption capacity. We obtained a saturated adsorption capacity of copper after500minutes, which was5.85mg Cu/g cell wall. The proportion of copper adsorption by pectin and cellulose in the root cell wall were19.85%and25.48%, respectively. The copper adsorption by the root cell wall had been significantly reduced by the ammonia and cellulose treatments on the cell wall. The FTIR spectra also revealed that hydroxyl, carboxyl and amino group are the main binding sites of Cu2+by the root cell wall in the adsorption process. Cellulose and hemicellulose provide a combination of Cu2+with carboxyl functional groups, and pectin offers carboxyl groups while the cell wall proteins provide amino functional groups for binding sites. The results showed that the root cell wall and its components had high adsorption capacity for copper, which was an important mechanism of high copper tolerance by E. splendens.
     3. The content, composition and distribution of cell wall polysaccharide of E. splendens and their relationship to copper tolerance were analyzied. Three typical biochemical indexes (sugar, galacturonic acid and Keto-deoxyoctulosonate) of cell wall polysaccharides were investigated. The results illustrated that the content of them was closely related to the toxicity degree. Changes of cell walls polysaccharide in cell walls fraction (such as pectin, cellulose, hemicellulose, etc.) decreased copper toxicity in plant. Expression of cell wall polysaccharides offered more carboxyl groups and provided more binding sites for copper ions. This behavior could be considered as a defense mechanism by E. splendens against heavy metal. With the increasing of Cu supply, various components in cell wall were fluctuated. The total sugar content of hemicellulose and pectin increased very significantly in roots and leaves (P<0.01), whereas that declined perceptibly in stems. The sugar content of cellulose all declined in roots, stems and leaves (P<0.05). The galacturonic acid content of pectin and cellulose increased slightly in roots, stems and leaves, while that of hemicellulose declined in roots, leaves and increased in stems. The Keto-deoxyoctulosonate (KDO) content of pectin was increased slightly by copper in roots, stems and leaves. Plants accumulated lots of copper ions in the cell wall to protect protoplast against copper toxicity, which was a physiological response by E. splendens. It also confirmed that cell wall, especially for cell wall polysaccharides played an important role in copper detoxification.
     4. Optimization of the extraction methods of cell wall proteins and determined the relation on correlation of copper accumulation and cell wall proteins content in E. splendens. With the increasing of Cu supple, the copper accumulation in the root cell wall was also increased gradually. The content of copper in cell wall reached its highest level (1.41mg/g cell wall) under100μmol/L Cu. The cell wall proteins content in roots first increased then decreased with the increasing of Cu supply. The content of root cell wall protein reached its highest level (26.85μg/g dry weight of cell wall) on50μmol/L copper stress. Copper accumulation in the root cell wall caused a series of physiological response including gene regulation which presented the fluctuation in the content of cell wall proteins. The same fluctuation trend between the content of cell wall proteins and the copper accumulation indicated that cell wall proteins might participate in the copper tolerance or detoxification by the cell wall. In SDS-PAGE protein spectra, more than25protein bands from the root cell wall proteins were separated, most of them falled in the standard for10-170KD molecular weight range. With50μmol/L Cu stress, the root cell wall proteins within10to25KD increased obviously compared with the contrast stripe.
     5. To gain a comprehensive understanding the response to Cu in plant cell wall. iTRAQ with LC-ESI-MS/MS approach were applied to identified differentially expressed cell wall proteins of E. splendens under Cu stress. A total of479proteins were identified, among them55proteins expressed significantly under48h-treatment at50μmol/L Cu. Functional classifications of the55different expressed proteins were classified based on the enrichment in two Gene Ontology (GO) categories:molecular function, and biological process. The top three categories of the identified proteins were those involved in metabolic processes (23.24%), cellular processes (16.20%), and response to stimuli (14.79%), following the top three abundant category was classified according to GO molecular annotation into binding (41.38%), catalytic activity (31.03%), and transport activity (11.49%) respectively. The observed diversity in biological function and biological processes of the identified cell wall proteins demonstrated that the response to Cu stress by the root cell wall of E. splendens was a complex process. Many physiological and biochemical characteristics were altered to counteract the adverse conditions. Among the22up-regulated proteins, most were related to the antioxidant defense pathway, cell wall polysaccharide modification and metabolisem process. However, the most highly down-regulated proteins in response to copper stress belonged to the category of signal, energy and protein synthesis. The communication between cytoskeleton and cell wall protein was one of the most characteristic features of cellular mechanism by which cells sense and respond to various extracellular signals effectively. Based on the abundant changes in these proteins, together with their putative functions, we proposed a possible protein interaction network associated with metal response in cell wall.
引文
Ahsan, N.,Lee, D.-G.,Lee, S.-H., et al. Excess copper induced physiological and proteomic changes in germinating rice seeds [J]. Chemosphere,2007,67 (6):1182-1193.
    Al-HAkiMi, A.-B. M.,HAMAdA, A. M. Ascorbic acid, thiamine or salicylic acid induced changes in some physiological parameters in wheat grown under copper stress [J]. Plant Protect Sci,2011,47 92-108.
    Alaoui-Sosse, B.,Genet, P.,Vinit-Dunand, F., et al. Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents [J]. Plant science,2004,166 (5):1213-1218.
    Ali, M. B.,Singh, N.,Shohael, A. M, et al. Phenolics metabolism and lignin synthesis in root suspension cultures of Panax ginseng in response to copper stress [J]. Plant science,2006,171 (1): 147-154.
    Andrade, L. R.,Leal, R. N.,Noseda, M., et al. Brown algae overproduce cell wall polysaccharides as a protection mechanism against the heavy metal toxicity [J]. Marine pollution bulletin,2010,60 (9): 1482-1488.
    Andres Colas, N.,Sancenon, V.,Rodriguez Navarro, S., et al. The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots [J]. The Plant Journal,2006,45 (2):225-236.
    Apel, K.,Hirt, H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction [J]. Annu. Rev Plant Biol 2004,55 373-399.
    Beguin, P.,Nagashima, K.,Gonoi, T., et al. Regulation of Ca2+plus; channel expression at the cell surface by the small G-protein kir/Gem [J]. Nature,2001,411 (6838):701-706.
    Bacic, A.,Harris, P. J.,Stone, B. A., et al. Structure and function of plant cell walls [J]. The biochemistry of plants. A comprehensive treatise. Volume 14. Carbohydrates.,1988,297-372.
    Baker, A.,Brooks, R. R. Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry [J]. Biorecovery,1989,1 (2):81-126.
    Baker, A. J. Accumulators and excluders-strategies in the response of plants to heavy metals [J]. Journal of plant nutrition,1981,3 (1-4):643-654.
    Baryla, A.,Laborde, C.,Montillet, J. L., et al. Evaluation of lipid peroxidation as a toxicity bioassay for plants exposed to copper [J]. Environmental Pollution,2000,109 (1):131-135.
    Bayer, E. M.,Bottrill, A. R.,Walshaw, J., et al. Arabidopsis cell wall proteome defined using multidimensional protein identification technology [J]. Proteomics,2006,6 (1):301-311.
    Bitton, G.,Freihofer, V. Influence of extracellular polysaccharides on the toxicity of copper and cadmium towardKlebsiella aerogenes [J]. Microbial Ecology,1977,4 (2):119-125.
    Boehm, A. M.,Putz, S.,Altenhofer, D., et al. Precise protein quantification based on peptide quantification using iTRAQTM[J]. BMC Bioinformatics,2007,8 (1):214.
    Bouazizi, H..Jouili, H.,Geitmann, A., et al. Structural changes of cell wall and lignifying enzymes modulations in bean roots in response to copper stress [J]. Biological trace element research,2010, 136 (2):232-240.
    Bouazizi, H.,Jouili, H.,Geitmann, A., et al. Effect of copper excess on H2O2 accumulation and peroxidase activities in bean roots [J]. Acta Biologica Hungarica,2008,59 (2):233-245.
    Boudet, A.-M. Towards an understanding of the supramolecular organization of the lignified wall [J]. The plant cell wall,2003.8155-182.
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical biochemistry,1976,72 (1):248-254.
    Branquinho, C.,Brown, D. H.,Catarino, F. The cellular location of Cu in lichens and its effects on membrane integrity and chlorophyll fluorescence [J]. Environmental and Experimental Botany, 1997,38(2):165-179.
    Bringezu, K.,Lichtenberger, O.,Leopold, I., et al. Heavy metal tolerance of Silene vulgaris [J]. Journal of Plant Physiology,1999a,154 (4):536-546.
    Bringezu, K.,Lichtenberger,O.,Leopold, I., et al. Heavy Metal Tolerance of Silene vulgaris [J]. Journal of Plant Physiology,1999b,154 (4):536-546.
    Brune, A.,Urbach, W.,Dietz, K.-J. Zinc stress induces changes in apoplasmic protein content and polypeptide composition of barley primary leaves [J]. Journal of Experimental Botany,1994,45 (9):1189-1196.
    Brune, A.,Urbach, W.,Dietz, K.-j. The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots [J]. The Plant Journal,2006,45 (2):225-236.
    Caffall, K. H.,Mohnen, D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides [J]. Carbohydrate research,2009,344 (14):1879-1900.
    Cao, Z.,Hu, Z. Copper contamination in paddy soils irrigated with wastewater [J]. Chemosphere,2000, 41 (1):3-6.
    Carafoli, E.,Lim, D. Plasma Membrane Calcium ATPase. In Handbook of Neurochemistry and Molecular Neurobiology, Springer:2009:581-596.
    Carpentier, S. C.,Witters, E.,Laukens, K., et al. Preparation of protein extracts from recalcitrant plant tissues:An evaluation of different methods for two-dimensional gel electrophoresis analysis [J]. Proteomics,2005,5 (10):2497-2507.
    Carpita, N. C.,Gibeaut, D. M. Structural models of primary cell walls in flowering plants:consistency of molecular structure with the physical properties of the walls during growth [J]. The Plant Journal.1993,3(1):1-30.
    Chang, Y. C.,Yamamoto, Y.,Matsumoto, H. Accumulation of aluminium in the cell wall pectin in cultured tobacco (Nicotiana tabacum L.) cells treated with a combination of aluminium and iron [J]. Plant, Cell & Environment,1999,22 (8):1009-1017.
    Chen, J. Characteristic of Pectin polysaccharide of cell wall in root border cells and root of Pea(Pisum Sativum)under aluminum toxicity at different boron levels [D]. Sichuan Agricultural university 2008.
    Chen, L. M.,Lin, C. C.,Kao, C. H. Copper toxicity in rice seedlings:Changes in antioxidative enzyme activities, H2O2 level, and cell wall peroxidase activity in roots [J]. Botanical Bulletin of Academia Sinica,2000,41.
    Chivasa, S.,Ndimba, B. K.,Simon, W. J., et al. Extracellular ATP functions as an endogenous external metabolite regulating plant cell viability [J]. The Plant Cell Online,2005,17(11):3019-3034.
    Colzi, I.,Arnetoli. M.,Gallo, A., et al. Copper tolerance strategies involving the root cell wall pectins in Silene paradoxa L [J]. Environmental and Experimental Botany,2012,7891-98.
    Colzi, I.,Doumett, S.,Del Bubba, M., et al. On the role of the cell wall in the phenomenon of copper tolerance in Silene paradoxa L [J]. Environmental and Experimental Botany,2011,72 (1):77-83.
    Dani, V.,Simon, W. J.,Duranti, M., et al. Changes in the tobacco leaf apoplast proteome in response to salt stress [J]. Proteomics,2005,5 (3):737-745.
    Davis, T. A.,Volesky, B.,Mucci, A. A review of the biochemistry of heavy metal biosorption by brown algae [J]. Water research,2003,37 (18):4311-4330.
    Day, A.,Fenart, S.,Neutelings, G., et al. Identification of cell wall proteins in the flax (Linum usitatissimum) stem [J]. Proteomics,2013.
    De Cnodder, T.,Vissenberg, K.,Van Der Straeten, D., et al. Regulation of cell length in the Arabidopsis thaliana root by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid:a matter of apoplastic reactions [J]. New Phytologist,2005,168 (3):541-550.
    De Philippis, R.,Paperi, R.,Sili, C. Heavy metal sorption by released polysaccharides and whole cultures of two exopolysaccharide-producing cyanobacteria [J]. Biodegradation,2007,18 (2): 181-187.
    De Vos, C. R.,Vonk, M. J.,Vooijs, R., et al. Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus [J]. Plant physiology,1992,98 (3):853-858.
    Dhakal, R. P.,Ghimire, K. N.,Inoue, K. Adsorptive separation of heavy metals from an aquatic environment using orange waste [J]. Hydrometallurgy,2005,79 (3):182-190.
    Dronnet, V.,Renard, C.,Axelos, M., et al. Heavy metals binding by pectins:selectivity, quantification and characterisation [J]. Progress in Biotechnology,1996a,14 535-540.
    Dronnet, V. M.,Renard, C. M. G. C.,Axelos, M. A. V., et al. Heavy metals binding by pectins: Selectivity, quantification and characterisation. In Progress in Biotechnology; Pectins and pectinases, Visser. J.,Voragen, A. G J., Eds.1996b; Vol.14,535-540.
    Dubois, M.,Gilles, K. A.,Hamilton, J. K., et al. Colorimetric method for determination of sugars and related substances [J]. Analytical chemistry,1956,28 (3):350-356.
    El-Nawawi, S.,Heikal, Y. Production of pectin pomace and recovery of leach liquids from orange peel [J]. Journal of food engineering,1996,28 (3):341-347.
    Ernst, W.,Verkleij, J.,Schat, H. Metal tolerance in plants [J]. Acta Botanica Neerlandica,1992,41.
    Eticha, D.,Stass, A.,Horst, W. J. Cell-wall pectin and its degree of methylation in the maize root-apex:significance for genotypic differences in aluminium resistance [J]. Plant, Cell & Environment,2005,28 (11):1410-1420.
    Feiz, L.,Irshad, M.,Pont-Lezica, R. F., et al. Evaluation of cell wall preparations for proteomics:a new-procedure for purifying cell walls from Arabidopsis hypocotyls [J]. Plant Methods,2006,2.
    Ferrari, S.,Sella, L.,Janni, M., et al. Transgenic expression of polygalacturonase-inhibiting proteins in Arabidopsis and wheat increases resistance to the flower pathogen Fusarium graminearum [J]. Plant Biology,2012,14 (sl):31-38.
    Fritz, E. Measurement of cation exchange capacity (CEC) of plant cell walls by X-ray microanalysis (EDX) in the transmission electron microscope [J]. Microscopy and Microanalysis,2007,13 (4): 233-244.
    Fry, S.,Dumville, J.,Miller, J. Fingerprinting of polysaccharides attacked by hydroxyl radicals in vitro and in the cell walls of ripening pear fruit [J]. Biochem. J,2001,357 729-737.
    Fry, S. C. The growing plant cell wall:chemical and metabolic analysis [M]. Longman Group Limited, 1988.
    Fry, S. C.,Miller, J. G.,Dumville, J. C. A proposed role for copper ions in cell wall loosening [J]. Plant and Soil,2002,247(1):57-67.
    Fu, X.,Dou, C.,Chen, Y., et al. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L [J]. Journal of hazardous materials,2011,186 (1):103-107.
    Fukao. Y.Ferjani, A.,Tomioka, R., et al. iTRAQ analysis reveals mechanisms of growth defects due to excess zinc in Arabidopsis [J]. Plant physiology,2011,155 (4):1893-1907.
    Gross, G G Cell wall-bound malate dehydrogenase from horseradish [J]. Phytochemistry,1977,16 (3): 319-321.
    Guerra, F.,Duplessis, S.,Kohler, A., et al. Gene expression analysis of Populus deltoides roots subjected to copper stress [J]. Environmental and Experimental Botany,2009,67 (2):335-344.
    Hadzi-Taskovic Sukalovic, V.,Vuletic, M.,Veljovic-Jovanovic, S., et al. The effects of manganese and copper in vitro and in vivo on peroxidase catalytic cycles [J]. Journal of Plant Physiology,2010, 167(18):1550-1557.
    Hall, A. Small GTP-binding proteins and the regulation of the actin cytoskeleton [J]. Annual review of cell biology,1994,10 (1):31-54.
    Harrison, S.,Lepp, N.,Phipps, D. Uptake of Copper by excised roots Ⅱ. Copper desorption from the free space [J]. Zeitschrift fur Pflanzenphysiologie,1979,94 (1):27-34.
    Haynes, R. Ion exchange properties of roots and ionic interactions within the root apoplasm:their role in ion accumulation by plants [J]. The Botanical Review,1980,46 (1):75-99.
    Hetland, G,Samuelsen, A.,Loslash, V., et al. Protective effect of Plantago major L. pectin polysaccharide against systemic Streptococcus pneumoniae infection in mice [J]. Scandinavian Journal of Immunology,2000,52 (4):348-355.
    Hicke, L.,Dunn, R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins [J]. Annual review of cell and developmental biology,2003,19 (1):141-172.
    Hirayama, T.,Kieber, J. J.,Hirayama, N., et al. Responsive-to-antagonistl, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis [J]. Cell,1999, 97 (3):383-393.
    Hossain, Z.,Koyama, H.,Hara, T. Sugar compositions and molecular mass distributions of hemicellulosic polysaccharides in wheat plants under aluminum stress at higher level of calcium supply [J]. Asian Journal of Plant Sciences,2005,4 (1):11-16.
    Hossain, Z.,Nouri, M.-Z.,Komatsu, S. Plant cell organelle proteomics in response to abiotic stress [J]. Journal of Proteome Research,2011,11 (1):37-48.
    Howard, L.,Talcott, S.,Brenes, C., et al. Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity [J]. Journal of Agricultural and Food Chemistry,2000,48 (5):1713-1720.
    Imin, N.,Kerim, T.,Rolfe, B. G., et al. Effect of early cold stress on the maturation of rice anthers [J]. Proteomics,2004,4 (7):1873-1882.
    Jamet, E.,Albenne, C.,Boudart, G, et al. Recent advances in plant cell wall proteomics [J]. Proteomics. 2008a,8 (4):893-908.
    Jamet, E.,Boudart, G.,Borderies, G., et al. Isolation of plant cell wall proteins. In 2D-PAGE:Sample Preparation and Fractionation, Springer:2008b; 187-201.
    Jamet, E.,Canut, H.,Boudart, G., et al. Cell wall proteins:a new insight through proteomics [J]. Trends in plant science,2006,11(1):33-39.
    Jensen. K. A.,Houtman, C. J.,Ryan, Z. C, et al. Pathways for extracellular Fenton chemistry in the brown rot basidiomycete Gloeophyllum trabeum [J]. Applied and Environmental Microbiology, 2001,67(6):2705-2711.
    Jiang, L.,Shi, W.,Yang, X., et al. Cu-hyperaccumulators in mining area [J]. The journal of applied ecology,2002,13 (7):906.
    Jianlong, W. Biosorption of copper (Ⅱ) by chemically modified biomass of Saccharomyces cerevisiae [J]. Process Biochemistry,2002,37 (8):847-850.
    Kartel, M. T.,Kupchik, L. A.,Veisov, B. K. Evaluation of pectin binding of heavy metal ions in aqueous solutions [J]. Chemosphere,1999,38 (11):2591-2596.
    Kataoka, T.,Furukawa, J.,Nakanishi, T. The decrease of extracted apoplast protein in soybean root tip by aluminium treatment [J]. Biologia plantarum,2003,46 (3):445-449.
    Katoh, S. Plastocyanin In:Encyclopedia of Plant Physiology Vol. In Springer-Verlag, Berlin-Heidelberg-New York:1977:247-252.
    Keith, B.,Dong, X.,Ausubel, F. M., et al. Differential induction of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase genes in Arabidopsis thaliana by wounding and pathogenic attack [J]. Proceedings of the National Academy of Sciences,1991,88 (19):8821-8825.
    Kenzhebaeva, S.,Yamamoto, Y.,Matsumoto, H. Aluminum-induced changes in cell-wall glycoproteins in the root tips of Al-tolerant and Al-sensitive wheat lines [J]. Russian Journal of Plant Physiology, 2001,48 (4):441-447.
    Ketchen, D. J.,Shook, C. L. The application of cluster analysis in strategic management research:an analysis and critique [J]. Strategic management journal,1996,17 (6):441-458.
    Kieliszewski, M. J.,Lamport, D. T. Extensin:repetitive motifs, functional sites, post-translational codes, and phylogeny [J]. The Plant Journal,1994,5 (2):157-172.
    Knox, J. The extracellular matrix in higher plants.4. Developmentally regulated proteoglycans and glycoproteins of the plant cell surface [J]. The FASEB journal,1995,9 (11):1004-1012.
    Kohn, R.,Hromadkova, Z.,Ebringerova, A. Binding of lead and copper (Ⅱ) cations to hemicelluloses of rye bran [J]. Collection of Czechoslovak chemical communications,1986,51 (10):2250-2258.
    Konno, H.,Nakashima, S.,Katoh, K. Metal-tolerant moss Scopelophila cataractae accumulates copper in the cell wall pectin of the protonema [J]. Journal of Plant Physiology,2010,167 (5):358-364.
    Konno, H.,Nakato, T.,Nakashima, S., et al. Lygodium japonicum fern accumulates copper in the cell wall pectin [J]. Journal of Experimental Botany,2005,56 (417):1923-1931.
    Krzeslowska, M. The cell wall in plant cell response to trace metals:polysaccharide remodeling and its role in defense strategy [J]. Acta Physiologiae Plantarum,2011,33 (1):35-51.
    Krzeslowska, M.,Lenartowska, M.,Mellerowicz, E. J., et al. Pectinous cell wall thickenings formation—a response of moss protonemata cells to lead [J]. Environmental and Experimental Botany,2009,65 (1):119-131.
    Lan, P.,Li, W.,Wen, T.-N., et al. iTRAQ protein profile analysis of Arabidopsis roots reveals new aspects critical for iron homeostasis [J]. Plant physiology,2011,155 (2):821-834.
    Lee. S.-J.,Saravanan, R. S.,Damasceno, C., et al. Digging deeper into the plant cell wall proteome [J]. Plant Physiology and Biochemistry,2004,42 (12):979-988.
    Li, F.,Shi, J.,Shen, C., et al. Proteomic characterization of copper stress response in Elsholtzia splendens roots and leaves [J]. Plant Molecular Biology,2009,71 (3):251-263.
    Li. P.,Nijhawan. D.,Budihardjo, I., et al. Cytochrome c and dATP-dependent formation of Apaf-l/caspase-9 complex initiates an apoptotic protease cascade [J]. Cell,1997,91 (4):479-489.
    Li. Z.-C.,McClure, J. W.,Hagerman. A. E. Soluble and bound apoplastic activity for peroxidase, P-D-glucosidase, malate dehydrogenase, and nonspecific arylesterase, in barley (Hordeum vulgare L.)and oat (Avena sativa L.) primary leaves [J]. Plant physiology,1989,90(1):185-190.
    Liao, B.,Deng, D.,Yang, B. Subcellular distribution and chemical forms of Cu in Commelina communis [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni (in Chinese),2004,43 (2):72-80.
    Liszkay. A.,Kenk, B.,Schopfer, P. Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth [J]. Planta,2003,217 (4):658-667.
    Liu, H.,Liao, B.,Lu, S. Toxicity of surfactant, acid rain and Cd2+ combined pollution to the nucleus of Vicia faba root tip cells [J]. The journal of applied ecology,2004,15 (3):493.
    Liu, X.-h.,Zhou, D.-m.,Si, Y.-b., et al. Toxicity and Accumulation of Copper in Commelina communis L [J]. Journal of Agro-Environment Science,2006,5 015.
    Lou, L.,Shen, Z.,Li, X. The copper tolerance mechanisms of Elsholtzia haichowensis, a plant from copper-enriched soils [J]. Environmental and Experimental Botany,2004,51 (2):111-120.
    Lozano-Rodriguez, E.,Hernandez, L.,Bonay, P., et al. Distribution of cadmium in shoot and root tissuesl [J]. Journal of Experimental Botany,1997,48 (1):123-128.
    Macfie, S. The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae) [J]. Archives of environmental contamination and toxicology,2000,39 (4):413-419.
    Mahr, A.,Katsahian, S.,Varet, H., et al. Revisiting the classification of clinical phenotypes of anti-neutrophil cytoplasmic antibody-associated vasculitis:a cluster analysis [J]. Annals of the Rheumatic Diseases,2013,72 (6):1003-1010.
    Maksymiec, W. Effect of copper on cellular processes in higher plants [J]. Photosynthetica,1998,34 (3):321-342.
    Mohnen, D. Pectin structure and biosynthesis [J]. Current opinion in plant biology,2008,11 (3): 266-277.
    Mouvet, C.,Claveri, B. Localization of copper accumulated in Rhynchostegium riparioides using sequential chemical extraction [J]. Aquatic Botany,1999,63 (I):1-10.
    Nelson, H.,Nelson, N. Disruption of genes encoding subunits of yeast vacuolar H (+)-ATPase causes conditional lethality [J]. Proceedings of the National Academy of Sciences,1990,87 (9): 3503-3507.
    Neumann, D.,Nieden, U. Z.,Lichtenberger, O., et al. How Does Armeria maritima Tolerate High Heavy Metal Concentrations? [J]. Journal of Plant Physiology,1995,146 (5):704-717.
    Neumann, D.,Zur Nieden, U. Silicon and heavy metal tolerance of higher plants [J]. Phytochemistry, 2001,56 (7):685-692.
    Ni, C.-y.,Chen, Y.-x.,Lin, Q., et al. Subcellular localization of copper in tolerant and non-tolerant plant [J]. Journal of Environmental Sciences,2005,17 (3):452-456.
    Nishizono, H.,Ichikawa, H.,Suziki, S., et al. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense [J]. Plant and Soil,1987,101 (1):15-20.
    Nishizono, H.,Watanabe, T.,Orii, T., et al. Suppression of inhibitory effects of copper on enzymatic activities by copper-binding substances from Athyrium yokoscense assayed in vitro [J]. Plant and Cell Physiology,1989,30 (4):565-569.
    Odou, M.,Singer, E.,Romond, M., et al. Isolation and characterization of a porin-like protein of 45 kilodaltons from Bacteroides fragilis [J]. Fems Microbiology Letters,1998,166 (2):347-354.
    Pandey, A.,Rajamani, U.,Verma, J., et al. Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network:a proteomic approach [J]. Journal of Proteome Research,2010,9 (7):3443-3464.
    Patterson, J.,Ford, K.,Cassin, A., et al. Increased abundance of proteins involved in phytosiderophore production in boron-tolerant barley [J]. Plant physiology,2007,144 (3):1612-1631.
    Pellerin, P.,O'Neill, M. The interaction of the pectic polysaccharide Rhamnogalacturonan II with heavy metals and lanthanides in wines and fruit juices [J]. Analusis Magazine,1998,26 (6):M32-M36.
    Pelletier, S.,Van Orden, J.,Wolf, S., et al. A role for pectin de-methylesterification in a developmentally regulated growth acceleration in dark-grown Arabidopsis hypocotyls [J]. New Phytologist,2010,188 (3):726-739.
    Pelloux, J.,Rusterucci, C.,Mellerowicz, E. J. New insights into pectin methylesterase structure and function [J]. Trends in plant science,2007a,12 (6):267-277.
    Pelloux, J.,Rusterucci, C.,Mellerowicz, E. J. New insights into pectin methylesterase structure and function [J]. Trends in plant science,2007b,12 (6):267-277.
    Peng, B.,Huang, X.-p.,Zhang, D.-w. Chemical forms and accumulation patterns of Cu in two sea grass species Thalassia hemprichii and Enhalus acoroides [J]. Chinese Journal of Ecology,2010,10 018.
    Peng, H.,Yang, X.,Tian, S. Accumulation and ultrastructural distribution of copper in Elsholtzia splendens [J]. Journal of Zhejiang University. Science. B,2005,6 (5):311.
    Petersen, J.,Brinkmann, H.,Cerff, R. Origin, evolution, and metabolic role of a novel glycolytic GAPDH enzyme recruited by land plant plastids [J]. Journal of molecular evolution,2003,57 (1): 16-26.
    Pilon, M.,Abdel-Ghany, S. E.,Cohu, C. M., et al. Copper cofactor delivery in plant cells [J]. Current opinion in plant biology,2006,9 (3):256-263.
    Qu, Z.-L.,Zhong, N.-Q.,Wang, H.-Y., et al. Ectopic expression of the cotton non-symbiotic hemoglobin gene GhHbd1 triggers defense responses and increases disease tolerance in Arabidopsis [J]. Plant and Cell Physiology,2006,47 (8):1058-1068.
    Rauser, W. E. Structure and function of metal chelators produced by plants [J]. Cell biochemistry and biophysics,1999,31 (1):19-48.
    Rittinger, K.,Walker, P. A.,Eccleston, J. F., et al Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP [J]. Nature,1997,388 (6643):693-697.
    Robertson, D.,Mitchell, G. P.,Gilroy, J. S., et al. Differential extraction and protein sequencing reveals major differences in patterns of primary cell wall proteins from plants [J]. Journal of Biological Chemistry,1997,272 (25):15841-15848.
    Rosenzweig, A. C. Copper delivery by metallochaperone proteins [J]. Accounts of chemical research, 2001,34(2):119-128.
    Rousos, P.,Harrison, H.,Steffen, K. Physiological responses of cabbage to incipient copper toxicity [J]. Journal of the American Society for Horticultural Science,1989,114.
    Saha, B. C. Hemicellulose bioconversion [J]. Journal of Industrial Microbiology and Biotechnology, 2003,30 (5):279-291.
    Sahi, S.,Israr, M.,Srivastava, A., et al. Accumulation, speciation and cellular localization of copper in Sesbania drummondii [J]. Chemosphere,2007,67 (11):2257-2266.
    Schmohl, N.,Horst, W. Cell wall pectin content modulates aluminium sensitivity of Zea mays (L.) cells grown in suspension culture [J]. Plant, Cell & Environment,2000a,23 (7):735-742.
    Schmohl, N.,Horst. W. J. Cell wall pectin content modulates aluminium sensitivity of Zea mays (L.) cells grown in suspension culture [J]. Plant Cell and Environment,2000b,23 (7):735-742.
    Sela, M.,Tel-Or, E.,Fritz, E., et al. Localization and toxic effects of cadmium, copper, and uranium in Azolla [J]. Plant physiology,1988,88 (1):30-36.
    Sharma, S. S.,Dietz, K.-J. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress [J]. Journal of Experimental Botany,2006,57 (4): 711-726.
    Shi, J.,Yuan, X.,Chen, X., et al. Copper uptake and its effect on metal distribution in root growth zones of Commelina communis revealed by SRXRF [J]. Biological trace element research,2011,141 (1): 294-304.
    Showalter, A. M. Structure and function of plant cell wall proteins [J]. The Plant Cell,1993,5 (1):9.
    Si, J.,Zhao, H.,Wang, X., et al. Effects of Different Copper Levels on Subcellular Distribution and Chemical Forms of Copper in Maize Cells [J]. Journal of Agro-Environment Science,2008,27 (2): 452-456.
    Song, J.,Zhao, F. J.,Luo, Y. M., et al. Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils [J]. Environmental Pollution,2004, 128 (3):307-315.
    Spain, J. C.,Wyss, O.,Gibson, D. T. Enzymatic oxidation of p-nitrophenol [J]. Biochemical and Biophysical Research Communications,1979,88 (2):634-641.
    Srivastava, P.,Gupta, U. C. Trace elements in crop production [M]. Science Publishers, Inc,1996.
    Stoddart, R. W. The biosynthesis of polysaccharides [J]. Macmillan, New York, USA.1984.
    Sze, H.,Ward, J. M.,Lai, S. Vacuolar H+-translocating ATPases from plants:structure, function, and isoforms [J]. Journal of bioenergetics and biomembranes,1992,24 (4):371-381.
    Tan, L.,Zhu, D.,Zhou, W., et al. Preferring cellulose of Eichhornia crassipes to prepare xanthogenate to other plant materials and its adsorption properties on copper [J]. Bioresource technology,2008,99 (10):4460-4466.
    Tang, S.,Wilke, B.-M.,Huang, C. The uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze River, the People's Republic of China [J]. Plant and Soil,1999,209 (2): 225-232.
    Teisseire, H.,Guy, V. Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor) [J]. Plant science,2000,153 (1):65-72.
    Thounaojam, T. C.,Panda, P.,Mazumdar, P., et al. Excess copper induced oxidative stress and response of antioxidants in rice [J]. Plant Physiology and Biochemistry,2012,5333-39.
    Timperio, A. M.,Egidi, M. G.,Zolla, L. Proteomics applied on plant abiotic stresses:role of heat shock proteins (HSP) [J]. Journal of proteomics,2008,71 (4):391-411.
    TYLER, G Bryophytes and heavy metals:a literature review [J]. Botanical journal of the Linnean Society,1990,104 (1-3):231-253.
    Updegraff, D. M. Semimicro determination of cellulose inbiological materials [J]. Analytical biochemistry,1969,32 (3):420-424.
    Van, H. L.,Kuraishi, S.,Sakurai, N. Aluminum-induced rapid root inhibition and changes in cell-wall components of squash seedlings [J]. Plant physiology,1994,106 (3):971-976.
    Verkleij, J.,Schat, H. Mechanisms of metal tolerance in higher plants [M]. CRC Press, Boca Raton, FL, 1990.
    Vinit-Dunand, F.,Epron, D.,Alaoui-Sosse, B., et al. Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants [J]. Plant science,2002a,163 (1):53-58.
    Vinit-Dunand, F.,Epron, D.,Alaoui-Sosse, B., et al. Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants [J]. Plant science,2002b,163 (1):53-58.
    Volarevic, S.,Stewart, M. J.,Ledermann, B., et al. Proliferation, but not growth, blocked by conditional deletion of 40S ribosomal protein S6 [J]. Science,2000,288 (5473):2045-2047.
    Vorwerk, S.,Somerville, S.,Somerville, C. The role of plant cell wall polysaccharide composition in disease resistance [J]. Trends in plant science,2004,9 (4):203-209.
    Wang, J.,Zhu, Q.,Liu, Z. A primary study on chemical bound forms of copper and zinc in wheat and rape] [J]. The journal of applied ecology,2000,11 (4):629.
    Wang, S. B.,Hu, Q.,Sommerfeld, M., et al. Cell wall proteomics of the green alga Haematococcus pluvialis (Chlorophyceae) [J]. Proteomics,2004,4 (3):692-708.
    Wang, X.,Liu, Y.,Zeng, G., et al. Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud [J]. Environmental and Experimental Botany,2008,62 (3):389-395.
    Wang, Y.,Zhang, L.,Shen, Z., et al. Chemical forms of heavy metals in the soils and plants of copper tailings yard] [J]. The journal of applied ecology,2005,16 (12):2418.
    Watson, B. S.,Lei, Z.,Dixon, R. A., et al. Proteomics of Medicago sativa cell walls [J]. Phytochemistry, 2004,65(12):1709-1720.
    Wierzbicka, M. Lead in the apoplast of Allium cepa L. root tips—ultrastructural studies [J]. Plant science,1998,133 (1):105-119.
    Willats, W. G,Knox, J. P.,Mikkelsen, J. D. Pectin:new insights into an old polymer are starting to gel [J]. Trends in Food Science & Technology,2006a,17 (3):97-104.
    Willats, W. G T.,Knox, P.,Mikkelsen, J. D. Pectin:new insights into an old polymer are starting to gel [J]. Trends in Food Science & Technology,2006b,17 (3):97-104.
    Wojtaszek, P. a. Oxidative burst:an early plant response to pathogen infection [J]. Biochemical Journal, 1997,322 (Pt 3):681.
    Wu, B.,Zoriy, M.,Chen, Y., et al. Imaging of nutrient elements in the leaves of Elsholtzia splendens by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) [J]. Talanta,2009,78 (1):132-137.
    Wu, W. W.Wang, G.,Baek, S. J., et al. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel-or LC-MALDI TOF/TOF [J]. Journal of Proteome Research,2006,5 (3):651-658.
    Xia, Y.,Qi, Y.,Yuan, Y., et al. Overexpression of Elsholtzia haichowensis metallothionein 1 (EhMT1) in tobacco plants enhances copper tolerance and accumulation in root cytoplasm and decreases hydrogen peroxide production [J]. Journal of hazardous materials,2012.
    Xiong, J.,An, L.,Lu, H.,et al. Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall [J]. Planta,2009,230 (4):755-765.
    Yan, J. X.,Wait, R.,Berkelman, T., et al. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry [J]. Electrophoresis,2000,21 (17):3666-3672.
    Yang, J. L.,Zhu, X. F.,Peng, Y. X., et al. Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis [J]. Plant physiology,2011,155 (4):1885-1892.
    Yang, M. J.,Yang, X. E.,R6mheld, V. Growth and nutrient composition of Elsholtzia splendens Nakai under copper toxicity [J]. Journal of plant nutrition,2002,25 (7):1359-1375.
    Yang, X.,Shi, W.,Fu, C., et al. Copper hyperaccumulators of Chinese native plants:characteristics and possible use for phytoremediation [J]. Sustainable agriculture for food, energy and industry,1998, 484-489.
    York, W. S.,Darvill, A. G,McNeil, M., et al.3-deoxy-d-manno-2-octulosonic acid (KDO) is a component of rhamnogalacturonan Ⅱ, a pectic polysaccharide in the primary cell walls of plants [J]. Carbohydrate research,1985,138 (1):109-126.
    York, W. S.,O'Neill, M. A. Biochemical control of xylan biosynthesis—which end is up? [J]. Current opinion in plant biology,2008,11 (3):258-265.
    Zablackis, E.,Huang, J.,Muller, B., et al. Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves [J]. Plant physiology,1995,107(4):1129-1138.
    Zhang, H.,Lian, C.,Shen, Z. Proteomic identification of small, copper-responsive proteins in germinating embryos of Oryza sativa [J]. Annals of Botany,2009a,103 (6):923-930.
    Zhang, L.,Tian, L.-H.,Zhao, J.-F., et al. Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis [J]. Plant physiology, 2009b,149 (2):916-928.
    Zhang, X.-H.,Lin, A.-J.,Gao, Y.-L., et al. Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake [J]. Soil Biology and Biochemistry,2009c,41 (5):930-935.
    Zheng, S. J.,Lin, X. Y.,Yang, J. L., et al. The kinetics of aluminum adsorption and desorption by root cell walls of an aluminum resistant wheat(Triticum aestivum L.) cultivar [J]. Plant and Soil,2004, 261 (1-2):85-90.
    Zhong, H.,Lauchli, A. Changes of cell wall composition and polymer size in primary roots of cotton seedlings under high salinity [J]. Journal of Experimental Botany,1993,44 (4):773-778.
    Zhou, X.,Li, J.,Cheng, W., et al. Gene structure analysis of rice ADP-ribosylation factors (OsARFs) and their mRNA expression in developing rice plants [J]. Plant Molecular Biology Reporter,2010, 28 (4):692-703.
    Zhu, M.,Simons, B.,Zhu, N., et al. Analysis of abscisic acid responsive proteins in Brassica napus guard cells by multiplexed isobaric tagging [J]. Journal of proteomics,2010,73 (4):790-805.
    Zieske, L. R. A perspective on the use of iTRAQTM reagent technology for protein complex and profiling studies [J]. Journal of Experimental Botany,2006,57 (7):1501-1508.
    丁宝莲,谈宏鹤,朱素琴.胁迫与植物细胞壁关系研究进展[J].广西科学院学报,2001,17(2):87-90.
    尹增芳,樊汝汶.植物细胞壁的研究进展[J].植物研究,1999,19(4):407-414.
    王林纤,戴勇,涂植光iTRAQ标记技术与差异蛋白质组学的生物标志物研究[J].生命的化学,2010,1:135-140.
    王松华,杨志敏,徐朗莱.植物铜素毒害及其抗性机制研究进展[J].生态环境.2003,12(3):336-341.
    王英超,党源,李晓艳.et al.蛋白质组学及其技术发展[J].生物技术通讯,2010,1:139-144.
    布坎南,Buchanan, B. B格鲁依森姆,et al.植物生物化学与分子生物学[M].科学出版社,2004.
    朱昀吴,陈绍宁,胡秀丽,et al.植物细胞壁蛋白质提取方法的改进[J].河南农业大学学报,2009,43(5):557-559.
    朱雪竹,董斌,桑伟莲,et al.铝对小麦的毒性及小麦抗铝机理[J].环境科学,2001,22(4):33-36.
    余天江.植物细胞壁蛋白[J].生物学教学,1994,11:1-3
    李雄彪,杨中汉.伸展蛋白的结构,功能,交联和生物合成[J].植物生理学通讯,1990,3:7-11.
    李伟iTRAQ多重化学标记串联质谱技术在比较蛋白质组学中的应用[J].生命的化学,2006,26(5):453-456.
    李刚,唐剑锋,林咸永,et al.小麦根尖细胞壁对铝的吸附/解吸特性及其与耐铝性的关系[J].植物营养与肥料学报,2007,13(2):192-199.
    李应超,谭俊.浅谈细胞壁蛋白[J].生物学通报,1994,8.
    林成永,唐剑锋,李刚,et al.铝胁迫下小麦根细胞壁多糖组分含量的变化与其耐铝性的关系[J].浙江大学学报:农业与生命科学版,2005,31(6):724-730.
    武贝.海州香薷Cu耐性与积累机制研究[D].杭州:浙江大学2009.
    柯文山,熊治廷,金则新,et al.海州香薷(Elsholtzia haichouensis Sun)不同生态型Cu吸收和酸性磷酸酶活性差异[J].生态学报,2007,27(8):3172-3181.
    唐剑锋,林咸永,章永松,et al.小麦根系对铝毒的反应及其与根细胞壁组分和细胞壁对铝的吸附-解吸性能的关系[J].生态学报,2005,25(8):1890-1897.
    秦丽霞,张德静,李龙,et al.参与植物细胞壁半纤维素木聚糖合成的糖基转移酶[J].植物生理学报,2011,47(9):831-839.
    曾咏梅,毛昆明,李永梅.十壤中镉污染的危害及其防治对策[J].云南农业大学学报,2005,20(3):360-365.
    裴惠娟,张满效,安黎哲.非生物胁迫下植物细胞壁组分变化[J].生态学杂志,2011,30(6):1279-1286.
    刘家友,喻敏,刘丽屏,et al.硼对豌豆根边缘细胞和根细胞壁多糖组分含量的影响[J].华中农业大学学报,2009,3:311-315.
    刘艳阳,李玉玲,王延召,et al.植物伸展蛋白的研究进展[J].生物学杂志,2007,24(4):1-3.
    孙元琳,汤坚.果胶类多糖的研究进展[J].食品与机械,2004,20(6):60-63.
    孙金月,赵玉田.小麦细胞壁糖蛋白的耐盐性保护作用与机制研究[J].中国农业科学,1997,30(4):9-15.
    宾文,于荣敏.人工培养蛹虫草多糖的研究[J].沈阳药科大学学报,2000,17(5):361-364.
    张旭红,高艳玲,林爱军,et al.植物根系细胞壁在提高植物抵抗金属离子毒性中的作用[J].生态毒理学报,2008,3(1):9-14
    张红晓.铜胁迫诱导蛋白的鉴定及CuZn-SOD在铜锈导的抗氧化防护中的作用[D].南京农业大学.2007.
    时向东,方圆,程传策.植物抗逆性与细胞壁expansin的关系概述[J].河南农业科学,2009,4:10-13.
    杨明杰.海州香薷(Elsholtzia splendens Nakai)对铜的超积累机理研究[D].2000.
    杨明杰.海州香薷铜超富集和耐性机理:博士论文[D].2001.
    韩业君,陈洪章.植物细胞壁蛋白与木质纤维素酶解[J].化学进展,2007,19(7):1153-1158.