外差干涉椭圆偏振测量的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米级厚度薄膜在微电子、材料与化学工程、光学与激光技术等诸多科学领域有着广泛的应用。针对自动光度式椭偏仪的缺点及工业现场的实时、在线测量要求,本文对外差干涉椭圆偏振测量技术进行了系统的理论分析和实验研究。实验系统包括外差光源、稳频电路、外差信号处理、相位差测量和光学系统设计等环节,重点研究了非线性混频误差的产生机理及对外差干涉椭圆偏振测量的影响。实验数据与理论分析基本一致。
     利用抗干扰能力强的外差干涉法与椭偏测量术相结合,首次系统的完成了纳米薄膜外差干涉椭圆偏振测量理论的应用基础研究。根据具体的纳米薄膜模型,研究了椭偏参数复灵敏度因子的变化规律及误差传递的约束关系,明确给出了膜厚纳米级测量精度与外差信号幅值、相位差检测精度之间的数值关系式。
     分别采用纵向塞曼激光器和声光调制器作为外差频率源,设计了反射式和透射式两种干涉式椭偏测量系统光学结构,原理分析表明这种分频、共光路的结构设计能有效提高系统抗干扰能力;系统中没有机械旋转部件,在保留椭偏测量优点的同时,可以提高系统稳定性和测量速度。
     弱磁场中的纵向塞曼激光器输出40KHz的拍频信号,采用光强比较法、热补偿法和模拟PID调节器实现了稳频控制。设计了相位直接比较和高频脉冲填充计数的测相电路,相位差测量分辨力达到0.12°。设计并完成了模拟信号处理及计算机接口电路、椭偏方程反演程序。首次实现了在非恒温、大干扰环境中,纳米级精度的外差干涉椭偏薄膜测量,并分析了入射角测量误差、拍频稳定度、测相电路误差和环境干扰对测量数据的影响。
     采用琼斯矢量法,首次综合的分析了偏振椭圆化、偏振非正交和偏振器件分光误差同时作用时,非线性混频误差的产生机制及其对外差干涉椭偏测量精度的影响。分析结果表明由此产生的膜厚测量误差可达数纳米量级,非线性混频误差是影响外差干涉椭圆偏振测量实用化的关键因素。椭偏参数|ρ|受误差因素影响较大,应该优先选用Δ求解薄膜参数。光束偏振态(椭圆化和非正交)对测量影响较大,挑选合适的激光源和波片是实现纳米精度测量的前提。定义了误差评价因子,用于预估非线性混频误差幅值的大小和选择合适的椭偏测量方式。非线性混频误差的分析结果对外差干涉式椭偏测量系统的设计有重要的指导意义。
The films with thickness of nanometers have wide applications in the fields of microelectronics, materials and chemical engineering, optical and laser technology. For aiming at the disadvantages of spectroscopic ellipsometers and the requirements of in-situ and real time measurement, in this dissertation the heterodyne inteferometric ellipsometry are studied systematically. The experimental system consists of heterodyne light source, frequency stabilization system, heterodyne signal processing, phase-differences measurement and the design of optical system, the analysis of nonlinear frequency mixing error are attached more importance. The experimental results fit well with the theoretical analysis.
     For the first time, the application of heterodyne interferometric ellipsometry to nanometer films’measurement is studied systematically at the base of fundamental ellipsometry equations and the heterodyne interferometry with high anti-interference performance. For a specific model of nanometer films, the variation rules of the complex sensitivities of ellipsometric parameters are analyzed and calculated theoretically. For reaching nanometer accuracy, the measurement requirements of the amplitudes and phase differences of heterodyne signals are given.
     By adopting longitudinal Zeeman laser and two acousto-optical modulators respectively, the optical system of reflection and transmission ellipsometers are designed and analyzed by Jones Vector method. It shows the frequency-separation and common-path configuration is helpful to improve the anti-interference performance. Without any rotational mechanical parts, the measurement system is expected to operate at higher speed and stability.
     Laser frequency stabilization is realized by light intensity comparison, thermal compensated method and analogue PID controller, the longitudinal Zeeman laser located in weak magnetic field outputs a beat signal with 40KHz. The resolution of phase detection reaches to 0.12°by using direct comparison and counting method. The analog signal processing, computer interface and the programs of ellipsometry equation’s inversion are also built up. The films measurement with nanometer accuracy by heterodyne interferometric ellipsometry is realized for the first time under the disturbed environment without constant temperature control. The influence of the errors of incident angle, beat frequency’s stability, phase measuring technique and the environmental disturb on measurement are studied.
     By using Jones Vector method, the mechanism of nonlinear frequency mixing error and its influence on measurement accuracy are studied synthetically, it is mainly caused by the imperfection of polarizing beam splitters (PBS), the elliptical polarization and non-orthogonality of light beams. As the main obstacle to the practical application of the heterodyne interferometric ellipsometry, it results in an error up to several nanometers of the thickness measurement of thin films. Comparably speaking, the ellipsometric parameterΔshould have the priority for the inversion algorithm because |ρ| is affect greatly by the errors. The laser source and wave plate with high quality are prerequisite to reach nano-accuracy because the elliptical polarization and non-orthogonality have major effect on the measurement results. The definitions of the error evaluation-factors are defined to pre-estimate the error magnitude of ellipsometric parameters. The analysis results are used as foundation for optimum design of the heterodyne interferometric ellipsometer.
引文
[1] Business Communications Company,Nanofilms: Markets and technologies, USA Wellesley: BCC Research,2004.8.
    [2] 白春礼,纳米科技及其发展前景,华北工学院学报(社科版),2001,增刊:25~29,93.
    [3] 沈海军,穆先才,纳米薄膜的分类、特性、制备方法与应用,微纳电子技术,2005,11:506-510.
    [4] 陈波,王小兵,程勇等,军用纳米金刚石膜的研究与应用综述,光电子技术与信息,2003,16(4):1-7.
    [5] 王力衡,黄运添,郑海涛等,薄膜技术,北京:清华大学出版社,1991.
    [6] 刘立国,吕正德,朱鹤年,LCD 工业用自动化椭偏仪的设计思路,光学精密工程,2000,8(5):466-469.
    [7] 吕正德,朱鹤年,张百哲,自动椭偏仪及其在 LCD 膜系测量中的应用,激光与光电子学进展,1999,9:100-103(增刊).
    [8] Laaziz Y,Optical characterization of low optical thickness thin films from transmittance and back reflectance measurement,Thin Solid Films, 2000, 372:149-155.
    [9] G.Leveque, Y.Villachon-Renard, Determination of optical constants of thin film from reflectance spectra, Appl.Opt,1990, 29(22): 3207-3212.
    [10] J.M. Siqueiros, L.E. Regalado, R. Machorro, Determination of (n, k) for absorbing thin films using reflectance measurements, Appl.Opt.,1998, 37(27):4260-4264.
    [11] B. E. Khawaja, F. Bouamrance, Determination of the optical constants (n, k) of thin dielectric films, Appl.Opt.,1993,32(7):1168-1172.
    [12] J.L.Cisneros, Optical characterization of dielectric and semiconductor thin films by use of transmission data, Appl.Opt, 1998, 37(22):5262-5270.
    [13] Akram K.S.Aqili, Asghari Maqsood, Determination of thickness, refractive index, and thickness irregularity for semiconductor thin films from transmission spectra, Appl.Opt.,2002, 41(l): 218-224.
    [14] Durrani, A.M.Al-Shukri, Optical constants of zinc sulfide films determined from transmittance measurements, Thin Solid Films, 2000, 379:199-202.
    [15] J.Torres, L.Cisneros, G.Gordillo, et al. , A simple method to determine the optical constants and thickness of Zn2Cd5 thin films, Thin Solid Films, 1996, 289:238-241.
    [16] 徐均琪,刘梦夏,弥谦,确定薄膜光学常数的一种新方法,应用光学,2001, 22(3):25-27.
    [17] Kent F. Palmer, Michael T., Williams, Determination of the optical constants of a thin film from transmittance measurements of a single film thickness, Appl. Opt.,1985,24(12):1788-1798.
    [18] Chambouleyron, JA Martinez, A.C.Moretti, et al.,Retrieval of optical constants and thickness of thin films from transmission spectra, Appl.Opt.,1997,36(31):8238-8247.
    [19] M.Kubinyi,N.Benko, A.Grofesik,et al.,Determination of the thickness and optical constants of thin films from transmission spectra, Thin Solid Films, l996, 286:164-169.
    [20] Changsoo Jung, Bum Ku Rhee, Simultaneous determination of thickness and optical constants of polymer thin film by analyzing transmittance, Appl.Opt,2002,41(19):3861-3865.
    [21] R.Swanepoel, Determination of the thickness and optical constants of amorphous silicon, J. Phys. E:Sci.Instrum.,1983,16:1214-1222.
    [22] R.Swanepoel, Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films , J. Phys. E:Sci.Instrum.,1984,17:896-903.
    [23] J.C.Manifacier, J.Gasiot, J.P.Fillard, A simple method for determination of the optical constants n, k and thickness of a weakly absorbing thin film, J. Phys. E:Sci.Instrum.,1976,9:1002-1004.
    [24] 刘细成,透射光谱法测量薄膜参数的研究:[硕士学位论文],成都;四川大学,2003.
    [25] 郭扬铭,新型自动化椭偏仪的研制及应用:[博士学位论文],广州;中山大学,2004.
    [26] 薛实福,李庆祥等, 精密仪器设计,北京:清华大学出版社,1991.
    [27] 宋敏,李波欣,郑亚茹,利用光学方法测量薄膜厚度的研究,光学技术,2004,30(1):103~106.
    [28] Gonzalez cano A, Bernabeu E., Automatic interference method for measuring transparent film thickness, 1993, 32(13): 2292-2294.
    [29] 薛实福,李庆祥等, DYM-1 型膜厚测量仪的原理与设计,清华大学学报,1992,32(1): 26~34.
    [30] 孙艳,一种新的膜厚测试技术,计量技术,2002,3:6-9.
    [31] Jose Trull, Crina Cojocaru, et al.,Determination of refrective indices of quarter-wavelength Bragg reflectors by reflectance measurements in wavelength and angular domains, Appl.OpL.,2002, 41(24):5172-5178.
    [32] Ivan Ohlidal, Daniel Franta, Miloslav Ohlidal,et al, Optical characterization of nonabsorbing and weakly absorbing thin films with the wavelengths related to extrema in spectral reflectances, Appl.Opt.,2001,40(31):5711-5717.
    [33] Ming-Homg Chiu, Ju-Yi Lee, Der-Chin Su. complex refractive-index measurement based on Fresnel's equations and the uses of heterodyne interferometry, Appl.Opt.,1999, 38(19):4047-4052.
    [34] Talahisa Mitsui and Katsumi Sakurai. Precise measurement of the refractive index and optical rotatory power of a suspension by a delayed optical heterodyne technique , Appl.Opt. , 1996, 35 (13):2253-2258.
    [35] Yeou-Yen Cheng, James C. Wyant, Multiple wavelength phase shifting interferometry, Appl.Opt.,1985,24(6):804-807.
    [36] Yeou-Yen Cheng, James C. Wyant, Two-wavelength phase shifting interferometry, Appl. Opt.,1984, 23(24):4539-4542.
    [37] Azzam R.M.A , Bashara N.M. , Ellipsometry and Polarized Light, Amerstdam: North-Holland,1977.
    [38] Aspens D E, Studna A.A.,High Precision Scanning Ellipsometer, Appl.Opt,1975, 14(6):220-228.
    [39] G.Jakopic, W.papousek, Unified analytical inversion of reflectometric and ellipsometric data of absorbing media, Appl.Opt,2000, 39(16):2727-2732.
    [40] Frank K., Urban L., Ellipsometry algorithm for absorbing films, Appl.Opt.,1993, 32(13):1521-1524.
    [41] G. Bader, P. V. Ashrit, Vo-Van Truong, Transmission and reflection ellipsometry of thin films and multilayer systems. Appl. Opt., 1998, 37(7):1146~1151.
    [42] 王芳宁,提高椭偏测量中薄膜参数精度的研究:[硕士学位论文],成都;四川大学,2004.
    [43] 黄佐华,张振江,测量薄膜厚度及其折射率的光学方法,现代科学仪器,2003,4:42-44.
    [44] Riedlilng K., Ellipsometry for industrial applications, Wien: spring-verlag, 1998.
    [45] Reisinger H., Minimization of errors in ellipsometric measurement, solid state electronics, 1992, 35(3):333-344.
    [46] Woollam J A, Snyder P G, Rost M C, Variable angle spectroscopic ellipsometry: a nondestructive characterization technique for ultra-thin and multiplayer materials., Thin Solid Films, 1988, 166: 317-323.
    [47] John A. Woollam, Blain Johs, Craig M. Herzinger, et al, Overview of Variable Angle Spectroscopic Ellipsometry (VASE), Part I: Basic Theory and Typical Applications, SPIE Proceedings, CR72, (1999) 29-58.
    [48] Blain Johs, John A. Woollam, Craig M. Herzinger, et al, Overview of Variable Angle Spectroscopic Ellipsometry (VASE), Part II: Advanced Applications, SPIE Proceedings, CR72, (1999).
    [49] J. A. Woollam, Ellipsometry, Variable Angle Spectroscopic, Chapter out of Wiley Encyclopedia of Electrical and Electronics Engineering, New York: John Wiley and Sons, Inc., 2000.
    [50] J. N. Hilfiker, C.L. Bungay, R.A. Synowicki, et al, Progress in spectroscopic ellipsometry: Applications from vacuum ultraviolet to infrared, J. Vac. Sci. Technol. A, 2003, 21(4):856-859.
    [51] B.Johs, Recent Developments in Spectroscopic Ellipsometry for in situ Applications, SPIE Proc., 2001, 4449: 41-57.
    [52] E. A. Irene, J. A. Woollam, In Situ Ellipsometry in Microelectronics, MRS Bulletin, 1995, 20:24-28.
    [53] D.E. Morton, B. Johs, J. Hale, Optical monitoring of Thin-films using Spectroscopic Ellipsometry, SVC 45th Annual Tech. Conf. Proc. , 2002, 299-305.
    [54] S. J. Cho, P. G. Snyder, C. M. Herzinger, Etch depth control in bulk GaAs using patterning and real time spectroscopic ellipsometry, J. Vac. Sci. Technol. B, 2002, 20: 197-202.
    [55] J. A. Roth, W. S. Williamson, D. H. Chow, Closed-loop control of resonant tunneling diode barrier thickness using in situ spectroscopic ellipsometry, J. Vac. Sci. Technol. B, 2000 (18): 1439-1442.
    [56] B. Johs, C. Herzinger, J. H. Dinan, et al, Real-time monitoring and control of epitaxial semiconductor growth in a production environment by in situ spectroscopic ellipsometry, Thin Solid Films, 1998, 313-314: 490-495.
    [57] B.Johs, C.M.Herzinger, J.H. Dinan, et al, Development of a parametric optical constant model for Hg1-xCdxTe for control of composition by spectroscopic ellipsometry during MBE growth, Thin Solid Films, 1998, 313-314: 137-142.
    [58] B. Johs, C. Herzinger, P. He, et al, Real-time monitoring and control during MBE growth of GaAs/AlGaAs Bragg reflectors using multi-wavelength ellipsometry, Mat.Sci.and Eng.B,1997, 44 :134-138.
    [59] C. Herzinger, B. Johs, P. Chow, et al, In Situ Multi-Wavelength Ellipsometric Control of Thickness and Composition for Bragg Reflector Structures, MRS Symp. Proc., 1996, 406:347-352.
    [60] X. Gao, J. S. Hale, S. Heckens, et al, Studies of Metallic Multilayer Structures, Optical Properties, and Oxidation using in situ Spectroscopic Ellipsometry, J.Vac.Sci.Technol.A,1998,(16): 429-435.
    [61] J. N. Hilfiker, D. W. Glenn, S. Heckens, et al, In situ and ex situ optical characterization of electro deposited magneto-optic materials, J. Appl. Phys., 1996, (79): 6193-6195.
    [62] Amassian, S. Larouche, J. E. Klemberg-Sapieha, et al, In situ ellipsometric study of the Initial Growth Stages of a-TiO2 by PECVD, SVC 45th Annual Tech. Conf. Proc., 2002, 250-255.
    [63] S. Larouche, A. Amassian, S. C. Gujrathi, et al, Multilayer and Inhomogeneous Optical Filters Fabricated by PECVD Using Titanium Dioxide and Silicon Dioxide, SVC 44th Annual Tech. Conf. Proc., 2001, 277-281.
    [64] J.Phillips, D.Edwall, D.Lee,et al,Growth of HgCdTe for long-wavelength infrared detectors using automated control from spectroscopic ellipsometry measurements, J. Vac. Sci. Technol. B, 2001, (19):1580-1584.
    [65] R. D. Rajavel, Status of HgCdTe-MBE technology for producing dual-band infrared detectors,J.Crystal Growth, 2000, 214/215: 1100-1105.
    [66] 郭扬铭,莫党,张曰理,自动化椭圆偏振光谱仪的研制,中山大学学报,2005,44(1):124-125,128.
    [67] 黄佐华,何振江,杨冠玲等,自动椭偏测厚仪测量精确度的实验研究,机电工程技术,2004,33(4):18-20.
    [68] 王芳宁,王植恒,刘细成等,正确使用多次测量法提高椭偏测量精度,激光杂志,2004,25(1):32-34.
    [69] P.Drude, Theory of Optics, New York:Longmans,Green&Co.,1901.
    [70] J.N.Hilfiker, J.S.Hale, B.D.Johs,et al, Spectroscopic Ellipsometry in Optical Coatings Manufacturing,SVC 44th Annual Tech. Conf. Proc., 2001: 295-300.
    [71] C.Bungay, J.Hilfiker, M. Liphardt, et al, Spectroscopic Ellipsometry, Its Uses for Multilayer Thin Film Characterization, Vacuum and ThinFilm, 1999.
    [72] J.A.Dobrowolski, L.Li, J.N.Hilfiker, Long-wavelength cutoff filters of a new type, Appl. Opt., 1999,38(20):4891-4903.
    [73] J.N.Hilfiker, F.G.Celii, W.D. Kim, et al, Spectroscopic Ellipsometry (SE) for materials characterization at 193 and 157nm,Semiconductor Fabtech, 2002,(17):87-91.
    [74] J.N.Hilfiker, T.E.Tiwald, C.L.Bungay, New Frontiers for Spectroscopic Ellipsometry, Compound Semiconductor, 2001,(7):76-80.
    [75] J.N.Hilfiker, R.A.Synowicki, Spectroscopic Ellipsometry for Process Applications,Solid State Technology, 1996, 39(1):157-167.
    [76] S.Zollner, T.C. Lee, K.Noehring,et al, Thin Film Metrology of Silicon on Insulator Materials, Appl. Phys. Lett., 2000,76(1):46-48.
    [77] C.M.Herzinger,B.Johs,W.A.McGahan,etal,Ellipsometric Determination of Optical Constants for Silicon and Thermally Grown Silicon Dioxide via a Multi-sample, Multi-wavelength, Multi-angle Investigation, J. Appl. Phys., 1998, 83(21):3323-3336.
    [78] A.M. Hermann, C. Gonzalez, P. A. Ramakrishnan,et al, Growth and characterization of large area Cu(In,Ga)Se2 films, Thin Solid Films, 2001, (387):54-56.
    [79] S. Zollner, A. A. Demkov, R. Liu,et al, Optical Properties of Bulk and Thin-film SrTiO3 on Si and Pt, J. Vac. Sci. Technol. B, 2000,(18): 2242-2254.
    [80] P. G. Snyder, T. E. Tiwald, D. W. Thompson,et al, Infrared free carrier response of InGaAsSb epilayers on GaSb, Thin Solid Films, 1998,(313-314): 667-670.
    [81] B.D. Cahan,R. F. Spanier,A high-speed automatic ellipsometer,Surf. Sci.,1969,16:166-176.
    [82] 冯星伟,苏毅,马宏舟等,可变入射角波长扫描 RPA 型椭偏仪的研制,光学学报, 1995, 15(4):492-498.
    [83] 冯星伟,苏毅,马宏舟等,可变入射角波长扫描 RPA 型椭偏仪的研制,光学学报,1995, (4):492-498.
    [84] 杜泉,郭文胜,朱自强等,可见、近红外椭偏光谱仪,激光与红外,1998,(3): 165-167.
    [85] 陈岳立,张荣军,夏国强等,双重傅里叶变换红外椭偏光谱系统的研制,2001, (6):729-731.
    [86] 李洋,唐宁,姚熹,各向异性材料光学常数全自动椭偏测仪,机电工程技术,2004,(1):57-60.
    [87] 黄佐华, 何振江, 杨冠玲等,多功能椭偏测厚仪,光学技术, 2001, 27(05):432-434.
    [88] 广东飞驰公司,HST-1 多功能椭偏测厚仪器资料,http://www.flysh. com.cn/cehouyi.htm,2007.3.
    [89] Jobin-Yvon,Spectroscopic Ellipsometry,http://www.jobinyvon.com/ usadivisions/TFilms/products/spectroellipso.pdf,2007.3.
    [90] Xinhui Niu,An Integrated System of Optical Metrology for Deep Sub-Micron Lithography:[博士学问论文],BERKELEY: UNIVERSITY of CALIFORNIA,1999.
    [91] Jobin-Yvon,Characterization of DNA Sensor Pads using the UVISEL Spectroscopic Phase Modulated Ellipsometer,http://www.jobinyvon.com /usadivisions/ TFilms/applications/se-08.pdf,2007.3.
    [92] Jobin-Yvon , Ellipsometric Study of the Aggregation of Hydrophobically Modified Polysaccharides in Solution at the Air/Water Interface , http://www.jobinyvon.com/usadivisions/TFilms/applica tions/se-09.pdf,1997.3.
    [93] J.A.Woollam Co.,Inc. , Research Spectroscopic Ellipsometer ,http://www.jawoollam.com/vase.html,2007.2.
    [94] H.F.Hazebroek,A.A.Holscher, interferometric ellipsometry,J.Phys.E: Sci.Instr. 1973,6(4):822-826.
    [95] H.F.Hazebroek , W.M. Visser, automated laser interferometric ellipsometry and precision reflectometry,J.Phys.E: Sci.Instr. 1983,16(3):654-661.
    [96] Chin-hua, Chien Chou, Keh-su Chang, Real time interferometric ellipsometry with optical heterodyne and phase lock-in techniques,Apll.Opt. 1990,29(34):5159~5162.
    [97] Ming-Horng Chiu, Ju-Yi Lee, Der-Chin Su, Complex refractive-index measurement based on Fresnel's equations and the use of heterodyne interferometry,Appl. Opt.,1999,38(19):4047-4052.
    [98] Lionel R. Watkins, Maarten D. Hoogerland, Interferometric ellipsometer with wavelength-modulated laser diode source, Appl. Opt., 2004, 43(30):4362-4366.
    [99] M M Wind,K Hemmes,New ultra-fast interferometric ellipsometry system based on Zeeman two-frequency laser , Meas. Sci.Technol. , 1994, 5(1):37~46.
    [100] Valentin Panayotov, Ivan Konstantionv, Determination of thin film optical parameters from photometric measurements: an algebraic solution for the (T,Rf,Rb) method, Appl.Opt.,1991,30(19):2795-2800.
    [101] 彭子龙, 李佐宜, 胡煜等, 遗传算法在椭圆偏振测量中的应用,光学技术, 2000, 27(03):277-279.
    [102] 张建春, 朱石沙, 刘奇元等, 非常快速模拟退火算法在椭偏数据处理中的应用及其改进策略研究,现代机械,2005,5:26-28.
    [103] T Easwarakhanthan,P Pigeat,Error propagation in fixed-point ellipsometric inversions,Meas. Sci. Technol.,2003,14:516–522.
    [104] 廖清君,王植恒,王磊等,模拟退火法在吸收薄膜的椭偏反演算法中的应用,光学学报,2002,22(6): 683-687.
    [105] G. H. Park, Y. H. Pao, K. G. Eyink, et al, Neural-net based optical ellipsometry for monitoring growth of semiconductor films, Artificial intelligence in real time control, Valencia, Spain, 1994, 123-128.
    [106] Yu Faye Chao, Kan Yan Lee, Yi De Lin,Analytical solutions of the azimuthal deviation of a polarizer and an analyzer by polarizer– sample–analyzer ellipsometry,Appl.Opt., 2006,45(17):3935-3939.
    [107] C.Defranoux,S.Bourtault,et al, Infrared spectroscopic ellipsom- etry applied to the characterization of Ultra Shallow Junction on SOT and Silicon, 3rd International Conference on Spectroscopic Ellipsometry, Vienna, 2002,890-893.
    [108] N.V.Edwards, Optical Constants of Si and SiO2 in the V-acuum Ultraviolet,3rd International Conference on Spectroscopic Ellipsometry, Vienna, 2002,1060-1063.
    [109] 穆全全,刘永军,胡立发等,光谱型椭偏仪对各向异性液晶层的测量,物理学报, 2006,3: 62-67.
    [110] Sommargren G. E., Linear/angular displacement interferometer for wafer stage metrology, In: Burn J. Lin, eds, Optical/laser microlithography II, USA California: SPIE 1989, 1088: 268-272.
    [111] Sommargren G. E., A new laser measurement system for precision metrology, Precision Engineering, 1987, 9(4): 179-183.
    [112] Hosoe S., Highly precision and stable laser displacement measurement interferometer with differential optical passes in practical use, Nanotechnology, 1994, 6(1):24-28.
    [113] Hosoe S., Laser Interferometric system for displacement measurement with high precision, Nanotechnology, 1991, 2(2):88-95.
    [114] Lee C.K., Wu T.W., differential laser interferometer for nanometer displacement measurement, AIAA Journal, 1995, 33(9):1675-1680.
    [115] K.Hemmes, M.A.Hamsrta, K.R.Koops et al., Evaluation of interfere- ometric ellipsometer systems with a time resolution of one microsecond and faster, Thin solid films, 1998, 40-46: 313-314.
    [116] Jobin-Yvon,相位调制与机械旋转椭偏仪的区别,http://www.jobinyvon. com/usadivisions/TFilms/products,2007.3.
    [117] M.莎晋,M.O.斯考莱,W.E. 兰姆,激光物理学,北京:科学出版社,1982.
    [118] 邵学,塞曼激光的稳频研究:[硕士学位论文],北京;清华大学,1988.
    [119] 李利聪,李恭亮,纵向塞曼激光器的磁场与频差特性,激光杂志,1989,10(1): 36-38.
    [120] 周炳琨,高以智,陈家骅,激光原理,北京:国防工业出版社,1980.
    [121] 施展,郭彦珍,横向塞曼稳频 He-Ne 激光器的研究,华东工业大学学报,1995,17(4): 101-105.
    [122] 巴恩旭,扬性愉,沈寿春,横向塞曼激光器理论,物理学报,1984,33(4): 496-507.
    [123] 巴恩旭,扬性愉,刘玉照,横向塞曼激光器的实验研究,光学学报,1984,4(5): 398-405.
    [124] 王庆吉,金浩然,横向塞曼激光器中的非线性效应,计量学报,1987,8(3): 230-236.
    [125] Petru F., Popela B., Vesela Z., Iodine-stabilized He-Ne laser at 633nm of a compact construction, Metrologia, 1992, 29:301-307.
    [126] Zhao Kegong, Li chengyang, Li Hua, Investigations of 127 I2 stabilized He-Ne laser at 640nm, 计量学报,1987,8(2):88-93.
    [127] Shao Xue, Yin Chunyong, A new development in frequency stabilization of a longitudinal Zeeman laser, In: Wang Da-heng international conference on optoelectronic science and engineering, Beijing: SPIE, 1990, 1230: 400-402.
    [128] Baer T., Kowalski K.V., Hall J.L., Frequency stabilization of 633nm He-Ne longitudinal Zeeman laser, Appl. Opt.,1980,19(18): 3173-3177.
    [129] 王楚,沈伯弘等,633nm 氦氖激光的纵向塞曼拍频曲线及稳频的原理和实验,光学学报,1984,4(9): 808-813.
    [130] Zumberge mark, frequency stability of Zeeman-stabilized laser, appl. Opt., 1985, 2(13): 1902-1904.
    [131] 李康循,峰值稳频横向塞曼激光器,光学学报,1991,11(1): 61-64.
    [132] Xie Yi, Shen Nai-cheng, A new 633nm phase-locked longitudinal Zeeman stabilized He-Ne laser, 计量学报,1996,7(4): 275-278.
    [133] 成相印,郭继华,殷纯永,一种实现高精度稳定 Zeeman 激光频差的方法,激光技术,1996,20(2): 95-98.
    [134] 施志果,龚津萍,Uniphase 1007 型 He-Ne 激光器的纵向塞曼稳频率研究,光学学报,1993,13(2): 102-106.
    [135] 明万林,王惠久,薛莉等,633nm 横向塞曼稳频 He-Ne 激光器充入自然氖实现拍频锁定的研究,激光杂志,1987,8(1): 36-40.
    [136] Shuko Yokoyama, Tsutomu araki, Norihito Suzuki, Frequency stabilization by frequency pulling for single mode oscillation of He-Ne laser at maximum intensity, Rev. Sci Instrm., 1995, 66(4):2788-2795.
    [137] Zemanek P., Lazar J., Use of the beat frequency between two mode for frequency stabilization of internal-mirror lasers, Appl. Opt., 1994, 33(27): 6333-6339.
    [138] Klinger J.H., Quenella R., A thermally stabilized two frequency laser measurement system for industrial use, SPIE applications of optical metrology-techniques and measurement II, 1983, 416: 51-59.
    [139] 张倍林,张连芳,阮苏苏等,双频激光器的稳频研究,清华大学学报,1978,3:21-30.
    [140] 雷振山,LabVIEW 7 Express 实用技术教程,2004,北京:中国铁道出版社.
    [141] 刘卓建,唐振方,椭偏测厚仪测量结果的计算机数据处理,自动化仪表,2003,24(11): 28-31.
    [142] 阳生红, 余招贤, 李辉遒等,模拟退火法在椭偏光谱数值反演中的应用,红外与毫米波学报,2000,19(5): 338-342.
    [143] 殷纯永,现代干涉计量技术,天津:天津大学出版社, 1999.
    [144] Wenmei Hou, Gunter Wilkening,Investigation and Compensation of the Nonlinearity of Heterodyne Interferometers,Precision Engineering, 1992,14(2):91~98.
    [145] 赵慧洁,外差干涉仪频率混叠误差分析,计量学报,1999, 20(3):166~171.
    [146] 戴高良,殷纯永, 谢广平,纳米精度外差干涉仪非线性漂移的研究,光学学报,1998,18(12):1697~1702.
    [147] 黎永前,李晓莹,朱名铨,外差干涉非线性误差修正方法研究,西北工业大学学报,2004,22(5): 622~625.
    [148] 戴高良, 晁志霞,殷纯永等,纳米精度双频激光干涉仪非线性误差的确定方法,中国激光,1999,26(11):987~992.
    [149] Jolyon M De Freitas,Analysis of laser source birefringence and dichroism on nonlinearity in heterodyne interferometry,Meas. Sci. Technol.,1997,(8):1356-1359.
    [150] Chien-ming Wu, Ching-shen Su,Nonlinearity in measurements of length by optical interferometry,Meas.Sci.Technol.,1996,(7):62-68.
    [151] TaeBong Eom,TaeYoung Choi,KeonHee Lee,et al.,A simple method for the compensation of the nonlinearity in the heterodyne interferometer, Meas. Sci. Technol., 2002,(13):222-225.
    [152] TaeBong Eom,JongYun Kim, Kyuwon Jeong,The dynamic compensation of nonlinearity in a homodyne laser interferometer,Meas. Sci. Technol.,2001,(12):1734–1738.
    [153] J M De Freitas,M A Player,Importance of rotational beam alignment in the generation of second harmonic errors in laser heterodyne interferometry,Meas. Sci. Technol.,1993,(4):1173-1176.
    [154] Zhi Li, Konrad Herrmann,Frank Pohlenz,A neural network approach to correcting nonlinearity in optical interferometers,Meas. Sci. Technol., 2003,(14):376-381.
    [155] Oliver P. Lay, David J. Seidel,Serge Dubovitsky,Elimination of heterodyne interferometer nonlinearity by carrier phase modulation,OPTICS LETTERS, 2002,27(8):619-621.
    [156] 刘清,用遗传网络校正传感器非线性误差的研究,计算机应用,2002,22(12):31-33.
    [157] 廖忠,赵宏,用小波神经网络补偿传感器非线性误差的研究,自动化仪表,2005, 26(3):13-14、18.
    [158] 侯立群,张智娟,仝卫国,基于 RBF 神经网络的传感器非线性误差校正方法,传感器技术,2004,23(3):42-45.
    [159] 卢智远,周永军,李卫军,传感器非线性误差校正的 BP 神经网络方法研究,传感器技术,2005,24(2):11-12.