NTP-NC技术脱除NO_x及对PM理化性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温等离子体(Non-thermal Plasma, NTP)协同催化技术具有同时脱除NOx和PM的技术优点,被认为是柴油机后处理领域最有潜力的技术之一。催化剂的催化效果很大程度上依赖于柴油机的排气温度,而柴油机,尤其是中小型柴油机,通常在中低负荷工况下运行,排气温度难以达到催化剂的活性温度,导致催化剂脱除NOx和PM的效率较低。为此,本文通过改进催化剂涂覆工艺,制备了纳米结构的催化剂,提高了催化剂自身的比表面积和催化活性;在此基础上,提出NTP协同NC的技术方案,利用NTP的活化作用,提高纳米催化剂对NOx及PM的脱除效率,同时有效提高PM的低温燃烧活性,实现PM的低温燃烧。主要工作如下:
     (1)基于介质阻挡放电(Dielectric Barrier Discharge, DBD)理论基础,设计出放电稳定、均匀且安全性能较好的同轴圆柱式NTP发生器。将单个NTP发生器进行并联布置,形成复合式NTP发生器。通过静态试验研究,结果表明该种结构NTP发生器不仅工作稳定,还可以有效增加排气流量。
     (2)采用柠檬酸溶胶-凝胶法制备复合金属氧化物催化剂LKFMCO、LKMCO和Fe/Ce-K-O粉体,载体经浸渍涂覆形成试验所用催化剂,金属氧化物在载体的负载量分别为9.0wt%,10wt%和10wt%,涂覆厚度为30gm。通过X射线衍射仪(X-ray Diffraction, XRD)、BET和扫描电子显微镜(Scanning Electron Microscope, SEM)等测试技术对催化剂性能进行表征,结果表明催化剂LKFMCO、 LKMCO和Fe/Ce-K-O均为纳米催化剂,平均粒径分别为16.27nm、26nm和32nm,比表面积分别为221.7m2/g、208.5m2/g和213.4m2/g,晶粒之间通过网状连接,形成了丰富的粒间孔结构。
     (3)通过台架试验,对不同频率下NTP能量密度随工作电压的变化关系进行了研究。同时对柴油机排气中的主要气体组分和碳烟随能量密度的变化规律进行了研究。研究发现,不同NTP放电频率下,NTP的能量密度随着工作电压的增大而升高。在NTP技术作用下,NOx总量基本保持不变,碳烟的不透光度明显降低,且随着能量密度的增加呈降低趋势。
     (4)利用程序升温法研究了温度对NTP和NTP-LKMCO技术脱除NOx排放的影响。根据试验结果,对NTP作用下NOx的转化机理进行了验证。在NTP-LKMCO技术作用下,NO、浓度得以降低。与NTP技术作用相比可发现,当温度高于280℃时,催化剂开始发挥活性,脱除NOx效果较好。
     (5)利用制备的LKFMCO和Fe/Ce-K-o纳米催化剂,协同NTP发生器建立了NTP-NC系统。分别利用Photon红外烟气分析仪在线检测柴油机NO、NO2, NOx, N2O的浓度变化,研究了负荷对NTP-NC技术脱除NOx排放的影响。同时,对LKFMCO和Fe/Ce-K-O纳米催化剂的NOx脱除效率、催化活性及影响因素进行了研究。NTP技术作用下,在温度升高过程中会额外产生副产物N2O。与原机相比,在NTP-LKFMCO和NTP-Fe/Ce-K-O技术作用下,副产物N2O的浓度得以有效降低。
     (6)通过台架试验,研究了负荷对NTP、NTP-LKFMCO和NTP-Fe/Ce-K-O降低碳烟排放的影响。研究表明,LKFMCO和Fe/Ce-K-O纳米催化剂对碳烟的处理效果不明显;NTP-NC系统中,NTP对降低柴油机碳烟排放起主导作用。
     (7)利用索氏萃取法分离出PM样品中的可溶性有机物(Soluble Organic Fraction, SOF),研究了NTP作用前后PM样品中SOF质量分数的变化。通过气相色谱-质谱(Gas Chromatography-mass Spectrometry, GC-MS)技术对NTP作用前后PM样品中SOF组分组成及变化进行了分析。研究表明,NTP作用后PM样品中SOF质量分数降低,SOF的主要成分为有机酸酯类物质。NTP处理前后PM样品中碳原子质量分数较大的分布范围分别为C14~C24和C11~C24,且NTP处理后低碳原子数目明显增多。
     (8)利用SEM、能量色谱仪(Energy Dispersive Spectrdmete, EDS)测试技术,对NTP作用前后PM样品的形貌、粒径、均匀度以及化学元素的变化进行了分析。原机PM样品形貌为不均匀和不规状分布的颗粒积聚体,NTP处理后PM样品颗粒排列比较疏松,粘结程度得以降低,PM样品中的C含量明显降低。通过微孔均匀沉积冲击器(Mirco-Orice Uniform Deposit Impactor, MOUDI)系统,在转速为2000r/min、75%负荷及转速为2800r/min、100%负荷两种不同工况下对PM进行取样。分别以N2和O2为反应气氛,N2为保护气体,对PM样品进行TG和DTG分析,研究了PM组分的失重规律及原因。通过对比NTP作用前后O2反应气氛中PM样品的燃烧结束温度,评价了NTP对PM低温燃烧特性的影响。
Diesel engine emissions of oxides of nitrogen and particulate matter can be reduced simultaneously through the non-thermal plasma (NTP) assisted catalyst, which is considered as one of the most potential method in the field of exhaust after-treatment for diesel engines. The catalytic effect of the catalyst largely depends on the exhaust gas temperature. The catalyst shows no activity at low temperature of the diesel engine running under low and medium speed and load operating conditions, and it is hard to achieve the high efficiency of catalytic removal NOx and PM.
     In this paper, the nano-catalysts are prepared through improving the catalyst coating process to obtain the higher BET surface area and catalytic activity. Then the NTP-NC system is established by combining the NTP reactor with nano-catalysts. With regard to the advantages of the NTP activation, the low-temperature catalytic activity of the nano-catalysts are improved, and the low-temperature combustion activity is enhanced, which can provide benefits for NOx and PM removal. The main research in this work was carried out as follows:
     (1) The NTP reactor was designed on the basis of the dielectric barrier discharge theory, which has the advantages of discharge stable and good safety performance. A compound NTP reactor was formed by combining several NTP reactors arranged in parallel. Based on the static test, results showed that such structure can not only ensure the NTP reactor work stable but also can increase the exhaust flow.
     (2) The composite metal oxide catalyst LKMCO, LKFMCO and Fe/Ce-K-O prepared by the sol-gel assisted dip-coating method, the metal oxide loaded on the carrier was9.0wt%,10wt%and10wt%separately, and the coating thickness both was30μm. By characterizing the catalyst powders with X-ray diffraction (XRD), BET and scanning electron microscope (SEM), the structure of the catalysts and the transformation of crystal configuration were discussed as well. The results suggest that the LKMCO, LKFMCO and Fe/Ce-K-O catalysts have a porous structure. The average diameter of the catalysts were16.27nm、26nm and32nm, and the surface area of the catalyst were221.7m2/g、208.5m2/g and213.4m2/g.
     (3) Based upon the bench test, the effects of NTP SED on the variation of the exhausts components and working voltage were investigated. The results found that the NTP SED increased with the working voltage increasing under the different NTP discharge frequency. Under the treatment of NTP technology, the total amount of NOx changed little. However, soot emission was significantly reduced after NTP treatment and tended to decline with the increasing of NTP SED.
     (4) The effect of temperature on NOx removal under the treatment of NTP and NTP-LKMCO were studied by temperature programming method. According to the experiment results the mechanism of NOx conversion was analyzed. Comparing with the NTP treatment, the total amount of NOx reduced after NTP-LKMCO treatment. And the catalyst began to exhibit higher catalytic reactivity when temperature was higher than280℃.
     (5) By combining LKFMCO and Fe/Ce-K-O nano-catalysts with NTP reactor the NTP-NC system were established. NO、NO2、NOx and by-product N2O emissions were measured online with Photon infrared gas analyzer. The effect of engine load on NOx removal was studied on the basis of bench test. Meanwhile, NOx removal and the activity influence factors of the catalysts were also analyzed and discussed. The formation and variation rule of by-product N2O was tested and evaluated during the process of NTP-NC technology. Under the treatment of NTP, by-product N2O caused with the rise in temperature. Compared with the reference test, N2O concentration efficiently reduced after NTP-LKFMCO and NTP-Fe/Ce-K-O treatment.
     (6) By comparing the effect of load on soot removal with NTP、NTP-LKFMCO and NTP-Fe/Ce-K-O technology were studied based upon the bench test, it is shown that the major role in soot removal was NTP processing during the NTP-NC treatment, but not the LKFMCO and Fe/Ce-K-O catalyst.
     (7) SOF is extracted from PM using soxhlet extraction method. And the mass fraction variation of the SOF components in PM was investigated with NTP technology. The results revealed that the main components were organic acids and the mass fraction of SOF was reduced after NTP treatment. The distribution range of main components in PM samples were C14~C24and Cl1~C24before and after NTP treatment, and the amount of low carbon atoms increased considerably after NTP treatment.
     (8) The physical structure and the chemical composition of PM samples with NTP technology were investigated by SEM and EDS. Comparing without the NTP treatment, the particulates in PM samples arranged more loosely and the particles size became smaller after NTP treatment, and the content of C was also obviously decreased. In the different conditions of2000r/min speed75%load and2800r/min speed100%load, PM samples were obtained by using the MOUDI device. Then the thermogravimetry analysis and derivative thermogravimetric analysis were used to study the thermal properties of PM samples in N2and O2atmosphere, in order to analyze the reasons for PM components loss. By comparing the differences at the end of combustion temperatures, the NTP effects on the low temperature combustion properties of PM was evaluated.
引文
1.周龙保.内燃机学[M].北京:机械工业出版社,2011.
    2.刘巽俊.内燃机的排放与控制[M].北京:机械工业出版社,2005.
    3.党帅,钟北京,龚景松,等.乙醇掺混燃烧对柴油机碳烟和NOx排放影响的实验研究[J].热能动力工程,2012,27(5):615-619.
    4.帅石金,孙建军,王建昕,等.使用乙醇还原剂的NOx-SCR催化剂的性能评价[J].汽车工程,2005,27(5):542-545.
    5.张德满,李舜酩,李凯,等.冷却水温度对柴油机污染物排放的影响[J].内燃机学报,2010,28(6):510-513.
    6. Martyn V T. Progress and Future Challenges in Controlling Automotive Exhaust Gas Emissions [J]. Applied Catalysis B:Environmental,2007,70 (1):2-15.
    7.左承基,钱叶剑,徐天玉,等.EGR与富氢进气对柴油机性能和排放的影响[J].农业机械学报,2010,41(4):12-15.
    8.谭不强,陆家祥,邓康耀,等.喷油提前角对柴油机排放影响的研究[J].内燃机工程,2004,25(2):9-11.
    9. Koebel M, Elsener M, Kleemann M. Urea-SCR:a Promising Technique to Reduce NOx Emissions from Automotive Diesel Engines [J]. Catalysis Today,2000,59:335-345.
    10. Akira H, Daigo Y, Jin M. Removal of NOX using The Reductive Properties of TiOx (0    11.郭锡坤,陈庆生,张俊豪,等Cu/Al2O3催化剂的改性及其对NO选择性还原的催化性能[J].催化学报,2005,26(12):1104-1108.
    12. Martyn V T. Progress and Future Challenges in Controlling Automotive Exhaust Gas Emissions [M]. Appl. Catal, B,2007-70-2.
    13. Ulrich G A, Bernd S. Engines and Exhaust after Treatment Systems for Future Automotive Applications [J]. Solid State Ionics 2006-177-2291.
    14. Jung S, Ishida M, Yamamoto S, et al. Enhancement of NOx-PM Trade-off in a Diesel Engine adopting Bio-Ethanol and EGR [J]. International Journal of Automotive Technology,2010,11 (5):611-616.
    15. Johnson T V. Diesel Emission Control in Review [C]. SAE Paper,2008-01-0069.
    16. Hussain J, Palaniradja K, Algumurthi N. Diesel Engine Emissions and after Treatment Techniques-a Review [J]. Journal of Engineering Research and Studies, E-ISSN0976-7916.
    17. loannis G, Gabrielsson P, Keld J. Performance of a Urea SCR System combined with a PM and Fuel optimized Heavy-Duty Diesel Engine able to achieve the Euro V Emission Limits [J]. SAE Paper,2002-01-2885.
    18.管斌,周校平,林赫,等NH3-SCR法降低柴油机NOx排放的研究进展[J].车用发动机,2007,5(171):1-7.
    19.朱春,张旭.车用柴油机排放细颗粒物和超细颗粒物特征与人体健康效应[J].环境与健康杂志.2010,27(6):549-551.
    20. Castoldi L, Matarrese R. Lietti L, et al. Simultaneous Removal of NOx and Soot on Pt-Ba/Al2O3 NSR Catalysts [J]. Applied Catalysis B:Environmental.2006,64 (2):25-34.
    21.苏庆运,朱国朝,刘卫国,等.柴油机排放后处理技术的进展及发展趋势[J].汽车工出,2001,5(23):319-322.
    22.朱天乐,王建昕,傅立新,等.柴油机排气后处理技术[J].车用发动机,2002,(6):1-5.
    23.杜伯学,苟占龙,刘弘景.低温等离子体治理柴油机尾气污染的研究进展[J].环境保护科学,2008,34(3):12-15.
    24. Gabrielsson P L T. Urea-SCR in Automotive Applications [J]. Topics in Catalysis,2004,28(4): 177-184.
    25.裴梅香,林赫,黄震.柴油机排气后处理技术及发展方向[J].小型内燃机与摩托车,2003,32(2):35-38.
    26.刘向民,方茂东.柴油机后处理技术的研究现状和发展趋势[J].小型内燃机与摩托车2003,4(23):30-32.
    27. Li J H, Ke R, Li W. A comparison study on non-thermal plasma-assisted catalytic reduction of NO by C3H6 at low temperatures between Ag/USY and Ag/Al2O3 catalysts [J]. Catalysis Today,2007,126:272-278.
    28. Jogi V, Bichevin M, Laan A. NO Conversion by Dielectric Barrier Discharge and TiO2 Catalyst:Effect of Oxygen[J]. Plasma Chem Plasma Process,2009,29:205-215.
    29. Wang P, Cai Y X, Wang J. Experiment Study on Harmful Emissions of Diesel Engine with Non-thermal Plasma assisted Catalyst Technology [J]. Transactions of the Chinese Society for Agricultural Machinery,2010,41 (9):15-18.
    30. Miessner H, Franckea K P, Rudolph R. NOx removal in excess oxygen by plasma-enhanced selective catalytic reduction [J]. Catalysis Today,2002,75:325-330.
    31. Chen C T, Tan W L. Mathematical modeling, optimal design and control of an SCR reactor for NOx removal[J]. Journal of the Taiwan Institute of Chemical Engineers,2012,43:409-419.
    32. Li Q, Meng M, Dai F F, et al. Multifunctional hydrotalcite-derived K/MnMgAlO catalysts used for soot combustio, NOx storage and simultaneous soot-NOx removal [J]. Chemical Engineering Journal,2012,184:106-112.
    33. Sumathi S, Bhatia S, Lee K T, et al. Selection of best impregnated palm shell activated carbon (PSAC) for simultaneous removal of SO2 and NOx [J]. Journal of Hazardous Materials, 2010,176:1093-1096.
    34. Pieterse J A Z, Top H, Vollink F, et al. Selective catalytic reduction of NOx in real exhaust gas of gas engines using unburned gas:Catalyst deactivation and advances toward long-term stability[J]. Chemical Engineering Journal,2006,120:17-23.
    35. Fan X Y, Qiu F M, Yang H S, et al. Selective catalytic reduction of NOx with ammonia over Mn-Ce-OX/TiO2-carbon nanotube composites [J]. Catalysis Communications,2011,12: 1298-1301.
    36. Min K, Eun DP, Ji M K. Manganese Oxide Catalysts for NOx Reduction with NH3 at Low Temperatures [J]. Applied Catalysis A:General,2007,327:261-269.
    37. Liu Y, Gu T T, Wang Y, et al. Influence of Ca Doping on MnOx/TiO2 Catalysts for Low-Temperature Selective Catalytic Reduction of NOx by NH3 [J]. Catalysis Communications,2012,18:106-109.
    38. Jae S C, William P P, Josh A P, et al. Spatiotemporal Distribution of NOx Storage and Impact on NH3 and N2O Selectivities during Lean/Rich Cycling of a Ba-Based Lean NOx Trap Catalyst [J]. Catalysis Today,2012,184:20-26.
    39. Lee G W, Shon B H, Yoo J G, et al. The Influence of Mixing between NH3 and NO for a De-NOx Reaction in the SNCR Process [J]. Journal of Industrial and Engineering Chemistry, 2008,14:457-467.
    40. Zhu Z P, Liu Z Y, Liu S J, et al. Anovel Carbon-supported Vanadium Oxide Catalyst t for NO Reduction with NH3 at Low Temperatures [J]. Applied Catalysis B:Environmental,1999,23 (4):229-233.
    41.朱珍平,刘振字,牛宏贤,等V2O5/AC催化剂低温催化的NO-NH3-O2反应-SO2、V2O5担载量和反应温度的影响[J].中国科学(B辑),2000,30(2):154-159.
    42. Huang Z G, Zhu Z P, Liu Z Y. Combined Effect of H2O and SO2 on V2O5/AC Catalysts for NO Reduction with Ammonia at Lower Temperatures [J]. Applied Catalysis B:Environmental, 2002,39 (4):361-368.
    43. DiGiulio C D, Komvokis V G., Amiridis M D. In Situ FTIR Investigation of The Role of Surface Isocyanates in The Reduction of NOx by CO and C3H6 over Model Pt/BaO/Al2O3 and Rh/BaO/Al2O3 NOx storage and reduction (NSR) catalysts [J]. Catalysis Today,2012,184: 8-19.
    44. Lindholma A, Sjovall H, Olsson L. Reduction of NOx over a Combined NSR and SCR System [J]. Applied Catalysis B:Environmental,2010,98:112-121.
    45. Masdrag L, Courtois X, Can F, et al. Understanding The Role of C3H6, CO and H2 on Efficiency and Selectivity of NOx Storage Reduction (NSR) Process[J]. Catalysis Today, 2012,189:70-76.
    46. Corbos E C, Haneda M, Courtois X, et al. NOx Abatement for Lean-burn Engines under Lean-rich Atmosphere over Mixed NSR-SCR Catalysts:Influences of The Addition of a SCR Catalyst and of The Operational Conditions [J]. Applied Catalysis A:General,2009,365: 187-193.
    47. Bonzi R, Lietti L, Castoldi L, et al. NOx Removal over a Double-bed NSR-SCR Reactor Configuration [J]. Catalysis Today,2010,151:376-385.
    48. Iwamoto M, Hamada H, Removal of Nitrogen Monoxide from Exhaust Gases through Novel Catalytic Processes[J]. Catal. Today,1991,10(1):57-71.
    49. Iwamoto M, Yahiro H, Torikai Y, Novel Preparation Method of Highly Copper Ion-exchanged ZSM-5 Zeolites and Their Catalytic Activities for NO Tecomposition [J]. Chem. Lett.,1990, 19 (11):1967-1970
    50. Wang X Q, Sigmon S A, Spivey J J, et al. Support and Particle Size Effects on Direct NO Decomposition over Platinum [J]. Catal. Today,2004,96(1-2):11-20.
    51. Kim S S, Lee S J, Hong S C, Effect of CeO2 Addition to Rh/Al2O3 Catalyst on NO Decomposition [J]. Chem. Eng. J.,2011,169(1-3):173-179.
    52.伍斌,童志权,NO分解催化剂的研究进展[J],工业催化,2005,13(7):52-55.
    53.葛蕴珊,赵伟,王军方,等.DOC对柴油机排放特性影响的研究[J].北京理工大学学报,2012,32(5):460-464.
    54.王军方,丁焰,尹航,等.DOC技术对柴油机排放颗粒物数浓度的影响[J].环境科学研究,2011,24(7):711-715.
    55. Westphal GA, Krahl J, Munack A. Mutagenicity of Diesel Engine Exhaust Is Eliminated in the Gas Phase by an Oxidation Catalyst but Only Slightly Reduced in the Particle Phase. ENVIRONMENTAL SCIENCE & TECHNOLOGY,2012,64:6417-6424.
    56. Shibata K, Yanagisawa N, Tashiro Y. Reduction in the Emissions and Toxicity of Polycyclic Aromatic Hydrocarbons from a Heavy-duty Diesel Engine with the Latest Aftertreatment Devices. JOURNAL OF HEALTH SCIENCE,2010,56(1):31-40.
    57. Hosoya M, Shimoda M. The Application of Diesel Oxidation Catalysts to Heavy Duty Diesel Engines in Japan [J]. Applied Catalysis B-Enviromental,1997,10(3):83-97.
    58. Galisteo F C, Larese C, Mariscal R, et al. Deactivation on Vehicle-aged Diesel Oxidation Catalysts [J]. Topics in Catalysis,2004,31 (4):451-456.
    59. Zelenka P, Kriegler W, Herzog P L, et al. Ways toward the Clean Heavy-duty Diesel [J]. SAE (Society of Automotive Engineers) Transactions.1990,99:1279-1291.
    60. Zelenka P, Ostgathe K, Lox E. Reduction of Diesel Exhaust Emissions by Using Oxidation Catalysts [J]. SAE (Society of Automotive Engineers) Transactions,1990,99:703-713.
    61.王小臣,葛蕴珊,王建海,等.氧化催化器对柴油机排放颗粒物中无机盐组分影响的研究[J].汽车工程,2011,33(5):392-396.
    62. Sui L N, Yu L Y. Diesel Soot Oxidation Catalyzed by Co-Ba-K Catalysts:Evaluation of The Performance of The Catalysts[J]. Chem. Eng. J.2008-142-327.
    63.孟忠伟,宋蔷,姚强.柴油机颗粒捕集器内颗粒沉积结构的实验研究[J].燃烧科学与技术,2012,18(1):21-26.
    64.姜大海,宁智,姚广涛,等.柴油机颗粒捕集器再生时机的研究[J].汽车工程,2012,34(2):109-115.
    65. Lapuerta M, Oliva F, Agudelo J R, et al. Effect of Fuel on the Soot Nanostructure and Consequences on Loading and Regeneration of Diesel Particulate Flters [J]. Combustion and Flame,2012,159:844-853.
    66. Beatrice C, Iorio S D, Guido C, et al. Detailed Characterization of Particulate Emissions of an Automotive Catalyzed DPF Using Actual Regeneration Strategies [J]. Experimental Thermal and Fluid Science,2012,39:45-53.
    67. Athanasios M, Pierre B, Adolfo P, et al. Assessment of Portable Pmission Peasurement Systems (PEMS) for Heavy-duty Diesel Engines with Respect to Particulate Matter[J]. Journal of Aerosol Science,2013,57:54-70.
    68. Debora F, Paolo F, Guido S, et al. Innovative Means for the Catalytic Regeneration of Particulate Traps for Diesel Exhaust Cleaning [J]. Chemical Engineering Science,2003,58: 951-958.
    69. Debora F, Vito S. Compositional and Structural Optimal Design of a Nanostructured Diesel-soot Combustion Catalyst for a Fast-regenerating Trap [J]. Chemical Engineering Science,2004,59:4825-4831.
    70. Jan S, Petr K, Frantisek P, et al. Investigation of Combined DOC and NSRC Diesel Car Exhaust Catalysts [J]. Computers and Chemical Engineering,2010,34:744-752.
    71.松罔仄树,杉山辰优,安西俊介,等.配装DPNR系统的轿车用柴油机的开发[J].国外内燃机,2004,2:60-64.
    72.杨妙梁.柴油颗粒捕集器(DPF)的最新技术进展-DPNR问世[J].汽车与配件,2002,27:24-25
    73. Yoshida K, Makino S, Sumiya S, et al. Simultaneous Reduction of NOx and Particulate Emissions from Diesel Engine Exhaust [J]. SAE Paper 892046,1989.
    74. Fino D, Fino P, Saracco G, et al. Studies on Kinetics and Reactions Mechanism of La2-xKxCu1-yVyO4 Layered Perovskites for the Combined Removal of Diesel Particulate and NOx [J]. Appl. Catal. B:Environ,2003,43 (3):243-259.
    75. Agus S, Michiel M, Jacob A. The Role of NOx and O2 in the Accelerated Combustion of Soot in Diesel Exhaust Gases [J]. Applied Catalysis B:Environmental,2004,50:185-194.
    76. Nejar N, Makkee M, Illan-Gomez M J. Catalytic Removal of NOx and Soot from Diesel Exhaust:Oxidation Behaviour of Carbon Materials Used as Model Soot [J]. Applied Catalysis B:Environmental,2007,75 (1-2):11-16.
    77. Nejar N, Illan-Gomez M J. Potassium-Copper and Potassium-Cobalt Catalysts Supported on Alumina for Simultaneous NOx and Soot Removal from Simulated Diesel Engine Exhaust [J]. Applied Catalysis B:Environmental,2007,70 (1-4):261-268.
    78. Nejar N, Illan-Gomez M J. Noble-Free Potassium-Bimetallic Catalysts Supported on Beta-Zeolite for the Simultaneous Removal of NOx and Soot from Simulated Diesel Exhaust [J]. Catalysis Today,2007,119 (1-4):262-266.
    79.刘光辉,催化过滤器同时去除柴油机微粒和氮氧化物的基础研究[J].[博士学位论文],上海交通大学,2002.
    80.辛喆,王顺喜,张寅,等Urea-SCR催化器压力损失及其对柴油机性能的影响[J].农业工程学报,2011,27(8):169-173.
    81.邱春天,林涛,张秋林,等.改性ZrO2-MnO2基整体式催化剂上NH3选择性催化还原NO[J].催化学报,2011,32(7):1227-1233.
    82.李雪辉,李华,高翔,等.共沉淀法制备Cr-Mn复合氧化化物及其低温催化还原NOx性能[J].催化学报,2011,32(3):477-482.
    83. Roy S, Hegde M S, Madras G. Catalysis for NOx abatement [J]. Applied Energy,2009,86 (11):2283-2297.
    84.徐青,郑章靖,凌长明,等.低温选择性能化还原脱除NOx的催化剂的研究进展[J].环境污染防治,2011,33(6):81-85.
    85.晏萍,罗建中,陈志航,等.中低温条件下选择性催化NOx还原的研究进展[J].化工进展,2011,30(8):1733-1737.
    86.苏清发,刘亚敏,陈杰,等.低温等离子体诱导低碳烃选择性催化还原NOx研究进展[J].化工进展,2009,28(8):1449-1455.
    87. Niu J H, Yang X F, Zhu A M. Plasma-assisted selective catalytic reduction of NOx by C2H2 over Co-HZSM-5 catalyst [J]. Catalysis Communications,2006,7(5):297-301.
    88. McAdams R, Beech P, Shawcross J T. Low Temperature Plasma Assisted Catalytic Reduction of NOx in Simulated Marine Diesel Exhaust [J]. Plasma Chem Plasma Process, 2008,28 (2):159-171.
    89. Li J H, Goh W H, Yan X C. Non-thermal plasma-assisted catalytic NOx storage over Pt/Ba/Al2O3 at low temperatures [J]. Applied Catalysis B:Environmental,2009,90(3-4): 360-367.
    90. Lee Y H, Chung J W, Choi Y R. NOx removal characteristics in plasma plus catalyst hybrid process [J]. Plasma Chemistry and Plasma Processing,2004,24 (2):137-154.
    91. Hoard J. Plasma Catalysis for Diesel Exhaust Treatment Cur-rent State of Art [J]. SAE Paper 2001-01-0185.
    92. Rajanikanth B S, Srinivasan A D, Ravi V. Dis-charge Plasma Treatment for NOx Reduction from Diesel Engineexhaust:A Laboratory Investigation[J]. IEEE Trans,2005,12(1):72-80.
    93. Penetrante B M. Feasibility of Plasma Aftertreatment for Simultaneous Control of NOx and Particulate [J]. SAE Paper 1999-01-3637.
    94. Grothaus M G, Robert F E. Harmful Compounds Yield to Nonthermal Plasma Reactor [J]. Spring 1996,12 (2):23-24.
    95. Hoard J. Plasma-Catalysis for Diesel Exhaust Treatment:Current State of the Art [J]. SAE Paper 2001-01-0185.
    96. John H. Plasma-catalysis for diesel exhaust treatment:current state of the art[C]. SAE Paper 010185,2001.
    97. Chae J O, Hwang J W, et al. Reduction of the particulate and nitric oxide from the diesel engine using a plasma chemical hybrid [J]. Physics of Plasmas,2001,8(4):1403-1410.
    98. Jogi I, Bichevin V, Laan M, et al. Removal of NO by simultaneous action of dielectric-barrier discharge and TiO2 photocatalyst [J]. Plasma Chem. Plasma Process,2009,29:205-215.
    99. Subrahmanyam C, Renken A, Minsker L K. Catalytic abatement of volatile organic compounds assisted by non-thermal plasma Part 11. Optimized catalytic electrode and operating conditions [J]. Applied Catalysis B:Environmental,2006,65 (1-2):157-162.
    100. Li J H, Ke R, Li W, et al. A comparison study on non-thermal plasma-assisted catalytic reduction of NO by C3H6 at low temperatures between Ag/USY and Ag/Al2O3 catalysts [J]. Catalysis Today,2007 (3-4),126:272-278.
    101.裴梅香,林赫,上官文峰,等.等离子体辅助同时催化去除柴油机NO和微粒物的试验研究[J].工程热物理学报,2005,26(5):879-882.
    102. Song C L, Bin F, Tao Z M. Simultaneous Removals of NOx, HC and PM from Diesel Exhaust Emissions by Dielectric Barrier Discharges[J]. J Hazard Mater.2009,166 (1),523-530.
    103.吴祖良,谢德援,陆豪,等.非热平衡等离子体协同催化脱除挥发性有机化合物的研究进 展[J].环境污染与防治,2012,34(4):63-67.
    104.丁琴琴,刘彤,王卉,等.低温等离子体休协助B2O3/γ-Al2O3选择催化还原NO[J].催化学报,2012,33(5):783-789.
    105.张琳,蔡忆昔,王攀,等.能量密度对低温等离子体辅助催化转化柴油机颗粒物和NOx的影响[J].农业工程学报,2011,27(11):116-119.
    106. Cai Y X, Lei L L, Wang P. The Effect of specific input energy on promotion of NO-NO2 of diesel engine with non- thermal plasma technology[J]. Advanced materials Research.2011,3 (204-210):955-959.
    107.王攀,蔡忆昔,王军,等.基于低温等离子体辅助催化技术的柴油机有害排放试验研究[J].农业机械学报,2010,41(9):15-18.
    108. Wang P, Cai Y X, Zhang L F. Physical and chemical characteristic of particulate matter from biodiesel exhaust emission using non-thermal plasma technology [J]. Energy and Fuels.2010. 24 (5):3195-3198.
    109. Fino D, Fino P, Saracco G, et al. Studies on Kinetics and Reactions Mechanismof La2-xKxCu1-yVO4 Layered Perovskites for the Combined Removal of Diesel Particulate and NOx [J].Appl. Catal. B:Environ,2003,43 (3):243-259.
    110. Lim C B, Kusaba H, Einaga H, et al. Catalytic Performance of Supported Precious Metal Catalysts for the Combustion of Diesel Particulate Matter [J]. Catal Today,2011,175:106-111.
    111. Kaneeda M, lizuka H, Hiratsuka T, et al. Improvement of Thermal Stability of NO Oxidation Pt/Al2O3 Catalyst by Addition of Pd [J]. Appl Catal B-Environ,2009,90:564-569.
    112. Van den Tillaart J A A, Leyrer J, Eckhoff S, et al. Effect of Support Oxide and Noble Metal Precursor on the Activity of Automotive Diesel Catalysts [J]. Appl Catal B-Environ,1996, 10:53-68.
    113. Ward M R, Hyde T, Boyes E D, et al. Nanostructural Studies of Fresh and Road-Aged Practical Pt/SiO2 and Pt-Pd/Al2O3 Diesel Oxidation Catalysts by using Aberration-Corrected (Scanning) Transmission Electron Microscopy [J]. CHEMCATCHEM,2012,4(10):1622-1631.
    114. Artioli N, Matarrese R, Castoldi L, et al. Effect of soot on the storage-reduction performances of PtBa/Al2O3 LNT catalyst [J]. CATALYSIS TODAY,2011,169(1):36-44.
    115. Muhammad F L, Sang D K. Co3O4 Based Catalysts for NO Oxidation and NOx Reduction in Fast SCR Process [J]. Applied Catalysis B:Environmental,2008,78:267-274.
    116. Atribak I, Bueno-Lopez A, Garcia-Garcia A. Combined Removal of Diesel Soot Particulates and NOx over CeO2-ZrO2 Mixed Oxides [J]. Journal of Catalysis,2008,259:123-132.
    117. Reichert D, Bockhorn H, Kureti S. Study of the Reaction of NOx and Soot on Fe2O3 Catalyst in Excess of O2[J]. Applied Catalysis B:Environmental,2008,80:248-259.
    118. Debora F, Nunzio R, Guido S, et al. Catalytic Removal of NOx and Diesel Soot over Nanostructured Spinel-type Oxides [J]. Journal of Catalysis,2006,242 (1):38-47.
    119. Debora F, Nunzios R, Guido S, et al. Removal of NOx and Diesel Soot over Catalytic Traps Based on Spinel-type Oxides [J]. Powder Technology,2008,180:74-78.
    120.刘光辉,上官文峰,黄震.催化剂与微粒接触对同时去除PM和NOx反应的影响[J].燃烧科学与技术,2003,9(5):463-468.
    121. Pei M X, Lin H, Shang guan W F, et al. The Effects of Plasma on Simultaneously Catalytic Removal of NOx and Soot [J]. Acta Physico-Chimica Sinica,2005,21 (3):255-260.
    122. Pei M X, Lin H, Shang guan W F, et al. Experimental Study of Plasma Assisted Catalysis Simultaneous Removal of NOx and Soot [J]. Journal of Engineering Thermo physics,2005,26 (5):879-882.
    123. Pei M X, Lin H, Shang guan W F, et al. Simultaneously Catalytic Removal of NOx and diesel PM over La0.9K0.1CoO3 Catalysis Assisted by Plasma. Journal of Combustion Science and Technology [J],2005,11 (3):278-281.
    124. Milt V G, Pissarello M L, Miro E, et al. Abatement of Diesel-Exhaust Pollutants:NOx Storage and Soot Combustion on K/La2O3 Catalysts[J]. Applied Catalysis B:Environmental,2003, 41 (4):397-414.
    125. Pissarello M L, Milt V G, Peralta M A, et al. Simultaneous Removal of Soot and Nitrogen Oxide from Diesel Engine Exhausts [J]. Catalysis Today,2002,75(1-4):465-470.
    126. Jian L, Zhen Z, Xu C M. Simultaneous Removal of NOx and Diesel Soot Particulates over Nonnumeric La(2-x)KxCuO4 Complex Oxide Catalysts [J]. Catalysis Today,2007,119:267-272.
    127.王虹,赵震,徐春明等.纳米La-Mn-O钙钛矿型氧化物催化剂上柴油机尾气碳颗粒催化燃烧性能的研究[J].科学通报,2005,50(4):336-339.
    128. Voorhoeve R J H, Johnson D W, Remeika J P, et al. Perovskite Oxides:Materials Science in Catalysis[J]. Science,1977,195:827-833.
    129. Li Z Q, Meng M, Li Q, et al. Fe-substituted Nanometric La0.9K0.1Co1-xFexO3-1 Perovskite Catalysts Used for Soot Combustion NOx Storage and Simultaneous Catalytic Removal of Soot and NOx [J]. Chem. Eng. J.,2010,164:98-105.
    130. Wang Y P, Zhu J W, Zhang L L, et al. Preparation and characterization of perovskite LaFeO3 nanocrystals [J]. Mater. Lett.,2006,60,1767-1770.
    131. Kim C H, QiGS, Dahlberg K, et al. Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust [J]. Science,2010,327,1624-1627.
    132. Keita T, Noriyuki O, Tomohiro A. Preparation and characterization of La1-xKxFeO3 (x=0-1) by self-propagating high temperature synthesis for use as soot combustion catalyst[J]. J. Alloys Compd.,2011,509,4084-4088.
    133. Shangguan W F, Teraoka Y, Kagawa S. Simultaneous catalytic removal of NO and diesel soot particulates over ternary AB2O4 spinel-type oxides [J]. Appl. Catal., B,1996,8,217-227.
    134. Deganello F, Maret G, Deganello G. Citrate-Nitrate Auto-Combustion Synthesis of Perovskites-Type Nan powders:a Systematic Approach [J]. Journal of the European Ceramic Society,2009,29:439-450.
    135. Li S X, Reina K, Wang Q, et al. Soot trapping and combustion on nanofibrous perovskite LaMnO3 catalysts under a continuous flow of soot [J]. Appl. Catal., B,2010,93, (3-4): 383-386.
    136. Belessi V C, Ladavos A K, Pomonis P J. Methane combustion on La Sr Ce Fe O mixed oxides: bifunctional synergistic action of SrFeO3-x and CeOx phases[J]. Appl. Catal., B,2001,31, (3): 183-194.
    137. Peng X S, Lin H, Shangguan W F, et al. A highly efficient and porous catalyst for simultaneous removal of NOx and diesel soot [J]. Catal. Commun.,2007,8, (2):157-161.
    138. Wang K, Qian L, Zhang L, et al. Simultaneous removal of NOx and soot particulates over La0.7Ag0.3MnO3 perovskite oxide catalysts [J]. Catal. Today,2010,158, (3-4):423-426.
    139. Wang H, Zhao Z, Xu C M, et al. Nanometric La1-xKxMnO3 Perovskite-Type Oxides-Highly Active Catalysts for the Combustion of Diesel Soot Particle under Loose Contact Conditions [J]. Catal. Lett.2005-102-251.
    140. Debora F, Paolo F, Guido S. Studies on Kinetics and Reactions Mechanism of La2-xKxCu1 yVyO4 Layered Perovskites for the Combined Removal of Diesel Particulate and NOx [J]. Applied Catalysis B:Environmental,2003,43:243-259.
    141.彭小圣,林赫,黄震,等La-Mn-O钙铁矿催化剂成分对NOx和碳烟同时催化去除的影响[J].高校化学工程学报,2006,5(20):831-835.
    142.李朝晖,戴伟,傅吉全.微乳液法制备纳米催化剂的应用研究进展[J].化工进展.2008,27(4):499-502.
    143. Shu Z, Lin Z, Yue L, et al. Modeling of the Production of OH and O Radicals in Positive Pulsed Corona Discharge Plasma [J]. Vacuum,2009,83:238-243.
    144. Van D J, Dewulf J, Sysmans W, et al. Abatement and Degradation Pathways of Toluene in Indoor Air by Positive Corona Discharge [J].Chemosphere,2007,68:1821-1829.
    145. Koichi T, Yuki H, Kaname A, et al. Influence of Electrode Configuration on Ozone Synthesis and Micro discharge Property in Dielectric Barrier Discharge Reactor [J].Vacuum,2009,83: 128-132.
    146. Dong W B, Hou H Q. Removal of Ammonia from Gas Streams with Dielectric Barrier Discharge Plasmas [J]. Journal of Hazardous Materials,2008,152:113-119.
    147. Hoard J. Plasma-Catalysis for Diesel Exhaust Treatment:Current State of the Art [J]. SAE Paper,2001:01-0185.
    148. Tu X, Whitehead J C. Plasma-Catalytic Dry Reforming of Methane in an Atmospheric Dielectric Barrier Discharge:Understanding the Synergistic Effect at Low Temperature [J]. Applied Catalysis B:Environmental,2012,125:439-448.
    149. Sung Y M, Tatsuya S. Optimum Conditions for Ozone Formation in Micro Dielectric Barrier Discharge [J]. Surface & Coatings Technology,2005,197:148-153.
    150. Sung B S, Cho S Y, Don K L, et al. The Effects of Permittivity and Thickness of Dielectric Layers on Micro Dielectric Barrier Discharges [J]. Thin Solid Films,2010,518:3037-3041.
    151. Stefan S, Matthias C J, Renato Z B. Degradation of Volatile Organic Compounds in a Non-Thermal Plasma Air Purifiers [J]. Chemosphere,2010,79:124-130.
    152. Arne M, Vanden B, Rino M, et al. Non-Thermal Plasmas for Non-Catalytic and Catalytic VOC Abatement [J]. Journal of Hazardous Materials,2011,195:30-54.
    153. Lionel M, Stephane P. LIF Spectroscopy Applied to The Study of Non-Thermal Plasmas for Atmospheric Pollutant Abatement [J].C.R. Physique,2005,6:908-917.
    154.杨孝龙,王振杰,黄运添.低温等离子体的产生及应用[J].渭南师专学报(自然科学版),1996,2:11-16.
    155. John H. Plasma-Catalysis for Diesel Exhaust Treatment:Current State of Art [C]. SAE paper 2001-01-0185.
    156. Penetrate. Plasma Assisted Catalytic Storage Reduction System[P]:US,6038853,2000-03-21.
    157. Eliasson B, Kogelschatz U. Non-Equilibrium Volume Plasma Chemical Processing [J]. IEEE Transaction on Plasma Science,1991,19 (6):1063-1076.
    158.胡孝勇.气体放电及其等离子体[M].哈尔滨:哈尔滨工业大学出版社,1994.
    159. Lee S J, Jeong S J, Kim W S, et al. Computational Study on The Effects of Volume Ratio of DOC/DPF and Catalyst Loading on The PM and NOx Emission Control for Heay-Duty Diesel Engines [J]. International Journal of Automotive Technology,2008,9 (6):659-670.
    160. Liu Z W, Yang X F, Zhu A M, et al. Determination of the OH Radical in Atmospheric Pressure Dielectric Barrier Discharge Plasmas Using Near Infrared Cavity Ring-Down Spectroscopy [M]. Eur. Phys. J. D,2008,48:365-373.
    161. Shin H H, Yoon W S. Effect of Hydrocarbons on the Promotion of NO-NO2 Conversion in Non Thermal Plasma DeNOx Treatment [C]. SAE,2000-02-2969.
    162. Shin H H, Yoon W S. Hydrocarbon Effects on the Promotion Non-Thermal Plasma NO-NO2 Conversion [J]. Plasma Chemistry and Plasma Processing,2003,23 (4):681-704.
    163. Hammer T, Kishimoto T. Plasma Enhanced Selective Catalytic Reduction:Kinetics of NOx-Removal and Byproduct Formation [C], SAE,1999-01-3632.
    164. Kim C H, Qi G, Dahlberg K, et al. Strontium-doped Perovskites Rival Platinum Catalysts for Treating NOx in Simulated Diesel Exhaust [J]. Science,2010,327:1624-1627.
    165. Gross M S, Ulla M A, Querini CA Diesel particulate matter combustion with CeO2 as catalyst. Part 1:system characterization and reaction mechanism[J]. J Mol Catal A-Chem 2012,352: 86-94.
    166. Meher S K, Ranga Rao G Tuning the morphology of CeO2 by counter anions under mild synthesis conditions and its catalytic activity[J]. J Colloid Interface Sci. doi:10.1016/j.jcis, 2011.09.050.
    167. Kockrick E, Schrage C, Grigas A, et al. Synthesis and catalytic properties of microemulsion-derived cerium oxide nanoparticles [J]. J Solid State Chem,2008,181: 1614-1620.
    168. Bassou B, Guilhaume N, lojoiu E E, et al. High-throughput approach to the catalytic combustion of diesel soot H:screening of oxide-based catalysts[J]. Catal Today,2010,159: 138-143
    169. Muroyama H, Hano S, Matsui T, et al. Catalytic soot combustion over CeO2-based oxides [J]. Catal Today,2010,153:133-135.
    170. Zhang Y H, Zou X T, Sui L. The effects of potassium halides on catalytic activities of CeO2-K based catalysts for diesel soot oxidation [J]. Catal Commun,2006,7:855-859.
    171. Sitsheboa S, Tsolakisa A, Theinnoia K, et al. Fuels combustion effects on a passive mode silver/alumina HC-SCR catalyst activity in reducing NOx[J]. Chem Eng J.,2010,158 (3) 402-410.
    172. Fedeyko J M, Chen B, Chen H Y. Mechanistic study of the low temperature activity of transition metal exchanged zeolite SCR catalysts [J]. Catal Today,2010,151 (3-4):231-236.
    173. Kima Y J, Kwona H J, Heoa I. Mn-Fe/ZSM5 as a low-temperature SCR catalyst to remove NOx from diesel engine exhaust [J]. Appl. Catal. B,2012,126:9-21.
    174. Amin N A S, Tan E F, Manan Z A. Selective reduction of NOx with C3H6 over Cu and Cr promoted CeO2 catalysts [J]. Appl. Catal. B.,2003,43 (1):57-69.
    175. Chen Y G, Guo Z C, Wang Z. Influence of CeO2 on NOx emission during iron ore sintering [J]. Fuel Process Technol,2009,90 (7-8):933-938.
    176. Miro'E E, Ravelli F, Ulla M A, et al. Catalytic combustion of diesel soot on Co, K supported catalysts[J]. Catal Today,1999,53:631.
    177. Pisarello M L, Milt V, Peralta M A, et al. Simultaneous removal of soot and nitrogen oxides from diesel engine exhausts [J]. Catal Today,2002,75:465.
    178. Costa C N, Efstathiou A M. Low-temperature H2-SCR of NO on a novel Pt/MgO-CeO2 catalyst [J].Appl. Catal. B.,2007,72 (3-4):240-252.
    179. Milt V G, Querini C A, Miro E E, et al. Abatement of diesel exhaust pollutants:NOx adsorption on Co, Ba, K/CeO2 catalysts[J].J Catal,2003,220 (2):424-432.
    180. Liu Z M, Li J H, Hao J M. Selective catalytic reduction of NOx with propene over SnO2/Al2O3 catalyst [J]. Chem Eng J.,2010,165 (2):420-425.
    181. Chen L, Li J, Ge M. Enhanced activity of tungsten modified CeO2/TiO2 for selective catalytic reduction of NOx with ammonia [J]. Catal Today,2010,153 (3-4),77-83.
    182. Azambre B, Collura S, Darcy P. Effects of a Pt/Ce0.68Zr0.32O2 catalyst and NO2 on the kinetics of diesel soot oxidation from thermogravimetric analyses [J]. Fuel Process Technol,2011,92: 363-371.
    183. Wang J Q, Zhang B Y, Shen M Q, et al. Effects of Fedoping of ceria-based materials on their microstructural and dynamic oxygen storage and release properties [J]. J Sol-Gel Sci Technol, 2011,58:259-268.
    184. Pe'rez-Alonso F J, Herranz T, Rojas S, et al. Evolution of the bulk structure and surface species on Fe-Ce catalysts during the Fischer-Tropsch synthesis [J]. Green Chem,2007,9:663-670.
    185. Reichert D, Bockhorn H, Kureti S. Study of the reaction of NOx and soot on Fe2O3 catalyst in excess of O2 [J]. Appl Catal B-Environ,2008,80:248-259.
    186. Lee M T, David J H, Ralph G, et al. Nano catalyst Fabrication and the Production of Hydrogen by Using Photon Energy [J]. International Journal of Hydrogen Energy,2008,34 (2009): 1835-1843.
    187. Giles C H, Mac T H, Nakhwa S N, et al. Studies in Adsorption [J]. Part Ⅺ. J. Chem Soc,1960, 111:3973-3993.
    188.赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005:198-199.
    189. Zhu T L, Flytzani-Stephanopoulos M. Catalytic partial oxidation of methane to synthesis gas over Ni-CeO2[J]. Appl Catal A-Gen,2001,208:403-417.
    190. Gross M S, Ulla M A, Querini C A. Catalytic oxidation of diesel soot:new characterization and kinetic evidence related to the reaction mechanism on K/CeO2 catalyst[J]. Appl Catal A-Gen, 2009,360:81-88.
    191. IPCC:Climate Change. The Science of Climate Change [M]. Cam bridge:Cam bridge Univers ity Press,1996.
    192.邹建国,钟秦.柴油机排放颗粒物组成分析[J].中国环境检测,2006,22(3):23-26.
    193. Inoue K, Takano H, Yanagisawa R, et al. Effects of components derived from diesel exhaust particles on lung physiology related to antigen [J]. Immunopharmacol Immanotoxicol,2007, 29 (3):403-412.
    194. Nemmar A, AI-Maskaci S, Ali BH,et al. Cardiovascular and lung inflammatory effects induced by systemically administered diesel exhaust particles in rats[J].American Journal Physiolgy Lung Cellual and Molecular Physiolgy,2007,292 (3):664-670.
    195. Laden F, Hart JE, Eschenroeder A, et al. Historical estimation of diesel exhausts exposure in a cohort study of U.S. railroad workers and lung cancer [J]. Cancer Causes Control,2006,17 (7):911-919.
    196. Lee M W, Chen M L, Lung S C, et al. Exposure assessment of PM2.5 and urinary 8-OhdG for diesel exhaust emission inspector [J]. Science of the Total Environment,2010,408 (3): 505-510.
    197.高俊华,方茂东,张仲荣,等.柴油机排气微粒中多环芳香烃的色谱质谱分析[J].内燃机学报,2009,27(5):423-429.
    198.陈敏东,李芳,李红双,等.柴油发动机颗粒排放物分析及来源解析[J].南京信息工程大学学报:自然科学版,2010,2(2):138-142.