褐煤基吸附催化剂的制备及脱硝应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以废弃焦粉及褐煤高效利用为出发点,制备低温脱硝催化剂。分别进行焦粉、褐煤半焦的酸碱脱灰实验,不同干馏温度及改性半焦的FTIR、TG-DSC测定,半焦表面酸碱官能团含量测定实验,褐煤基(添加剂)、焦粉粘结成型实验,褐煤配焦粉基活性焦碘吸附值、孔径、机械强度测试实验。利用浸渍法对纯褐煤及焦粉型活性焦进行Fe、Cu、Mn类活性组分负载制备脱硝催化剂,对不同处理方式得到的半焦及活性焦催化剂进行模拟烟气脱硝实验。实验研究得出活性焦最佳水蒸气活化工艺条件及最佳焦粉配入比例,20%焦粉配入褐煤使得活性焦17-25nm范围内的孔明显增多。不同处理方式得到半焦表面酸碱官能团含量不同,Cu基活性焦催化剂脱硝率最高,对NO具有低温高吸附性与中高温SCR还原性,30min内保持85%以上的脱硝率。活性焦表面含氧官能团可以为SCR及无氨脱硝反应提供氧源。
In this work, the purpose was to prepare novel NO removal catalysts at lowtemperature based on the coke fines and lignite. The experiments were as follows:the deashing experiment, the FTIR and TG-DSC tests of modified semi-cokes atdifferent distillation temperature, the acid and alkali functional groups determinationtest on the surface of semi-cokes, the tests of iodine value, pore size and mechanicalstrength on the activated cokes with additives, the bond forming test of coke fines.The activated coke from coke fines and lignite was loaded with activecomponents(Fe, Cu, Mn) by impregnation method. The NO removal experiment wastested using semi-cokes and activated cokes as catalysts. The main results showedthat the optimum activation process condition and proportion of coke fines withactivated cokes. The proportion of pore in the range of17-25nm improved aftermixed with20%coke fines. The semi-cokes with various ways treated had differentacid and alkali functional groups contents. The activated cokes with Cu activecomponents had best efficiency of NO removal that kept85%in30min. Itsdenitration activity manifested low temperature adsorption and high temperaturereduction. The oxygen functional groups of activated cokes could supply oxygensource for denitration reaction of SCR and without ammonia.
引文
1.高健.活性半焦低温催化氧化脱除烟气中NO的研究[D][博士学位论文].青岛:中国海洋大学,2010.
    2.熊振湖,费学宁,池勇志等.大气污染防治技术及工程应用[M].北京:机械工业出版社,2003.
    3.郝吉明,马广大等.大气污染控制工程(第1版)[M].北京:高等教育出版社,1989.
    4.郑瑛.钙基脱硫的机理描述及炉内喷钙脱硫的研究[D]:[博士学位论文].武汉:华中理工大学,1998
    5.韩慧,白敏冬,白希尧.脱硫脱硝技术展望.环境科学研究,2002,15(l):55~60.
    6.钟秦.燃煤烟气脱硫脱硝技术及工程实例.北京:北京化学工业出版,2002.80~83.
    7.马垠.中国燃煤电厂烟气脱硝工艺的选择.[硕士学位论文].保定:华北电力大学,2006.
    8.任剑峰,王增长,牛志卿.大气中氮氧化物的污染与防治[J].科教情报开发与济,2003(5):92~93
    9.高山,潘皓,青学峰等.烟气氮氧化物排放技术综述[J].机电信息,2004(7):13~16.
    10.王海强,吴忠标.烟气氮氧化物脱除技术的特点分析[J].能源与环境,2004(3):27~30.
    11. G.Busca, M. A. Larrubia, L. Arrighi, G. Ramis, Catalytic abatement of NOX: Chemical and mechanisticaspects[J]. Catalysis Today,2005,107:139~148.
    12.方智利.内外活性炭制备发展动态[J].云南化工,200l,28(5):23~25.
    13.张文辉,梁大明.我国煤基活性炭发展趋势探析.煤质技术,2003(4):26~28.
    14.王耀析,活性炭联合脱硫脱硝技术综述.2004,20(6):56~81.
    15.赵宗彬,李保庆.煤中矿物质对NO-半焦反应的影响[J].燃料化学学报,2001,29(2):129~134.
    16. Wen B, He.M.Y. Study of the Cu-Ce synergism for NO reduction with CO in the presence of O2, H2O andSO2in the FCC operation[J]. Appl Catai B: Environ,2002,37(1):75~82.
    17. Chan L K, Sa rofim A F, Beer J M. Kinetics of NO-carbon reaction at fluidized bed combustor conditions[J].Combust Flame,1983,52(1):37~45.
    18.李雪飞.改性活性炭脱除烟气中NOX的研究[D]:[硕士学位论文].北京:北京煤化工研究分院,2006.
    19. Knoblauch.K, Richter.E, Juntgen.H. Application of active coke in processes of SO2and NOX-removal fromflue gases. Fuel,1981,60(9):832~838.
    20.王萍.改性活性半焦脱除烟气中NOX的研究[D]:[硕士学位论文].青岛:中国海洋大学,2010.
    21. Junrgen.H,Richter.E,Kuhl.H.Catalytic activity of NOXwith NH3[J]. Fuel,1988,67(6):775~780.
    22.李谦,宁成.用窄脉冲电晕放电方法干脱除烟气中的SO2[J].环境保护,1994,4(3):17~21.
    23.朱益民.脉冲电晕法脱硫脱硝研究概述[J].环境科学进展,1997,5(5):75~80.
    24. Youngchul Byun, Kyung Bo Ko, Moo Hyun Cho. Oxidation of elemental mercury using dielectric barrierdischarge process[J]. KoreanChem. Eng. Res2007,45(2):183~189.
    25. A.Mizuno,J.S.Clements,R.H.Davis.Combined treatment of SO2and high resistivity f1y ash using a pulseenergized electron reactor[C]. Proc. Ind. Int. Conf. Tokyo, Japan: Electrostatic Precipitation,1984:879~885.
    26. Y.H.Lee, W.S.Jung, Y.R.Choi. Application of pulsed corona induced plasma chemical process to anindustrial incinerator[J]. Environ. Sei. Teehnology.2003,37(11):2563~2567.
    27.徐飞.脉冲放电电凝并结合碱液吸收烟气多种污染物协同脱除研究[D]:[博士学位论文].杭州:浙江大学,2009.
    28.娄伟.改性活性炭低温选择性催化还原NO的研究[D]:[硕士学位论文].杭州:浙江大学,2008.
    29.冯治宇.活性焦制备与应用技术[M].大连:大连理工大学出版社,2007,174~177.
    30.张守玉,吕俊复,岳光溪等.煤种及炭化条件对活性焦表面化学性质的影响[J].化学工程,2004,32(5):39~43.
    31.李兰廷.活性焦干法联合脱硫脱硝的正交实验[J].煤炭学报,2009,34(10):1400~1404.
    32. Mochida, I. ogaki, M. Fujitsu, H. Komatsubara. Y.Ida, S.Catalytic activity of coke activated with sulphuricacid for the reduction of nitric oxide[J]. Fuel,1983,62:867~868.
    33.史红霞.活性半焦负载催化剂用于烟气脱硫的研究[D]:[硕士学位论文].北京:中国矿业大学(北京),2005.
    34.张蕾,张香兰,张磊.活性半焦(炭)脱硫性能影响因素的研究[J].中国环境管理干部学院学报,2006,16(2):71~72.
    35.王文泰.成型半焦催化剂脱除烟气中SO2和NO[D]:[硕士学位论文].青岛:中国海洋大学,2008.
    36. Yoshikawa M, Yasutake A, Mochida I. Low-temperature selective catalytic reduction of NOx by metaloxides supported on active carbon fibers[J]. Applied Catalysis A: General,1998,73:239~245.
    37. Gregorio Mabarn, Raquel Autuna, Antonio B Fuertes.Low temperature SCR of NOx with NH3overactivated carbon fiber composites-supported metal oxides[J]. Applied Catalysis B,2003,41:323~338.
    38. G.S.Szymanski, T. Grzybek, H.Papp. Influence of nitrogen surface functionalities on the catalytic activity ofactivated carbon in low temperature SCR of NOx with NH3[J]. Catalysis Today,2004,90:51~59.
    39. J.Mumiz, G.Marban, A.B.Fuertes. Low temperature selective catalytic reduction of NO over modifiedactivated cathon fibers[J]. Applied Catalysis B:Environmental,2000,27:27~36.
    40. Boehm H.P.Some aspects of the surface chemistry of carbon black and other carbons [J]. Carbon,1994,32:759~769.
    41. F.Kapteijn, J.A.Moulijn, S.Matzner et al., The development of nitrogen functionality in model chars duringgasification in CO2and O2[J]. Carbon,1999,37:1143~1150.
    42. Moerno-Castilla C, Lopez-Ramon M.V.,Carrasco-Marin F. Changes in surface chemistry of activatedcarbon by wet oxidation[J]. Carbon,2000,38:1995~2001.
    43. Jacques Lahaye. The chemistry of carbon surfaces[J]. Fuel,1998,77(6):543~547.
    44. Domingo-Garcia M. Lopez-Garzon F.J.,Perea-Mendoza M., J. Colloid Interface [J]. Sci.2000,222:223~240.
    45. Toshiro O, Ritsuo T, Masao I. Porduction and adsorption characteristics of MAXSORB: High-surface-areaactive carbon [J].Gas Separations&Purification,1993,7(4):241~245.
    46.唐乃红.乌药籽壳活性炭的改性及其应用的研究[J].信阳师范学院学报(自然科学版),1997,10(1):73~83.
    47.范顺利.改性活性炭的吸附性能变异探讨[J].河南师范大学学报(自然科学版)1995,23(4):48~50.
    48.程玉良.活性焦干法脱硫脱氮实验研究[D]:[硕士学位论文].沈阳:东北大学,2001.
    49.陈立杰,王恩德,李元辉.改性活性焦脱硫脱氮性能的研究[J].环境保护科学,2004,30(121):6~8.
    50.雒和明,冯辉霞,王毅等.焦粉基活性炭处理含铬废水的研究[J].粉煤灰综合利用,2007(5):18~20.
    51.上官炬.改性半焦烟气脱硫剂的物理结构和表面化学特性变化机理[D].山西:太原理工大学,2006.
    52.张彩荣,叶道敏,崔永君等.用废弃的半焦焦粉制活性炭工业性试验研究[J].煤炭转化,1999,22(2):75~78.
    53.田宇红,兰新哲,周军等.微波辐射-KOH活化兰炭粉制备活性炭[J].化学工程,2010,38(10):225~228.
    54.赵年福,配焦粉捣固生产冶金焦[J].国外炼焦化学,1995(2):103~110.
    55.杨明平,焦粉配煤炼焦的研究[J].煤炭科学技术.2003(11):7~10.
    56.解强,边炳鑫.煤的碳化过程控制理论及其在煤基活性炭制备中的应用[M].徐州:中国矿业大学出版社,2002.
    57.常慧,李保庆. SO2气氛下半焦负载Na, Ca, Fe对NO-半焦还原反应的影响[J].中国矿业大学学报,2003,32(2):152~156.
    58. Yamashita H, Tomita A. Influence of char surface chemistry on the reduction of nitric oxide with chars[J].Energy&Fuels,1993,7(1):85~89.
    59.张军,解强,李兰亭.煤质活性炭脱灰工艺的研究进展[J].煤化工,2007(2):20~23.
    60.葛晓东.化学法在活性炭后处理中的应用[J].煤化工,2005,33(4):64~65.
    61.陈仁辉,李春阁.活性炭无机成分的去除[J].福建化工,1995(3):23~27.
    62.张林,王朝雨,刘军.煤质活性炭除灰方法比较[J].现代化工,2005,[25增刊]:254~256.
    63. GaoJian, LiChunhu, FengLijuan, et al. Catalytic Oxidation of NO over Activated Semi-cokes by differentpreparation[M].12th ACPCChe.Congress,2008,vol.3:67
    64. Sudhakar AdaPa, Vivekanand Gaurb, Nishith Verma, Catalytic oxidation of NO by Activated carbonfiber(ACF), Chemical Engineering Journal,2006,116:25~37.
    65. Libor Capek, Leonid Vradman, Petr Sazama, Kinetic experiments and modeling of NO oxidation and SCRof NOx with decane over Cu-and Fe-MFI catalysts [J], APPlied Catalysis B: Environmental2007,70:53~57.
    66. Daniel Torres, Silvia Gonzalez, Konstantin M. Adsorption and oxidation of NO on Au(111) surface:Density functional studies. Chemical Physies Letters2006,422:412~416.
    67. Tang Qiang, Zhang Zhigang, Zhu Wenpei, et al. SO2and NO selective adsorption properties of coal-basedactivated carbons [J]. Fuel,2005(84):461~465.
    68. Lillo-Rodenas MA, Juan-juanJ, Cazorla-AmorosD, Linares-SolanoA. About reactions occurring duringchemical activation with hydroxides [J]. Carbon,2004,42(7):1371~1375.
    69. D.Hulicova, A.Oya, The polymer blend technique as a method for designing fine carbon materials[J].Carbon,2003,41:1443~1450.
    70. M.C.Huang, H.Teng, Nitrogen–containing carbons from Phenol-formaldehyde resins and their catalyticactivity in NO reduction with NH3lJ]. Carbon,2003,41:951~957.
    71.童志权,莫建红.催化氧化法去除烟气中NOx的研究进展.化工环保,2007,27(7):194~195.
    72.上官炬,杨直,苗茂谦.硝酸改性褐煤半焦制备烟气脱硫剂.太原理工大学学报,2007,38(3):229~232.
    73.魏秀菊,杨巧文.脱除燃煤烟气中NOx的方法比较.煤炭加工与综合利用,2007(4):49~51.
    74.满雪,高维恒. SCR脱硝催化剂的研究现状及展望[J].广州化工,2008,36(6):22~24.
    75.马双忱,金鑫,孙云雪等SCR烟气脱硝过程硫酸氢铵的生成机理与控制[J].热力发电,2010,39(8):1~7.
    76.刘清雅,刘振宇,李成岳. NH3在选择性催化还原NO过程中的吸附与活化.催化学报,2006,27(7):636~646.
    77. Yang Hong-hai, Liu Guo-xiu, Zhang Dai-peng. Practices of coking by coke powder and blending coal. Fueland Chemical Processes,2001,32(4):188.(In Chinese)
    78. XU Wei-rong. Application of coke fines to coking coal blend. Coal Chemical Industry [J].1999(3):50~56.(In Chinese)
    79. Qian Hui, YE Cheng-jun, Chen Jian, et al. Experimental research on coke breeze as a cokemaking additive.Bao Steel Technology,1998(3):41.(In Chinese)
    80. Yao Zhao-zhang. Coking[M]. Beijing: Metallurgy Industry Press,1983.277~278.(In Chinese)
    81. Xie Ke-chang, Coal structure and its reactivity[M]. Beijing: Science Press,2002,115~130.(In Chinese)
    82. Xu Zhenggang. Coal briquette technology. Coal Industry Publishing House,2001.
    83.施谷全.型煤与焦粉型焦粘合剂的研究及应用,2005.11(2):79~83.
    84.籍永华.马名杰.秦丙克.刘小军.吴万昌以瘦煤为主要原料制备型焦的配煤方案研究[J].洁净煤技术,2009(1):8~15.
    85.庄湘生.气化炉用型焦技术展望[J].煤气与热力,1993(3):7~12.
    86.李淑芬,陈彦伶.型煤催化气化活性研究[J].煤气与热力,1994(2):3~8.
    87.刘长林,焦粉成型技术[J].环境污染治理与设备,2002,3(12):73~75
    88.许传智,潘立惠,武钢使用主焦煤分类的研究[J].武钢技术,1998,36(7):43~46
    89.周亚平.焦油渣作为炼焦添加剂的应用[J].煤化工,2004,8(4):43~48.
    90.李哲浩.炼焦新技术[M].北京:冶金工业出版社,1988.
    91.程秀秀,黄壕华,任德庆.煤焦的孔隙结构及其与气化的关系[J].燃料化学学报,1987,15(3):261~267.
    92.熊银伍,徐振刚,梁大明,等.烟气联合脱硫脱硝活性焦再生实验研究[J].煤炭学报,2006,6(36):1004~1010.
    93.冯治宇,胡筱敏,王英刚,等.提高活性焦脱硫脱氮性能的实验研究[J].辽宁工程技术大学学报,2004(2):25~29.
    94.解炜,熊银伍,孙仲超,等. NH3改性活性焦脱硝性能试验研究[J].煤炭科学技术,2012,40(4):125~128.
    95.梁锦平,华坚,尹华强,等.低温烟气脱氮活性炭基催化剂[J].四川环境,2006,25(2):100~110.
    96.张旭辉,白中华,张恒,等.褐煤基活性焦制备工艺研究[J].洁净煤技术,2011,17(2):54~56.
    97.陈海旭.我国褐煤燃前脱灰脱水提质现状[J].中国煤炭,2009,35(4):98~100.
    98.初茉,李华民.褐煤的加工与利用技术[J].煤炭工程,2005(2):47~49.
    99.王登峰.关于煤质活性炭的再生技术[J].大同职业技术学院学报.2003,17(4):67~71.
    100.罗永刚,李大骥,杨亚平.活性炭联合脱硫脱硝工艺[J].热能动力工程,2001,16(4):444~446.
    101.戴和武,谢可玉主编.褐煤利用技术[M].北京:煤炭工业出版社,1999年.
    102.李晓芸,邹炎,蔡小峰.活性焦脱硫脱硝一体化技术及其错流式反应器脱硫的数值模拟[J].华电技术,2008,30(1):9~13.
    103.潘履让编.固体催化剂的设计与制备[M].天津:南开大学出版社,1993年.
    104.立本英机,安部郁夫主编,高尚愚译编.活性炭的应用技术-其维持管理及存在问题[M].南京:东南大学出版社,2002年.
    105.尹立群.我国褐煤资源及其利用前景[J].煤炭科学技术,2004,32(8):12~15.
    106.赵振新,朱书全,马名杰,等.中国褐煤的综合优化利用[J].洁净煤技术,2008,14(1):28~31.
    107. Kazuhico Tsuji, Ikuo Shiraishi. Combined desulfurization, denitrification and reduction of Air Toxics Usingactivated coke [J]. Fuel,1997,76(6):555~560.
    108. Zhu Huifeng, Zhong Qin. Effect of thermal regeneration of active coke on flue gas desulphurization [J].Journal of China Coal Society,2009,34(9):1258~1262.
    109. Sirko Ogriseck, Gloria Patricia Galindo Vanegas. Experimental investigations of ammonia adsorption andnitric oxide reduction on activated char [J]. Chemical Engineering Journal,2010,160(2):641~650.
    110. Dandekar A, Vannice M A. Determination of the dispersion and surface oxidation states of supported Cucatalysts [J]. J Catal,1998,178:621~639.
    111. Morterra C, Giamello E, Cerrato G, et al. Role of surface hydration state on the nature and reactivity ofcopper ions in Cu-ZrO2catalysts: N2O decomposition[J]. J Catal,1998,179:111~128.
    112. Si Z,Weng D, Wu X, et al. Structure, acidity and activity of CuOx/WOx-ZrO2catalyst for selectivecatalytic reduction of NO by NH3[J]. J Catal,2010,271:43~51.
    113. Venkov T, Dimitrov M, Hadjiivanov K. FTIR spectroscopic study of the nature and reactivity of NOxcompounds formed on Cu/Al2O3after coadsorption of NO and O2[J]. JMol Catal A,2006,243:8~16.
    114. Sullivan J A, Doherty J A. NH3and urea in the selective catalytic reduction of NOxover oxide-supportedcopper catalysts [J]. Appl Catal B,2005,55:185~194.
    115. Xue Y, Lu G, Guo Y, et al. Effect of pretreatment method of actived carbon on the catalytic reduction ofNO by carbon over CuO [J]. Appl Catal B,2008,79:262~269.
    116. Krishna K, Seijger G B F, Bleek C M, et al. Very active CeO2-zeolite catalysts for NOxreduction withNH3[J]. Chem Comm,2002,18:2030~2031.
    117. Tang Qiang, Zhang Zhigan, Zhu Wenpei, et al. SO2and NO selective adsorption properties of coal-basedactivated carbons [J]. Fuel,2005,84(4):461~465.
    118. Boyano A,Galvez M E, Moliner R, et al. Carbon-based catalytic briquettes for the reduction of NO: Effectof H2SO4and HNO3carbon support treatment [J]. Fuel,2008,87(10-11):2058~2068.
    119. Ahmed S N, Baldwin R, Derbyshire F, et al. Catalytic reduction of nitric oxide over activated carbons[J].Fuel,1993,72(3):287~292.
    120. Katsuki Kusakabe, Makoto Kashima, Shigeharu Morooka, et al. Rate of reduction of nitric oxide withammonia on coke catalysts activated with sulphuric acid [J]. Fuel,1988,67(5):714~718.
    121. Cheol-Min Yang, Katsumi Kaneko. Nitrogen-doped activated carbon fiber as an application for NOadsorbent [J]. Journal of Colloid and Interface Science,2002,255(2):236~240.
    122. Hsisheng Teng, Ying-Tsung Tu, Yu-Chung Lai, et al. Reduction of NO with NH3over carbon catalysts: theeffects of treating carbon with H2SO4and HNO3[J]. Carbon,2001,39(4):575~582.
    123. Helen Y Huang, Ralph T Yang. Removal of NO by reversible adsorption on Fe-Mn based transition metaloxides [J]. Langmuir,2001,17:4997~5003.
    124. Hsisheng Teng, Yung-Fu Hsu, Ying-Tsung Tu. Reduction of NO with NH3over carbon catalysts: theinfluence of carbon surface structures and the global kinetics [J]. Applied Catalysis B: Environmental,1999,20(2):145~154.
    125. ZHANGW J, BAGREEV A, RASOUL IF. Reaction of NO2with activated carbon at ambient temperature[J]. Industrial&Engineering Chemistry Research,2008,47(13):4358~4362.
    126. MUCH ENHUBER H, GROTHE H. The heterogeneous reaction between soot and NO2at elevatedtemperature [J]. Carbon,2006,44(3):546~559.
    127. G Qi, R T Yang. Low-temperature selective catalytic reduction of NO with NH3over iron and manganeseoxides supported on titania [J]. Applied Catalysis B: Environmental,2003,44:217~225.
    128. Rajveer Sin gh Rathorea, Dhanan jay Kumar Srivast avab, Avin ash Kum ar Agarwalb. Development ofsurface functionalized activated carbon fiber for control of NO and particulate matter [J]. Journal ofHazardous Materials,2010(173):211~222.
    129. Carural F, Molina-Sabio M, Rodriguez-Noso F. Preparation of activated carbon by chemical activation withZnCl2[J]. Carbon,1991,29:999~1007.
    130. Kakaras E, Ahladas P, Symopoulos. S. Computer simulation studies for the integration of an external dryerinto a Greek lignite-fired power plant [J]. Fuel,2002,81:583~593.
    131. Liu X, Li B, Miura K. The Pyrolysis and Gasification Kinetics of Raw and Pretreated Coal. In: Li B, Liu Z,eds. Proceedings of the10th International Conference on Coal Science. Taiyuan, China,1999.571.
    132. Johnston B K, Nicol S K, Veal C J. Residual moisture reduction of coarse coal using air purging. Benchscale studies [J]. Minerals Engineering,2004,14:243~255.
    133. Dumesic J A, Topsoe N Y, Topsoe H, et al. Kinetics of selective catalytic reduction of nitric oxide byammonia over vanadia/titania [J]. Journal of Catalysis,1996,163(2):409~417.
    134. Lintz H G, Turek T. Intrinsic kinetics of nitric oxide reduction by ammonia on a vanadia-titania catalyst [J].Applied Catalysis A: General,1992,85(1):13~25.
    135. Turco M, Lisi L, Pirone R, et al. Effect of water on the kinetics of nitric oxide reduction over a high surfacearea V2O5/TiO2catalyst [J]. Applied Catalysis B: Environmental,1994,3(2-3):133~149.
    136. Liu Wei, Zhang Junfeng, Tong Zhiquan. Progress in study of NOxwith the selective catalytic reduction [J].Industrial Safety and Environmental Protection,2005,31(1):25~28.
    137. Zhang Xiangjing, Zhao Fengyun, Hu Yongqi. Intrinsic kinetics of flue gas desulfurization by Mn-containingmodified active coke [J].Chemical Reduction Engineering and Technology,2006,22(2):103~108.
    138. Singoredjo L, Kapteijn F, Moulijn J A, et al. Modified activated carbon for the selective catalytic reductionof NO with NH3[J].Carbon,1993,31:213~222.
    139. Huang Zhanggen, Zhu Zhenping, Liu Zhenyu, et al. Reduction of NO with NH3on V2O5/AC catalyst [J].Environmental Chemistry,2002,21(5):448~453.
    140. Busca G, Lietti L, Ramis G, et al. Chemical and mechanistic aspects of the selective catalytic reduction ofNOxby ammonia over oxide catalysts: a Review [J]. Appl Catal B,1998(18):1~36.
    141. Lisovakii A, Shter GE, Semiat R, Aharoni C. Adsorption of sulfur dioxide by active carbon treated by nitricacid: II. Effect of preheating on the adsorption properties[J]. Carbon,1997,35(10-11):1645~1648.
    142. Rubio B, Izquierdo MT. Lower cost adsorbents for low temperature cleaning of flue gases [J]. Fuel,1998,77(6):631~637.
    143. Rubio Begona, Izquierdo Maria Teresa, Mastral Maria. Influence of low-rank coal char properties on theirSO2removal capacity from flue gases[J].2Activated chars. Carbon,1998,36(3):263~268.
    144. Goutam Chattopadhyaya, Douglas G. Macdonald, Narendra N. Bakhshi, et al. Preparation andcharacterization of chars and activated carbons form Saskatchewan lignite [J]. Fuel Processing Technology,2006,87(11):997~1006.
    145. Goutam Chattopadhyaya, Douglas G. Macdonald, Narendra N. Bakhshi,et al. Adsorptive removal of sulfurdioxide by Saskatchewan lignite and its derivatives [J]. Fuel,2006,85(12-13):1803~1810.
    146. D. Pentari, V. Perdikatsis, D. Katsimicha, et al. Sorption properties of low calorific value Greek lignites:Removal of lead cadmium, zinc and copper ions from aqueous solutions [J]. Journal of HazardousMaterials,2009,168(2-3):1017~1021
    147. A.Wiener, M. Remmler, P. Kuschk, et al. The treatment of a deposited lignite pyrolysis wastewater byadsorption using activated carbon and activated coke [J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,1998,139(1):91~97.
    148. Lillo-Rodenas MA, Juan-juan J, Cazorla-Amoros D, Linares-Solano A. About reactions occurring duringchemical activation with hydroxides [J].Carbon,2004,42(7):1371~1375.
    149. Stavropoulos G G. Precursor materials suitability for super activated carbons production [J]. Fuel ProeessingTechnology,2005,86(11):1165~1173.
    150. Sharma D K. Extraction of coal through dilute alkaline hydrolytic treatment at low temperature andatmospheric pressure [J]. Fuel Procossing Technology,1988,19(1):73~94.
    151. Wigmans T. Activation of carbon fibres by steam and carbon dioxide [J]. Carbon,1993,31(5):841~842.
    152. M.J.Illan-Gomez, S.Brandan, A.Linares-Solano. et al. NOxreduction by carbon supporting potassiumbimetallic catalysts[J].Applied Catalysis B: Environmental,2000,25:11~18.
    153. Gongshin Qi,R T.Yang. Performance and kinetics study for low-temperature SCR of NO with NH3overMnOx-CeO2catalyst [J].Journal of Catalysis,2003(217):434~441.
    154. G.Busca, L.Lietti, G.Ramis, F.Berti. Chemical and mechanistic aspects of the selective catalytic reduction ofNOx by ammonia over oxide catalysts [J]: A review, Appl. Catal. B,1998,18,1~36.
    155. Paolo Davini.The effect of certain metallic derivatives on the adsorption of sulfur dioxide on active carbon[J]. Carbon,2001,39(3):419~424.
    156. Lahaye J Q. The Chemistry of Surfaces [J]. Fuel,1998,77(6):543~547.
    157. DvainiP. Adsoprtion of sulfur dioxide on the rmally treated active carbon [J]. Fuel.1989,68:145~148.
    158. RubioB, Izquierdo M T, Low cost adsorbents for low temperature clenaing of flue gases [J]. Fuel.1998,77(6):631~637.
    159. Blaneo J, Avila P, Fierro J LG. Influence of nitrogen dioxide on the selective reduction of NOxwith acatalyst of copper and nickel oxides [J]. Applied Catalysis A: General,1993,96:331~343.
    160. Rubio B, Izquierdo M T, Mastral A M. Influence of low-rank coal char properties on their SO2removalcapacity from flue gases,2Activated chars [J]. Carbon,1998,36(2):263~268.
    161. Chang H Y, Yun H P, Chong R P. Effects of pre-carbonization on porosity development of activated carbonsfrom rice straw[J]. Carbon,2001,39(4):559~567.
    162. Rubio B, Izqierdo M T. Low cost adsorbents for low temperature cleaning of flue gases [J]. Fuel,1998,77(6):631~637.
    163. Fang Y T, Huang J J, Wang Y. Experiment and mathematical modeling of a bench-scale circulating fluidizedbed gasifier [J]. Fuel Process Technol,2001,69(1):29~44.
    164. Goutam Chattopadhyaya, Douglas G. Macdonald, Narendra N. Bakhshi, et al. Adsorptive removal of sulfurdioxide by Saskatchewan lignite and its derivatives[J]. Fuel,2006,85(12-13):1803~1810.