增压富氧燃煤发电与CO_2捕集系统的集成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
富氧燃烧烟气中CO2的浓度可达90%以上,无需进行分离就可直接液化回收,避免了复杂的分离工艺过程,在火力发电C02捕集领域具有明显的优势,但是常压富氧燃烧方式下的空气分离制氧、CO2净化压缩过程的电耗很大,为了克服常压富氧燃烧发电系统厂用电大幅度增加的缺点,本文对6-8MPa下增压富氧燃烧与CO2捕集整体化发电系统进行集成优化研究。
     在富氧燃烧和流化床锅炉燃烧技术的基础上,构建了增压富氧流化床燃煤发电与C02捕集整体化发电系统。从空气分离制氧、燃烧与换热,直至烟气压缩捕集C02的全过程均在6~8MPa下完成,利用高压烟气冷凝器回收锅炉排烟烟气中水蒸汽的汽化潜热,加热锅炉给水,部分替代汽轮机抽汽,增加汽轮机的输出电功率,同时可在常温下液化回收CO2,简化了CO2的液化工艺,大幅度降低了C02压缩过程的电耗。
     传统的基于理想气体假设的烟气热焓的计算方法不再适用于增压富氧燃烧烟气热焓的计算,本文基于实际气体维里状态方程推导了高温高压三原子混合气体的余焓方程,对增压富氧燃煤烟气的热焓值进行了编程计算,并与商业软件的模拟结果进行了比较,表明基于维里方程的余函数法计算增压富氧燃煤烟气的热焓是准确可靠的。
     由于烟气的再循环,锅炉流通烟气中水蒸汽的含量大大提高,基于Nusselt凝结理论,建立了高压下含非凝气体的混合气体凝结换热的修正膜模型,计算并分析了冷却壁面的温度、混合气体的流速、水蒸汽的含量以及混合气体的压力对凝结换热的影响;对不同再循环方式下烟气中水蒸汽的平衡进行了计算比较,论证分析了不同烟气再循环方式的利弊和经济性。
     以300MW燃煤发电机组为例,与常压富氧燃烧相比,系统压力提高到6-8MPa后,增压富氧燃煤烟气中水蒸汽的饱和温度上升到167~188℃,由于烟气中水蒸汽的汽化潜热得以回收利用,汽轮机的毛输出功率增加6.3%左右;同时利用电厂常温循环冷却水将CO2烟气液化后再压缩,C02烟气压缩电耗下降两个数量级;但是,由于供氧压力的提高,空分制氧装置的电耗增加。当供氧纯度为100%时,6-8MPa富氧燃烧与CO2捕集整体化发电系统的整体净效率达到30.1%-30.7%,比常压富氧燃烧发电系统提高了4.2-4.8个百分点。
     增压富氧燃烧系统各辅机设备的电耗中,空分制氧装置的电耗最大,其制氧电耗与制氧纯度密切相关,对6MPa不同氧气纯度下增压富氧燃烧整体系统的经济性优化结果表明,当供氧纯度为95%时,空分装置的电耗相对较低,系统整体净效率可达30.8%。
The CO2concentration of the flue gas in the oxy-fuel combustion may reach up to more than90%and CO2can be liquefied and recycled directly without separation, avoiding the complicated separation process, so the oxy-fuel combustion is a promising new technology for CO2capture in power generation system. However, conventional atmospheric oxy-fuel combustion systems require substantial parasitic energy within the air separation and carbon dioxide purification and compression units. In order to overcome the significant improvement of electric consumption in the atmospheric oxy-fuel power plant, the integration and optimization of the pressurized oxy-coal combustion power generation integrated with CO2capture system were studied under the pressure of6-8MPa in this thesis.
     On the basis of oxy-fuel combustion and the fluidized bed combustion, the overall power generation of the pressurized oxy-fuel combustion integrated with CO2capture system was conducted. From the air separation, combustion, heat transfer to the CO2capture and sequestration, the whole process was completed under the pressure of6-8MPa. The vapor latent heat of the flue gas recovered by the high pressure flue gas condenser was used for heating feed water, decreasing the extracted steam and the output power of the steam turbine increased. Simultaneously, CO2can be liquefied and recycled at the normal temperature, then CO2liquefied process was simplified and the compression power consumption greatly reduced.
     The conventional enthalpy calculation method at the air combustion style based on the ideal gases is not applicable to the pressurized oxy-fuel combustion. In this thesis, the residual enthalpy equation of tri-atomic mixture gas at high temperatures and high pressures has been deduced based on the real gas virial equation. The enthalpy of flue gas was calculated by programming and compared with the results simulated by the business process simulation software, so the accuracy of the results was verified.
     Due to the flue gas recirculation, the water vapor content in the flue gas improved greatly. The condensation heat transfer film model of the mixture containing plenty of non-condensable gases under high pressure was established and modified based on the Nusselt condensation theory. The influence of the wall temperature, the mixture velocity, the water vapor fraction and the mixture pressure on the condensation heat transfer was calculated and analyzed. The vapor content balance in the flue gas was calculated and analyzed under different flue gas dehumidification and recirculation modes. The pros, cons and the economy of different flue gas recirculation modes were demonstrated and anlysed in detail.
     Taking a300MW coal-fired generating unit as the research object, comparing with the atmospheric oxy-fuel combustion, the saturation temperature of the water vapor increased to167~188℃with the pressure raised to6-8MPa. Due to the recirculation of the vapor latent heat, the extracted steam reduced and the turbine power generation output improved about6.3%. At the same time, CO2is cooled to liquid state by the normal temperature cooling water, then the compression power consumption decreased by two orders of magnitude. However, the power consumption of the air separation unit increased as the system pressure was raised. When the oxygen purity was100%, the net efficiency of the pressurized oxy-coal power integrated with CO2capture system achieved to30.1%-30.7%, increased by4.2-4.8percent than the atmospheric oxy-fuel combustion power generation.
     The largest power consumer within the pressurized oxy-fuel system is the air separation unit and the power requirement strongly depends upon the oxygen purity. Therefore, a sensitivity analysis has been done to study the impact of the oxygen purity on the thermodynamic performance of the system. The results showed that:the relatively air separation unit power requirement occurred at95%oxygen purity and the overall net efficiency achieved to30.8%in this case.
引文
[1]Metz B, Davidson O, Coninck H D, et al. IPCC special report on carbon dioxide capture and storage[R]. Intergovernmental Panel on Climate Change, Geneva (Switzerland). Working Group Ⅲ,2005.
    [2]IPCC. Climate change 2007 [R]. Geneva:Intergovernmental Panel on Climate Change, 2007.
    [3]International Energy Agency. CO2 emissions from fuel combustion Highlights[R]. South Africa:Durban,2011.
    [4]International Energy Agency* Road mapping coal's future [R]. The Coal Industry Advisory Board. Paris:OECD/IEA,2005.
    [5]Energy Information Administration. International energy outlook 2008 [R]. Washington DC:U.S. Department of Energy,2008.
    [6]International Energy Agency. World energy outlook 2006 [M].Paris:International Energy Agency,2006.
    [7]黄粲然.中国近零排放煤基电站技术经济评估[D].北京:中国科学院,2010.
    [8]Davison J, Freund P & Smith A. Putting carbon back into the ground[R]. United Kingdom:IEA Greenhouse Gas R&D Programme,2001.
    [9]Yang H Q, Xu Zh H, Fan M H, et al. Progress in carbon dioxide separation and capture:A review. [J]. Journal of Environmental Sciences,2008,20:14-27.
    [10]Future Gen Project Profile. http://www.powerplantccs.com/ccs/cap/con/pre/futuregen_pp.html.
    [11]Coal energy application for gas, liquid and electricity (EAGLE). http://www.po wer-hitachi.com/products/ffp/pf/EAGLE.pdf.
    [12]Coal 21.http://www.australiancoal.com.au/coal21.html.
    [13]Bugge J. Advanced 700℃ PF power plant status[R]. European Conference AD700, Milan, Italy,2005.
    [14]Canadian clean power corporation 2010. http://www.canadiancleanpowercoalition.com.
    [15]熊杰.氧燃烧系统的能源——经济——环境综合分析评价[D].武汉:华中科技大学,2011.
    [16]绿色煤电有限公司.挑战全球气候变化:二氧化碳捕集与封存[M].北京:中国水利水电出版社,2008.
    [17]郑体宽,杨晨.热力发电厂(第二版)[M].北京:中国电力出版社,2008.
    [18]熊焰.低碳之路:新定义世界和我们的生活[M].北京:中国经济出版社,2010.
    [19]Price H, Lupfert E, Kearney D, Zarza E, et al. Advances in parabolic trough solar power technology [J]. Solar Energy Engineering,2002,124(02):109-125.
    [20]Muraie S, Fujioka Y. Challenges to the carbon dioxide capture and storage (CCS) technology [J]. Transactions on Electrical and Electronic Engineering,2008,3(01): 37-42.
    [21]阎维平.洁净煤发电技术(第二版)[M].北京:中国电力出版社,2008.
    [22]Katzer J. The future of coal[R]. American, Massachusetts Institute of Technology (MIT) 2007.
    [23]Tong H, Masutani S M, Kinoshita C M, et al. Solubility of CO2 in the ocean and its effect on CO2 dissolution [J]. Energy Conversion Management.1996,37(08):1029-1038.
    [24]Seepana S, Jayanti S. Optimized enriched CO2 recycle oxy-fuel combustion for high ash coals [J]. Fuel,2009,102(12):32-40.
    [25]毛玉如.循环流化床富氧燃烧技术的试验和理论研究[D].杭州:浙江大学,2003.
    [26]Buhre J P, Elliott L K, Sheng C D, et al. Wall TF. Oxy-fuel combustion technology for coal-fired power generation [J]. Progress in Energy and Combustion Science,2005, 31(04):283-307.
    [27]Xiong J, Zhao H B, Zheng Ch G, et al. An economic feasibility study of O2/CO2 recycle combustion technology based on existing coal-fired power plants in China [J]. Fuel,2009, 88(06):1135-1142.
    [28]熊杰,赵海波,柳朝晖,等.基于热经济学的02/C02循环燃烧系统和MEA吸附系统的技术-经济评价[J].工程热物理学报,2008,29(10):1625-1629.
    [29]阎维平,米翠丽.300MW富氧燃烧电站锅炉的经济性分析[J].动力工程学报,2010,30(03):184-191.
    [30]Herzog H J, Drake E M. Carbon dioxide recovery and disposal from large Energy system [J]. Annual Review Energy Environment,1996,21(11):145-166.
    [31]Croiset E, Thambimuthu K, Palmer A. Coal combustion in O2/CO2 mixtures compares with air [J]. Canadian Journal of Chemical Engineering,2000,78 (02):402-407.
    [32]Seltzer A, Zhen F. Commercial viability of near-zero emissions oxy-combustion technology for pulverized coal power plants[C]. The 37th International Technical Conference on Clean Coal & Fuel Systems. Florida, USA:2012.
    [33]Zheng L G. Oxy-fuel combustion for power generation and CO2 capture [M].U.S: Woodhead Publishing Limted,2011.
    [34]Christian S, Christian B, Patrick W, et al. Oxy-fuel power plant design:retrofit options for different fuels [C].2nd Oxy-fuel Combustion Conference. Queensland, Australia: 2011.
    [35]Chiesa P, Lozza S C. A comparative analysis of IGCC with CO2 sequestration[C]. Proceeding of the 4th International Conference on Greenhouse Gas Control Technologies. Interlaken, Switzerland,1999:107-112.
    [36]Gohlke O, Busch M. Reduction of combustion by-products in WTE plants:O2 enrichment of under-fire air in the MARTIN SYNCOM process [J]. Chemosphere.2001, 42:545-550.
    [37]Kira M, Tooru D, Tsuneizum S, et al. Development of a new stoker incinerator for municipal solid wastes using oxygen enrichment [J]. Mitsubishi Heavy Industries Technical Review.2001,38(02):78-81.
    [38]Hayashi J I, Hirama T, Okawa R, et al. Kinetic relationship between NO/N2O reduction and O2 consumption during flue-gas recycling coal combustion in a bubbling fluidized-bed [J]. Fuel,2002, (81):1179-1188.
    [39]Tan Y W, Croiset E, Mark A, et al. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas [J]. Fuel,2006,85(01):507-512.
    [40]林汝谋,金红光,蔡替贤.新一代能源动力系统的研究方向与进展[J].动力工程,2003,23(03):370-2376.
    [41]Ditaranto M, Hals J. Combustion instabilities in sudden expansion oxy-fuel flames [J]. Combustion and Flame.2006,146(03):493-512.
    [42]Hjartstam S, Andersson K, Johnsson F, et al. Combustion characteristics of lignite-fired oxy-fuel flames [J]. Fuel,2009,88(11):2216-2224.
    [43]Kim H K, Kim Y. Studies on combustion characteristics and flame length of turbulent oxy-fuel flames [J]. Energy & Fuels,2007,21(30):1459-1467.
    [44]Arias B, Pevida C, Rubiera, F., et al. Effect of biomass blending on coal ignition and burnout during oxy-fuel combustion [J]. Fuel,2008,87(12):2753-2759.
    [45]Andersson K, Johnsson F. Flame and radiation characteristics of gas-fired O2/CO2 combustion [J]. Fuel,2007,86(05):656-668.
    [46]Smart J P, O'Nions P, Riley G S. Radiation and convective heat transfer and burnout in oxy-coal combustion [J]. Fuel,2010,89(09):2468-2476.
    [47]Krishnamoorthy G, Sami M, Orsino S, et al. Radiation modeling in oxy-fuel combustion scenarios [J]. International Journal of Computational Fluid Dynamics,2010, 24(03):69-82
    [48]Toftegaard M B, Brix J, Jensen P A, et al. Oxy-fuel combustion of solid fuels [J]. Progress in Energy and Combustion Science,2010,36(05):581-625.
    [49]Andersson K, Johnsson F. Process evaluation of an 865MW lignite fired O2/CO2 power plant [J]. Energy Conversion and Management,2006,47(18):3487-3498.
    [50]Wall T, Liu Y H, Spero C, et al. An overview on oxy-fuel coal combustion state of the art research and technology development [J]. Chemical Engineering Research & Design, 2009,87(08):1003-1122.
    [51]Li G D, Li Sh Q, Dong M. Comparison of particulate formation and ashdeposition under oxy-fuel and conventional pulverized coal combustions [J].Fuel,2013,106:544-551.
    [52]Johansson R, Andersson K, Johnsson F. Influence of Ash particles on radiative heat transfer in air-and oxy-fired conditions[C]. The 37th International Technical Conference on Clean Coal & Fuel Systems, Clearwater, Florida, USA, June,2012.
    [53]米翠丽,阎维平.增压富氧燃烧烟气辐射特性宽带关联k模型[J].中国电机工程学报,2010,30(29):62-68.
    [54]李皓宇,阎维平,赵文娟.宽带关联k模型与离散坐标法相结合的富氧燃烧烟气辐射特性研究[J].动力工程学报,2012,32(01),21-26.
    [55]Backstrom D, Johansson R, Andersson K, et al. Gas Temperature and radiative heat transfer on oxy-fuel flames[C]. The 37th International Technical Conference on Clean Coal & Fuel Systems, Clearwater, Florida, USA, June,2012.
    [56]李皓宇,阎维平.富氧燃烧含灰烟气辐射特性的部分光谱k模型[J].化工学报,2011,62(11):3073-3080.
    [57]Brhre J P, Elliott L K, Sheng C D, et al. Oxy-fuel combustion technology for coal-fired power generation [J]. Progress in Energy and Combustion Science,2005, 31(04):283-307.
    [58]Chui E H, Majeski A J, Douglas M A, et al. Numerical investigation of oxy-coal combustion to evaluate burner and combustor design concepts[J]. Energy,2004, 29(09):1285-1296.
    [59]Ahn J, Kim H J, Choii K S. Oxy-fuel combustion boiler for CO2 capturing:50 kW-class model test and numerical simulation [J]. Journal of Mechanical Science and Technology, 2010,24(10):2135-2141.
    [60]Ahn J, Kim H J, Choii K S. Combustion characteristics of oxy-fuel burners for CO2 capturing boilers [J]. Journal of Thermal Science and Technology,2009,4(03):408-413.
    [61]Robertson A, Agarwal H, Gagliano M, et al. Oxy-combustion boiler marerial development [C]. The 37th International Technical Conference on Clean Coal & Fuel Systems, Clearwater, Florida, USA, June,2012.
    [62]Paschedag A, Kazalski P, Fry A, et al. Evolving oxy-burner firing principles and a pilot-scale burner design into a utility boiler firing system [C].2nd Oxy-fuel Combustion Conference. Queensland, Australia:2011.
    [63]Holland P. Development of oxy-coal technology results from testing conducted at Doosan Babcock's Clean Combustion Test Facility (CCTF) and application to demonstration projects[C].2nd Oxy-fuel Combustion Conference. Queensland, Australia:2011.
    [64]Liu H, Shao Y J. Predictions of the impurities in the CO2 stream of an oxy-coal combustion plant [J]. Applied Energy.2010,87(10):3162-3170.
    [65]Croiset E, Thambimuthu K V. NOx and SO2 emission from O2/CO2 recycle coal combustion [J]. Fuel,2001,80(14):2117-2121.
    [66]Fleig D, Normann F, Andersson K, et al. The fate of sulphur during oxy-fuel combustion of lignite [J]. Greenhouse Gas Control Technologies 9,2009, 1(01):383-390.
    [67]Yoshiaki M, Noriyuki I, Hirofumi K, et al. Study of Hg and SO3 behavior in flue gas of oxy-fuel combustion system[C].2nd Oxy-fuel Combustion Conference. Queensland, Australia:2011.
    [68]Janusz A L, Krzysztof G, Marcin J, et al. Pressurized Oxy-fuel Combustion:A Study of selected parameters [J]. Energy & Fuels,2012,26 (11):6492-6500.
    [69]Eric G E, Jiyoung A, Ryan O, et al. SO3 emissions in pilot-scale oxy-fired pulverized-coal and circulating-fluid-bed test facilities [C].2nd Oxy-fuel Combustion Conference. Queensland, Australia:2011.
    [70]Stanger R, Wall T. Sulphur impacts during pulverized coal combustion in oxy-fuel technology for carbon capture and storage [J]. Progress in Energy and Combustion Science,2011,37 (01):69-88.
    [71]Normann F, Andersson K, Leckner B, et al. High-temperature recuction of nitrogen oxides in oxy-fuel combustion [J]. Fuel,2008,87(17):3579-3585.
    [72]Andersson K, Normann F, Johnsson F, et al. NO emission during oxy-fuel combustion of lignite [J]. Industrial & Engineering Chemistry Research,2008,47(06):1835-1845.
    [73]Winklera F, Schoedel N. Cold De-NOx development for oxy-fuel power plants [J]. International Journal of Greenhouse Gas Control,2011,5 (01):231-237.
    [74]Tranier J P, Court P. CO2 Purification unit for oxy-coal combustion systems [C].1st International Oxy-fuel Combustion Conference. Cottbus, Germany:2009.
    [75]Court P, Briglia A. Callide CO2 capture pilot plant design[R].2nd IEA GHG oxy-fuel Combustion Conference. Chris Spero, Australia:2011.
    [76]Li H, Yan J, Yan J, Anheden M. Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system [J]. Applied Energy,2009,86(02), 202-213.
    [77]Liu D Y, Liu Y H, Wall T. CO2 quality control in oxyfuel combustion:a dynamic study on the absorption of SO2 into sodium based aqueous solutions relevant to scrubbing prior to CO2 compression [C]. The 37th International Technical Conference on Clean Coal & Fuel Systems, Clearwater, Florida, USA, June,2012.
    [78]Chao F, Gundersen T. Carbon capture and storage in the power industry:challenges and opportunities [J].Energy Procedia,2012 (16), Part C:1806-1812.
    [79]Darde A, Prabhakar R, Tranier J P, et al. Air separation and flue gas compression and purification units for oxy-coal combustion systems [J]. Greenhouse Gas Control Technologies 9,2009, 1(01):527-534.
    [80]Sungeun K, Hyungjun A, Sangmin C, et al. Impurity effects on the oxy-coal combustion power generation system [J]. International Journal of Greenhouse Gas Control,2012 (12): 262-270.
    [81]Andersson K, Johnsson F, Stromberg L. Large scale CO2 capture-applying the concept of O2/CO2 combustion to commercial process data [J]. VGB Power Technology,2003, 83(10):29-33.
    [82]Nsakala N Y, Marion J, Bozzuto C, Liljedahl G. Engineering feasibility of CO2 capture on an existing us coal-fired power plant [C]. First National Conference on Carbon Sequestration. Washington DC:2001.
    [83]Molburg J C, Doctro T D, Brockmeier N F. CO2 capture from PC boilers with O2 firing[C]. Eighteenth Annual International Pittsburgh Coal Conference, Newsastle, Australia,2001.
    [84]Singh D, Croiset E, Douglas P L, et al. Techno-economic study of CO2 capture from an existing coal-fired power plant:MEA scrubbing vs. O2/CO2 recycle combustion [J]. Energy Conversion Management 2003,44(19):3073-3091.
    [85]Kanniche M, Gros-Bonnivard R, Jaud P, et al. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture [J]. Applied Thermal Engineering,2010,30(01):53-62.
    [86]Gibbins J. Immediate strategies of CO2 capture [R].GCEP International Workshop on Clean Coal Technology Development——CO2 Mitigation, Capture, Utilization and Sequestration. Beijing, China, August,2005.
    [87]Yamada T, Tamura M, Ffjimori T, et al. Test results of oxy-fuel combustion and outline of demonstration project in Australia [J]. Challenges of power Engineering and Environment, 2007(01):756-761.
    [88]Stomberg L, Lindgrena G, Jcaoby J, et al. Update on Vattenfall's 30MWth oxy fuel pilot plant in Schwarze Pumpe [J]. Greenhouse Gas Control Technologies 9,2009, 1(01):581-589.
    [89]Wall T. Pulverized coal combustion carbon capture and storage, GHG reduction and oxy fuel technology[R]. Asia-Pacific Partnership on Clean Development & Climate, Beijing, 2010.
    [90]Mcdonald D, Estopinal M, Maulim H. FutureGen 2.0:Where are we now? [C]. The 37th International Technical Conference on Clean Coal & Fuel Systems, Clearwater, Florida, USA, June,2012.
    [91]刘彦丰.煤粉在高浓度CO2下的燃烧与气化[D].保定:华北电力大学,2001.
    [92]米翠丽.富氧燃煤锅炉设计研究及其技术经济性分析[D].保定:华北电力大学,2010.
    [93]米翠丽,阎维平,李皓宇,等.O2/C02燃烧方式下锅炉对流传热系数的修正算法和数值研究[J].动力工程,2009,29(05):417-421.
    [94]阎维平,米翠丽.富氧燃烧方式下锅炉对流受热面优化设计[C].2009.全国博士生学术会议(电站自动化信息化).北京:中国电力科学研究院杂志社,2009,138-143.
    [95]安丽娜.O2/CO2燃烧方式下300MW煤粉锅炉设计[D].保定:华北电力大学,2009.
    [96]王小华,刘豪,邱建荣,等.氧燃烧方式下煤粉锅炉辐射传热特性分析[J].热能动力工程,2009,24(01):85-88.
    [97]李英杰,赵长遂,段伦博.O2/C02气氛下煤燃烧产物的热力学分析[J].热能动力工程,2007,22(03):332-335.
    [98]丘纪华,邹春,刘敬樟,等.旋流型O2/CO2煤粉燃烧器的流动及燃烧试验研究[J].中国电机工程学报,2010,30(17)1-5.
    [99]王泉海,邱建荣,温存,等.氧燃烧方式下痕量元素形态转化的试验和模拟研究[J].工程热物理学报,2006,27(增刊2):199-202.
    [100]熊全军,邱建荣,徐朝芬,等.氧燃烧方式下重金属Se挥发行为的研究[J].工程热物理学报,2006,27(增刊2):195-198.
    [101]王云,赵永椿,张军营,等.基于全生命周期的02/C02循环燃烧电厂的技术经济性评价[J].中国科学E刊:科学技术,2011,41(01):119-128.
    [102]陈春香,马晓茜.燃煤机组富氧燃烧发电的生命周期评价[J].中国电机工程学报,2009,29(增刊):82-87.
    [103]Ciferno J. Pulverized coal oxy combustion power plants[R].Washington, DC:National Energy Technology Laboratory, August,2007.
    [104]岳晨,史翊翔,蔡宁生.整体煤气化联合循环系统空分单元集成特性[J].中国电机工程学报,2010,30(32):1-7.
    [105]赵文娟.富氧燃烧发电系统中空分制氧设备的集成分析[D].保定:华北电力大学,2012.
    [106]Vince W, Kevin F. Oxygen Supply for CO2 capture by oxy-fuel coal combustion[C]. 2nd Oxy-fuel Combustion Conference. Queensland, Australia:2011.
    [107]Prosser N, Shan M. Air separation units for oxy-coal power plants[C].2nd Oxy-fuel Combustion Conference. Queensland, Australia:2011.
    [108]鲁晓宇.富氧燃煤发电机组烟气压缩工艺及脱硫脱硝的研究[D].保定:华北电力大学,2012.
    [109]Barbucci P. Enel strategy for zero emission power generation[R]. Beijing Symposium on Sino-Italy Cooperation on Clean Coal Technology and CCS, Beijing,15th December, 2008.
    [110]Ahmed F. Ghoniem ENEL-MIT clean energy program[R]. MIT, October,2008.
    [111]Potter L J, Stewart B. Innovation and greenhouse gas reductions in the Canadian energy industry [J].Greenhouse Gas Control Technologies 7,2005,2(01):1577-1583.
    [112]Benelli G, Cumbo D, Gazzino M, et al. Oxy-coal combustion process suitable for future and more efficient zero emission power plants [C]. Power Gen Europe Conference and Exhibition, Madrid, Spain,2008.
    [113]Benelli G, Girardi G,Malavasi M, et al. ISOTHERM(?):A new oxy-combustion process to match the zero emission challenge in power generation[R]. The 7th High Temperature Air Combustion and Gasification International Symposium, Phuket, Thailand,2008.
    [114]Benelli G, Cumbo D, Gazzino M, Morgani E. Pressurized oxy-combustion of coal with flue gas recirculation:pilot scale demonstration[C]. Power Gen Europe conference and exhibition, Milan, Italy,2008.
    [115]Fassbender A. Simplification of carbon capture power plants using pressurized oxy-fuel[C]. The 32nd International Technical Conference on Coal Utilization and Fuel Systems. Clearwater, Florida, USA,2007.
    [116]Henry R. Modeling of pressurized oxy-fuel for recovery of latent heat and carbon capture using usibelli coal[C]. The 32nd International Technical Conference on Coal Utilization and Fuel Systems.Clearwater, Florida, USA,2007.
    [117]Zheng C, Zheng L, Pomalis R, et al. Conceptual design and experimental study overview:flue gas treatment and CO2 recovery experimental system for high pressure oxygen fired coal combustion[C]. The 33nd International Technical Conference on Coal Utilization and Fuel Systems.Clearwater, Florida, USA,2008.
    [118]Hong J, Field R, Gazzino M, Ahmed F. Ghoniem. Operating pressure dependence of the pressurized oxy-fuel combustion power cycle [J]. Energy,2010,35(12):5391-5399.
    [119]Hong J, Kirchen P, Ahmed F. Ghoniem. Numerical simulation of ion transport membrane reactors:Oxygen permeation and transport and fuel conversion [J]. Journal of Membrane Science,2012,407(07):71-85.
    [120]Hong J, Chaudhry G, Brisso J G, et al. Ghoniem. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor [J].Energy,2009,34(09):1332-1340.
    [121]阎维平.洁净煤发电技术的发展前景分析[J].华北电力大学学报,2008,35(06):67-71.
    [122]ThermoEnergy Corp. ThermoEnergy and ITEA S.p.A. Announce plan to accelerate development of clean coal power plants in the United States[EB/OL].(2012-6-14): http://www.thermoenergy.com
    [123]顾宗安.循环流化床——增压流化床——整体煤气化联合循环发电运营设计标准与新技术应用及操作规范实用手册[M].香港:中国科技文化出版社,2006.
    [124]章名耀.增压流化床联合循环发电技术[M].南京:东南大学出版社,1998.
    [125]Wang Ch B, Lei M, Yan W P, et al. Combustion characteristics and ash formation of pulverized coal under pressurized oxy-fuel conditions [J]. Energy & Fuels,2011,25(10): 4333-4344.
    [126]雷鸣,王春波,阎维平,等.大同烟煤增压富氧燃烧的热重实验研究[J].中国电机工程学报,2012,32(05):21-26.
    [127]毛绍融,朱朔元,周智勇.现代空分设备技术与操作原理[M].杭州:杭州出版社,2007.
    [128]Fogash K, White V. Oxy-coal combustion:opportunities and challenges purification of oxy-fuel-derived CO2[C]. AIChE 2007 Annual Meeting, Salt Lake City, Utah.2007.
    [129]裘放放,蔡宁生.增压流化床联合循环商业示范电站变工况性能的研究[J].动力工程,2002,22(04):1847-1852.
    [130]程万旭,周涛.应用PFBC-CC技术改造燕山旧电站的环保性能研究[J].能源与环境,2012,(04):14-15.
    [131]何洪君,王德臣.P200 FBC增压流化床锅炉壳体组装方法[J].科技信息,2011,09:102-103.
    [132]高子瑜,徐雪元,姚丹花.1000MW超超临界锅炉塔式锅炉设计特点[J].锅炉技术,2006,937(01):1-5.
    [133]GB713/2008,锅炉和压力容器用钢板[S].北京:中国标准出版社,2008.
    [134]北京锅炉厂译.锅炉机组热力计算标准方法[M].北京:机械工业出版社,1976.
    [135]李向荣.用SRK方程计算真实气体的密度[J].青岛化工学院学报,2002,22(01):98-100.
    [136]杨文滨,苏明.高湿空气在高温高压区域内的热物性计算及分析[J].动力工程,2004,24(03):383-410.
    [137]刘朝,杨智勇,刘娟芳.高温高压下湿空气的焓和熵计算[J].工程热物理学报,2007,28(04):557-560.
    [138]项卫红.流体的热物理化学性质:对应态原理与应用[M].北京:科学出版社,2003.
    [139]Meng L, Duan Y Y. Correlations for second and third virial coefficients of pure fluids [J]. Fluid Phase Equilibria,2004(10),226,109-120.
    [140]Ji X Y, Yang J Y. Saturated thermodynamic properties for the air-water system at elevated temperatures and pressures [J]. Chemical Engineering Science,2003,58 (22) 5069-5077.
    [141]Chuen P L, Prausnitz J M. Third virial coefficients of nonpolar gases and their mixtures [J]. AIChE Journal,1967,13(05):520-535.
    [142]Orbey H, Vera J H. Correlation for the third virial coefficient using Tc, Pc and as parameters [J]. AIChE Journal,1983,29 (01):107-113.
    [143]Hou W F, Su H Y, Hu Y Y, et al. Modeling, Simulation and optimization of a whole industrial catalytic naphtha reforming process on Aspen-Plus platform [J]. Chemical Engineering,2006,14(05):584-591.
    [144]Wall T F. Combustion processes for carbon capture. Proc Combust Inst 2007; 31(01):31-47.
    [145]Jiao F C, Chen J, Zhang L, et al. Ash partitioning during the oyx-fuel combustion of lignite and its dependence on the recirculation of flue gas impureites [J]. Fuel,2011, 90(06):2207-2216.
    [146]Gonschorek S, Hellfritsch S, Weigl S, Gampe U. Oxyfuel technology with carbon sequestration:A promising option for future CO2-free power generation from demestic coal resources[C]. International Scientific Conference on the Ocassion of the 55th Anniversary of Founding the Faculty of Mechnical Engineering, Ostrava,2005.
    [147]Vitalis B. Overview of oxy-combustion technology for utility coal-fired boilers. Advances in Materials Technology for Fossil Power Plants[C]. Proceedings from the 5th International Conference,2008.
    [148]Dillon D J, White V, Allam R J, et al. Oxy combustion processes for CO2 capture from power plant[R]. IEA Greenhouse Gas Research and Development Programme, June 2005.
    [149]Maja B, Brix J, Peter A, et al. Oxy-fuel combustion for solid fuels [J]. Progress in Energy Combustion Science,2010,36(05):581-625.
    [150]Dennis M, Richard D, Thomas F, et al.700 MWe oxycombustion reference plant performance and costs [C].2nd Oxy-fuel Combustion Conference. Queensland, Australia: 2011.
    [151]Bin X U, STOBBS R A, Vince W, et al. Future CO2 capture technology options for the Canadian market[R]. UK Department for Business, Enterprise, and Regulatory Reform and Canadian Clean Power Coalition, March,2007.
    [152]AUDUS H. An update on CCS:recent developments[R]. Second IEA Workshop on Legal aspect of Storing CO2, Paris, France, October,2006.
    [153]曾庭华,杨华.湿法烟气脱硫系统的安全性及优化[M].北京:中国电力出版社,2003.
    [154]安连锁,吕玉坤.泵与风机[M].北京:中国电力出版社,2009.
    [155]Siddique M, Golay M W, Kazimi M S. Local heat transfer coefficients for forced-convention condensation of steam in a vertical tube in the presence of a noncondensable gas [J]. Nuclear Technology,1993,102 (03):386-402.
    [156]Kuhn S Z, Schrock V E, Peterson P F. An investigation of condensation from steam-gas mixtures flowing downward inside a vertical tube [J]. Nuclear Engineering and Design, 1997,177 (01):53-59.
    [157]Park H S. A condensation experiment in the presence of noncondensables in a vertical tube of a passive containment cooling system and its assessment with RELAP5/MOD3.2 [J]. Nuclear Technology,1999,127(08):160-169.
    [158]JIA L, Peng X F. Heat transfer in flue gas with vapor condensation [J]. Tsinghua Science and Technology,2002, (02):177-182.
    [159]JIA L, Peng X F. Effects of water vapor condensation on the convention heat transfer of wet flue gas in a vertical tube [J]. Heat and Mass Transfer,2001,44(22):4275-4265.
    [160]Rao D V, Krishna V M, Sharma K V, et al. Convective condensation of vapor in the presence of non-condensable gas of high concentration in laminar flow in a vertical pipe [J]. Heat and Mass Transfer,2008,51(25):6090-6101.
    [161]Kim S J. Turbulent film condensation of high pressure steam in a vertical tube [J]. Heat Transfer,2000,43(21):4031-4042.
    [162]Mukhopadhyay S, Som S K, Chakraborty S. A generalized mathematical description for comparative assessment of various horizontal polar tube geometries with regard to external film condensation in presence of non-condensable gases [J]. Heat and Mass Transfer,2007,50 (17):3437-3446.
    [163]唐桂华,庄正宁,王建伟,等.不凝气体存在时水平单管外膜状凝结换热的数值研究[J].西安交通大学学报,2000,34(11):31-35.
    [164]吴冬梅,贾力.水平单管外混合气体对流冷凝换热的理论研究[J].工业加热2006,35(06):1-4.
    [165]贾力.吴冬梅,齐巍.混合气体横向冲刷水平管时对流冷凝换热的机理研究[J].热科学与技术,2007,6(03):209-213.
    [166]贾力,齐巍,吴冬梅,等.含湿混合气体水平管外对流凝结换热试验研究[J].热科学与技术,2007,6(04):300-303.
    [167]刘晓华,李维仲,赵宗昌,等.水平管外蒸汽轴向流动凝结换热理论与试验研究[J].大连理工大学学报,2002,42(02):185-189.
    [168]Mills A F. Bsaic heat amnd mass transfer [M].2nd Upper Saddler River, N.J. Prentice, Hall,1999.
    [169]Al-shammari S B, Webb D R, Heggs P. Condensation of steam with and without presence of no-condensable gases in a vertical tube [J]. Desalination,2004,169 (02):151-160.
    [170]马凯,阎维平,高正阳.增压富氧燃烧烟气物性及对流传热系数的研究[J].动力工程学报,2011,31(11):861-868.
    [171]刘光启,马连湘,刘杰.化学化工物性数据手册[M].北京:化学工业出版社,2002.
    [172]Wallace D J. A study of the influence of vapor velocity upon condensation on a horizontal tube [D].Glasgow:University of Strathclyde,1975.
    [173]方梦祥,张卫风,晏水平,等.燃煤电厂分离CO2的经济性分析[J].浙江大学学报(工学版),2007,41(12):2077-2081.
    [174]Gambini M, Vellini M. CO2 emission abatement from fossil fuel power plants by exhaust gas treatment [J]. Journal of Engineering for Gas Turbines Power,2003, 125(01):365-373.
    [175]阎维平,鲁晓宇.富氧燃烧锅炉烟气CO2捕集中回收NO的研究[J].动力工程学报,2011,31(04):294-299.
    [176]朱学军,吕芹,叶世超.振动流化床床层压降理论分析与实验研究[J].四川大学学报,2007,39(01):78-82.
    [177]陶晓东,刘永江.循环流化床锅炉布风板阻力的计算及应用[J].内蒙古电力技术,2005,23(05):14-15.
    [178]马凯,阎维平,高正阳,等.增压富氧燃煤锅炉省煤器设计与优化[J].动力工程学报,2013,33(03):165-171.
    [179]田红景,袁次先,陈会君,等.电厂机组能耗分析中的小扰动理论应用[J].热力发电,2006,(10):56-59.
    [180]段立强,李冉,杨勇平.烟气冷却器的节能效果评价[J].节能技术,2012,30(175):3876-391.
    [181]王慧杰,张春发,宋之平.火电机组运行参数能耗敏感性分析[J].中国电机工程学报,2008,28(29):6-10.