深穿透地球化学勘查技术在金矿勘查中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深穿透地球化学是针对寻找隐伏矿的需求而发展起来的一门新的勘查地球化学技术。本文通过对深穿透勘查地球化学元素垂向迁移机理理论以及金元素活动态测量技术的研究总结,选择金成矿背景较好,但常规地质和地球化学找矿方法难以奏效的甘南草甸覆盖区进行了方法有效性试验,并应用其开展了找矿实践。
     研究区内以岷县—礼县—合作—夏河区域性断裂为界,北为秦岭北部褶皱带,南为西秦岭中部三叠系裂陷槽。该断裂普遍认为其高渗透的环境直达地壳深部,有利于深部矿液向上运移,并在其旁侧的次级断裂聚集、沉淀,对成矿十分有利。金资源普查评价工作在研究区已经发现了多处具有良好找矿前景的矿化线索。但由于研究区覆盖较厚,地势平缓,基岩露头少,水系不发育,区内表生条件不利于金在地表的侧向迁移,通过常规的地质及化探方法找矿效果不明显。
     本文在深穿透勘查地球化学理论研究的基础上,首先在甘肃石青硐及忠曲金矿已知矿区隐伏矿体的上部,采用金属活动态测量进行了剖面测量试验。利用中科院廊坊物化探所提出的选择性提取5个相态金的技术提取到水提取态、有机态和游离自然金3个相态的金。3种方法都很好的在已知隐伏金矿体上方圈定了异常。
     随后,根据研究区景观条件制定了针对草甸区金的深穿透测量方法。在将其那梁和枣子沟南两个地区采用1:20000大比例尺开展了面积性深穿透地球化学测量。采样布局参考200×200m基本网度,采集样品为利于活动态金富集的A层下部或B层土,采样深度30~40cm,利用选择性提取技术提取和分析了两个地区水提取态、有机结合态和自然游离态3种相态金的含量,制作了金的深穿透地球化学图,按3种方法均圈出了金的异常,3种方法圈出的异常有一定的吻合程度。
     在甘南草甸区进行深穿透地球化学的方法试验与应用,以及对个别异常的验证,显示本方法在该区可以有效地圈定异常,为甘南草甸区开展深穿透化学找矿提供了依据,对此地区隐伏或半隐伏矿勘查评价有重要指导意义。
Deep-penetrating geochemistry is a kind of new geochemical technique for prospecting buried ore-body in overburden area. Through studying the theory of deep-penetrating geochemical migration mechanisms and summarizing the technology of leaching of mobile forms of gold, and after test of method effectiveness, this technology has been employed for prospecting the deposit buried under the grassy marshland in the South Gansu Province, where is the favorable area of gold formation, but the conventional geological and geochemical prospecting methods are ineffective to evaluate the effectiveness of this technology.
     The study area was divided by the regional fault of Minxian-Lixian-Hezuo-Xiahe, Northern Qingling fold zone in the north, and middle section of Triassic rift geosynclines in Western Qingling in the south. It has been recognized widely that the high percolation environment of the regional fault of Minxian-Lixian-Hezuo-Xiahe was favorable for metallogenesis because the fault reached the deep crust, which caused deep ore solution moving up, accumulating and depositing in the flanking area of the fault. The investigation and evaluation of gold resources done in Xiahe-Hezuo Region has identified many good clues for potential exploration.
     The surface conditions of study area impede the lateral movement of ultra-fine gold. Although some good clues have been identified in the periphery of rock-mass contact zone, the prospecting result through the conventional geological, geophysical and geochemical methods was not notable because the sections of key anomaly are the area with the thick overburden, the gentle terrain, the shortage of bedrock, and undeveloped drainage system.
     On the basis of study of the theory, the leaching experiment of partial extraction of mobile gold in the soil and profiling survey on the known buried ore bodies in Shiqingdong Gold Mine and Zhongqu Gold Mine have been carried out. It has been employed the partial extraction technology provided by Institute of Geophysical and Geochemical Exploration in Langfang to leach 5 phases'gold of soil sample, among which 3 phases'gold including water extractive, organic and free natural phase gold were determined. All of 3 phase's gold shows the mobile gold anomalies on the top soil of buried gold body.
     Subsequently, the method of deep-penetrating geochemical area survey for gold prospecting in the grassy marshland is designed according to the landscape condition, by which the area survey of scale 1:20000 has been completed at the basic grid of 200×200m. The soil samples were collected from the lowest part of soil A horizon or the upper part of B at the depth of 30-40cm. The contents of 3 phase's gold were analyzed, and the geochemical maps of 3 phase's gold were made. The anomalies of gold by the deferent indications show their consistency of a certain extent.
     The experiment and application of deep-penetrating geochemical survey and verification of a few anomalies revealed that this method is effective for identifying the anomalies. It will be the evidences for the further study, and important for guiding exploration and evaluation of the buried or semi-buried deposit in this region.
引文
[1]谢学锦,王学求.战术性与战略性的深穿透地球化学[J].地学前缘,1998,5(1/2):171-183.
    [2]Cameron E M, Hamilton S M, Leybourne M I, et al. Finding deeply-buried deposits using geochemistry[J]. Geochemistry:Exploration, Environment, Analysis.2004,4(1):7-32.
    [3]Kelley D L, Hall G E M, Graham Closs L, et al. The use of partial extraction geochemistry for copper exploration in northern Chile[J]. Geochemistry:Exploration, Environment, Analysis. 2003,3(1):85-104.
    [4]Hamilton S M, Cameron E M, McClenaghan M B, et al. Redox, pH and SP variation over mineralization in thick glacial overburden, Part I:methodologies and field investigation at the Marsh Zone goldproperty[J]. Geochemistry:Exploration, Environment, Analysis,2004,4:33-34.
    [5]王学求.深穿透勘查地球化学[J].物探与化探,1998,22(3):166-169.
    [6]王学求.深穿透地球化学迁移模型[J].地质通报,2005,24(10/11):892-896.
    [7]Govett G J S. Differential secondary dispersion in transported soil-sand post-mineralization rocks:an electrochemical interpretation[C]//Jones M J, Geochemical Exploration,1972. Proceedings of the International Geochemical Exploration Symposium.1973:81-91.
    [8]Govett G J S. Detection of deeply buried and blind sulphide depositsby measurement of H+ and conductivity of closely spaced surface soilsamples[J]. Journal of Geochemical Exploration,1976,6:359-382.
    [9]Hamilton S M. Electrochemical mass-transport in overburden:a newmodel to account for the formation of selective leach geochemical anomalies in glacial terrain[J]. Journal of Geochemical Exploration,1998,63:155-172.
    [10]Govett G J S, Dunlop A C, Atherden P R. Electrogeochemical techniques in deeply weathered terrain in Australia[J]. Journal of Geochemical Exploration,1984,21:155-172.
    [11]Smee B W. A theoretical estimation of ion mobilities through glaciolacustrine sediments: Diffusion down a concentration gradient [C]//Current Research, Part A. Geological Survey of Canada.1979, Paper 79-1A:367-374.
    [12]Garnett D. Element mobility in transported overburden-are we looking in the wrong direction? [J]. The Association of Applied Geochemists:Explore,2004, (127):3-5.
    [13]赵阳,张义军,董万胜,等.青藏高原那曲地区雷电特征初步分析[J].地球物理学报,2004,47(3):405-410.
    [14]Reddy K R, Shirani A B. Electrokinetic Remediation of metal contaminated glacial tills[J]. Geotechnical and Geological Engineering,1997,(15):3-29.
    [15]王学求,刘占元,白金峰,等.深穿透地球化学对比研究两例[J].物探化探计算技术,2005,27(3):250-255.
    [17]谢学锦,王学求.深穿透地球化学新进展[J].地学前缘,2003,10(1):225-238.
    [18]Fabris A J, Fidler R W. A review of geochemical exploration through deep cover at key prospects in the Curnamona province:successes and failures[C]//Roach I C. Regolith 2005: Ten Years of CRC LEME. Adelaide and Canberra,2005:91-94.
    [19]施俊法,吴传璧.金属微粒迁移新机制及其意义综述[J].地质科技情报,1998,17(4):81-86.
    [20]谢学锦.勘查地球化学:发展史·现状·展望[J].地质与勘探,2002,38(6):1-9.
    [21]谢学锦.地球化学填图的历史发展(代总序)[J].地质通报,2007,26(11):1399-1404.
    [22]谢学锦.矿产勘查的新战略[J].物探与化探,1997,21(6):402-410.
    [23]任天祥,刘应汉,汪明启.纳米科学与隐伏矿藏——一种寻找隐伏矿的新方法、新技术[J].科学导报,1995,(8):18-19.
    [24]吴传璧,施俊法.上置晕与物质的“类气相”垂向迁移[J].地学前缘,1998,5(1/2):185-193.
    [25]胡忠贤,杨兆武,程志中,等.黑龙江省中部森林沼泽区超低密度深穿透地球化学调查采样介质的确定[J].物探与化探,2005,29(2):105-115.
    [26]王学求.矿产勘查地球化学:过去的成就与未来的挑战[J].地学前缘,2003,10(1):239-248.
    [27]蒋敬业,朱有光,赵伦山,等.西天山高寒草甸区寻找隐伏矿化探方法研究[J].物探与化探,2004,28(3):189-198.
    [28]刘应汉,汪明启,赵恒川,等.寻找隐伏矿的“地气”测量方法原理及应用前景[J].青海国土经略,2006,(3):41-42.
    [29]徐锡华.金属矿产地球化学勘查方法的现状与动向[J].地质找矿论丛,2000,15(1):17-23.
    [30]Mann A W, Birrell R D, Mann A T, et al. Application of the mobile metal ion technique to routine geochemical exploration [J]. Journal of Geochemical Exploration,1998,61:87-102.
    [31]Mann A W, Birrell R D, Fedikow A F, et al. Vertical ionic migration:mechanisms, soil anomalies, and sampling depth for mineral exploration[J]. Geochemistry:Exploration, Environment, Analysis,2005,5:201-210.
    [32]Wang Xueqiu. Leaching of mobile forms of metals in overburden:development and application[J]. Journal of Geochemical Exploration,1998,61:39-55.
    [33]范宏瑞,李兆麟.金在表生作用中的富集模拟实验及地球化学意义[J].黄金,1991,12(1):12-15.
    [34]王学求.寻找和识别隐伏大型特大型矿床的勘查地球化学理论与应用[J].物探与化探,1998,22(2):81 89.
    [35]谢学锦.用新观念与新技术寻找巨型矿床[J].科学中国人,1995(5):49.
    [36]卢荫庥,白金峰.元素活动态测量的分析方法[J].物探与化探,1998,24(1):28 33.
    [37]王崇云.地球化学找矿基础[M].北京:地质出版社,1987.
    [38]王学求,程志中.元素活动态测量技术的发展及其意义.国外地质勘探技术,1996 (2):17~22.
    [39]徐锡华.金属矿产地球化学勘查方法的现状与动向[J].地质找矿论丛,2000,15(1):17-23.
    [40]王学求.勘查地球化学:过去的成就与未来的挑战[J].地学前缘,200,10(1):240-248.
    [41]董树文,陈宣华,史静,等.国际地质科学发展动向[M].北京:地质出版社,2005,1-400.
    [42]王学求.深穿透地球化学[J].物探与化探,1998,22(3):166-169.
    [43]卢荫庥,白金峰.元素活动态测量的分析方法[J].物探与化探,2000,24(1):28-33.
    [44]王学求,程志中.元素活动态测量技术的发展与意义[J].国外勘探技术,1996,(2):17-22.
    [45]邵从和,陈小燕.低含量金的分析方法浅探[J].黄金,1998,19(11):47-48
    [46]王学求,谢学锦.非传统金矿化探理论与方法技术研究
    [47]谢学锦,王大文.地球化学填图与地球化学勘查
    [48]叶荣,王学求,赵伦山,陈德兴,傅渊慧.金窝子矿带戈壁覆盖区化探深穿透找矿方法研究[J].地质与勘探,2003,39(6):90-93
    [49]刘金海,蒋敬业.甘南高寒草甸景观区金的表生地球化学特征[J].地质找矿论丛,1999,14(4):56-61.
    [50]王光洪,罗先熔,高谦,梁敏,窦小雨.甘南忠曲金矿区物化探找矿模式研究及找矿预测[J].地质与勘探,2009,45(4):450-455.
    [51]顾娇杨,滕家欣,冯治汉.甘肃地球化学景观特征及区域地球化学方法技术评价[J].西北地质,2003,36(3):112-114
    [52]冯治汉,刘元平,叶得金,薛斌义.甘肃省景观地球化学特征初探[J].地质地球化学,2002,30(3):68-72
    [53]冯治汉,徐家乐.甘肃省景观地球化学特征及区域化探工作方法研究[J].地质与勘探,2003,39(6):2-5
    [54]徐家乐,冯治汉,牛洪斌,李文胜.甘肃省区域化探方法技术和主要成果[J].甘肃地质学报,2002,11(2):67-73
    [55]赵军,彭南海.甘肃石青硐矿区铜多金属矿床成矿条件浅析[J].甘肃冶金,2006,28(2):11-13
    [56]李通国,金治鹏.甘肃西秦岭地区地球化学特征及找矿预测[J].物探与化探,2009,33(2):123-127
    [57]李长江,麻土华.化探数据处理的新技术[J].地质找矿论丛.1997,12(4):57-64
    [58]文雪琴.金活动态测量法在红壤区与干旱黄土区找矿中的应用[J].地球科学与环境学报,2007,29(4):369-373
    [59]文雪琴.金属活动态提取法及其在黑龙江大兴安岭森林覆盖区的应用[J].地球科学与环境学报,2006,28(4):43-48
    [60]陈希泉,罗先熔,文雪琴.内蒙古额尔古纳虎拉林金矿区金属元素活动态测量法找矿试验[J].矿产与地质,2006,20(4-5):475-478
    [61]朱华平,张德全.区域化探异常的地球化学勘查评价方法技术进展综述[J].地质与勘探,2003,39(3):35-38
    [62]聂兰仕,程志中,王学求,魏华玲.深穿透地球化学方法对比研究——以内蒙古花敖包特铅锌矿为例[J].地质通报,2007,26(12):1574-1578.
    [63]刘大文等“金属活动态与地球气测量技术在高寒草甸区的试验研究”—川西北若尔盖草原覆盖区的实例。