裂隙岩体动态损伤局部化机理的理论及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
损伤局部化现象是岩体破坏的开始,表现为岩体在经历一定的均匀变形后,突然进入局部化变形的阶段,它是岩体破坏的前兆。损伤局部化产生的主要原因是裂隙扩展到一定长度后裂隙的扩展状态发生分叉,一部分裂隙继续扩展,另一部分裂隙停止扩展。因此,研究裂隙岩体损伤局部化的起始条件和失稳模式,对于分析地下工程围岩稳定性具有重要的工程应用价值。本文依托国家自然科学基金项目(Nos.50778184,51078371)、教育部新世纪优秀人才支持计划(NCET-07- 0911)和重庆市杰出青年基金项目(No. CSTC, 2009BA4046),围绕岩体中裂隙扩展和连接等核心问题,对裂隙岩体动态损伤局部化的实验观察、损伤局部化临界条件及损伤演化数值模拟方法三个主要方面进行了研究。本文的主要研究内容如下:
     ①采用多种试验手段和数据处理方法,测试了岩石断裂力学参数,分析了岩石动态损伤演化规律。首先,采用三点弯曲试验测试了岩石断裂韧度,分析了不同加载速率下岩石断裂韧度的变化规律。然后,基于单轴压缩应力应变关系,利用岩样体积应变与裂纹体积应变的关系得到了岩石启裂点,揭示了单轴压缩条件下岩石损伤演化规律。其次,采用图像增强与分割技术,分析了灰岩三轴压缩条件下损伤演化规律,从图像定量分析的角度探讨了CT扫描图像与损伤演化的关系。最后,采用霍普金森压杆研究了黄龙灰岩在应变率为15.2~124.3 s-1之间的动态应力应变关系,获得了黄龙灰岩动态损伤局部化的临界条件以及破坏特征。
     ②利用伪力法考虑多裂隙之间的相互作用,获得了含周期型分布裂隙的岩体损伤局部化临界条件。通过对多裂隙扩展状态的分叉分析,不仅得到了裂隙岩体损伤局部化裂纹弯折扩展临界长度及临界应力,而且确定了裂隙岩体损伤局部化的位置。此外,本文还探讨了岩体的动态应力应变关系,通过参数敏感性分析获得了裂隙长度、列间距、行间距、裂隙表面摩擦系数、岩石断裂韧度、围压、裂隙扩展速率和原生裂隙倾角等参数对岩石损伤局部化起始条件及损伤局部化模式的关系。
     ③基于扩展有限元法,建立了裂隙岩体多尺度损伤演化数值模型。裂隙岩体多尺度损伤演化数值模型可以有效的模拟不同尺度裂隙的相互作用、扩展和连接,而且还考虑了岩体动态卸荷的影响。本文建立的裂隙岩体多尺度动态损伤演化数值模型计算网格不需要与内边界(如裂隙和洞室)保持协调,而且采用结点位移投影法和边界位移加载法实现了不同尺度网格的平滑过渡,降低了网格划分的困难节约了大量的存储空间。利用裂隙岩体多尺度损伤演化数值模型分析了加载速率对岩石损伤局部化的影响,验证了多尺度网格之间误差可以满足工程要求。
     ④基于Matlab平台编制了裂隙岩体多尺度动态损伤演化数值模型应用程序(MCWRM),该程序能够模拟不同尺度裂隙加载和卸荷、拉伸和压缩等不同工况下的损伤演化行为。详细说明了裂隙岩体多尺度损伤演化数值模型的程序的调用关系及计算流程,解决了多裂隙扩展过程连接处理和多尺度网格过渡等难题,最后通过算例验证了本文数值模型的可靠性。算例分析表明,MCWRM程序模拟结果与室内模型实验结果和理论计算结果吻合较好。
     ⑤将裂隙岩体多尺度损伤演化数值模型分析程序(MCWRM)应用于模拟锦屏二级水电站引水隧洞围岩卸荷损伤演化过程,计算结果与弱单元法及室内模型试验结果吻合,表明本文建立的裂隙岩体多尺度损伤演化数值模型适用于分析裂隙岩体动态损伤演化过程。
The phenomena of Damage localization, which characterized as the rock mass suddenly enter into the deformation localization stage after a period of uniform deformation, is the beginning of rock failure. Damage localization is also the precursor of rock failure. Damage localization mainly yielded by the bifurcation of crack growth pattern, which means some cracks go on propagating while others remian still. So, it is significant for the stability analysis of surrounding rock mass of underground projects to study the onset condition and bifurcation pattern of damage localization in crack weakened rock mass. Supporting by the National Natural Science Foundation of China (Nos.50778184, 51078371), the Program of New-Century Talents by the Ministry of Education (NCET-07-0911) and Natural Science Foundation Project of CQ CSTC (No. CSTC, 2009BA4046), this paper mainly focuses on the growth and coalescence of cracks in the rock mass. Three main aspects, which are experimental observations, onset condition for damage localization and numerical method for simulating the evolution of damage in crack weakened rock mass, are studied in this paper. The main work is summarized as follows:
     ①Adopting multiple kinds of testing means and data processing methods, the fracture mechanic parameters are obtained and the rule of dynamic damage evolution of rock is analysed too. Firstly, the fracture toughness of limestone is tested by using three point bending experiments, the rate dependence of fracture toughness is also analysed. Secondly, based on the stress-strain relationship of rock sample under uniaxial compression condition, the initial point of crack growth is determined by using the relationship between the volume strains induced by rock matrix material and cracks respectively. Meanwhile, the rule of damage evolution of rock under uniaxial compression is revealed. Thirdly, utilizing the image enhancement and segmentation technology, the rule of damage evolution of limestone under triaxial compression condition is discussed. Moreover, quantitative analysis of CT image, the relationship between CT image and damage evolution is discussed. Last but not least, uniaxial impact-compressive loading tests of different strain rate (15.2~124.3 s-1) were produced in the split Hopkinson pressure bar (SHPB) on Huanglong limestone specimens, the dynamic stress-strain curves are obtained. The onset condition of damage localization and the failure characteristic are determined too.
     ②Taking into account of the interaction of multiple cracks by pseudo traction method, the onset condition for rock mass that contain periodic distribution cracks is obtained. By analyzing the bifurcation of crack growth pattern, not only the critical length and critical stress for damage localization of crack weakened rock mass are obtained, but also the location of damage localization is determined. In addition, the dynamic stress-strain relationship is discussed in this paper. Parameters sensitivity analysis is carried out, the effects of the length of crack, friction coefficient, fracture toughness, confining stress, velocity of crack growth, inclination and spacing between lines and rows on the onset condition for damage localization and bifurcation pattern of rock are discussed.
     ③On the basis of eXtended Finite Element Method, a multiscale numerical model for simulating the process of damage evolution in crack weakened rock mass is proposed. This model can be used to simulate the interaction, growth and coalescence of multiple cracks, and the effects of unloading is also taken into account. The coordination between the internal boundary (such as cracks and holes) and mesh is not needed in this multiscale model. By combining the displacement projecting method and displacement loading method, the connection between different sizes of mesh behave smoothly. This multiscale model indeed surmounts difficulties in meshing and it really save the storage space. Moreover, the multiscale model is applied to analyse the dependence of damage localization on the loading rate. It is shown from examples that the error of this multiscale model can be accepted in engineering application.
     ④Based on the platform of Matlab, a program for simulating the multiscale dynamic damage evolution in crack weakened rock mass is compiled (MCWRM). This program is suit for simulating multiscale damage evolution behaviors of rock mass under different loading state, such as unloading, tensile and compression. The calling relation of subroutines and calculation procedure of this multiscale model are detailly explained in this thesis. Fortunately, the difficulties of dealing with the crack coalescence and connection between different sizes of mesh have been overcomed. Some examples are carried out to test and verify the MCWRM program. The numerical simulation results that obtained by MCWRM show good agreement with experimental and theoretical results.
     ⑤Finally, the MCWRM program is applied to simulate the damage evolution process when the tunnels is excavating in JinpinⅡHydropower Station. Comparison between the results obtained by MCWRM, weak element method and experimental results of similar specimens are executed in this paper. It shows that the results are realistic and the MCWRM fit for simulating damage evolution behaviors in crack weakened rock mass.
引文
[1] M Cai, P K Kaiser. Assessment of excavation damaged zone using a micromechanics model [J]. Tunnelling and Underground Space Technology, 2005,20,301-310.
    [2] Archambault, G. Comportement Mecanique des massifs Rocheux[D]. PhD thesis, Montreal: Ecole Polytechnique, 1972.
    [3] R T Ewy, N G W Cook, Deformation fracture around cylindrical openings in rock. I. Observations analysis of deformations[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1990,27(5):387-407.
    [4] ISRM Testing Commission. Suggested methods for determining the fracture toughness of rock [J]. International Journal of Rock Mechanics and Mining Sciences, 1988, 25(2): 71-96.
    [5] ISRM Testing Commission. Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens[J]. International Journal of Rock Mechanics and Mining Sciences, 1995,32(1):57-64.
    [6] T Backers, N Fardin, G Dresen, O Stephansson. Effect of loading rate on Mode I fracture toughness, roughness and micromechanics of sandstone[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40: 425- 433.
    [7]李战鲁,王启智.加载速率对岩石动态断裂韧度影响的实验研究[J].岩土工程学报,2006,28(12): 2116-2120.
    [8] Z X Zhang, S Q Kou, J Yu, et al. Effects of loading rate on rock fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 1999,36: 597-611.
    [9] Z X Zhang, S Q Kou, L G Jiang, P A Lindqvist. Effects of loading rate on rock fracture: fracture characteristics and energy partitioning [J]. International Journal of Rock Mechanics and Mining Sciences, 2000,37:745-762.
    [10] R D Perkins, S J Green, M Friedman. Uniaxial stress behavior of Porphyritic Tonalite at strain rates to 103/sec [J]. International Journal of Rock Mechanics and Mining Sciences, 1970,7:527- 535.
    [11] T Horibe, R Kobayashi. On mechanical behaviors of rocks under various loading rates[J]. J. Soc. Mater. Sci. Japan., 1965,14(141):62-70.
    [12]徐松林等.三轴压缩大理岩局部化变形的试验研究及其分岔行为[J],岩土工程学报,2001,23(3):296-301.
    [13] R L Shan, Y S Jiang, B Q Li. Obtaining dynamic complete stress-strain curves for rock using the split hopkinson pressure bar technique[J]. International Journal of Rock Mechanics andMining Sciences, 2000,37:983-992.
    [14] H Kawakata, A Cho, T Kiyama, Yanagidani, et al. Three-dimensional observations of faulting process in Westerly granite under uniaxial and triaxial conditions by X-ray CT scan[J]. Tectonophysics, 1999,313:293-305.
    [15]葛修润,任建喜,蒲毅彬等.煤岩三轴细观损伤演化规律的CT动态试验[J].岩石力学与工程学报,1999,18(5):497-502.
    [16]赵兴东,唐春安,李元辉等.花岗岩破裂全过程的声发射特性研究[J].岩石力学与工程学报,2006,25(s2):3673-3678.
    [17]赵兴东,李元辉,袁瑞甫等.基于声发射定位的岩石裂纹动态演化过程研究[J].岩石力学与工程学报,2007,26(5):944-950.
    [18] W F Brace, E G Bombolakis. A note on brittle crack growth in compression[J]. J. Geophys. Res., 1963,68(B12):3709-3713.
    [19] E Hoek, Z T Bieniawski. Brittle fracture propagation in rock under compression[J]. Int. J. Frac., 1965,1:137-155.
    [20] H Horii, S Nemat-Nasser. Compression-induced microcrack growth in brittle solids: axial splitting and shear failure[J]. J. Geophys. Res., 1985,90(B4):3105-3125.
    [21] H Horii, S Nemat-Nasser. Brittle failure in compression: splitting, faulting and brittle-ductile transition[J]. Philosophical Transactions of the Royal Society of London, 1986, 319 (A1549): 337- 374.
    [22] S Nemat-Nasser, H Horii. Compression-induced nonplanar crack extension with application to splitting, exfoliation and rock burst[J]. J. Geophys. Res., 1982,87(B8):6805-6821.
    [23] A R Ingraffea, F E Heuze. Finite element models for rock fracture mechanics[J]. Int. J. Numer. Anal. Meth. Geomech., 1980,4(4):25-43.
    [24] J F Huang, G L Chen, Y H Zhao, et al. An experimental study of the strain field development prior to failure of a marble plate under compression[J]. Tectonophysics, 1990,175:269-184.
    [25] O Reyes, H H Einstein. Failure mechanisms of fractured rock- A fracture coalescence model[A]. Proceedings of 7th International Congress on Rock Mechanics, Aachen, Germany, 1991. 333- 340.
    [26] B Shen. The mechanism of fracture coalescence in compression-experimental study and numerical simulation[J]. Engng. Frac. Mech., 1995,51(1):73-85.
    [27] B Shen. O Stephansson, H H Einstein, et al. Coalescence of fractures under shear stresses in experiments[J]. J. Geophys. Res., 1995,100(B4):5975-5990.
    [28]朱维申,李术才,陈卫忠.节理岩体破坏机理和锚固效应及工程应用[M].北京:科学出版社,2002.
    [29] A Bobet, H H Einstein. Fracture coalescence in rock-type materials under uniaxial and biaxial compression[J]. Int. J. Rock Mech. Min. Sci., 1998,35(7):863-888.
    [30] R H C Wong, K T Chau. Crack coalescence in a rock-like material containing two cracks[J]. Int. J. Rock Mech. Min. Sci., 1998,35(2):147-164.
    [31] R H C Wong, P Lin, K T Chau, et al. The effects of confining compression on fracture coalescence in rock-like material[J]. Key Engineering Materials, 2000,183-187:857-862.
    [32] R H C Wong, K T Chau, C A Tang, et al. Analysis of crack coalescence in rock-like materials containing three flaws-Part I: experimental approach[J], Int. J. Rock Mech. Min. Sci., 2001,38:909- 924.
    [33] J W Rudniki, J R Rice. Conditions for the localization of deformation in pressure-sensitive dilatant materials[J]. J. Mech. Phys. Sol., 1975,23:371-394.
    [34] J R Rice. The localization of plastic deformation[A]. In Proceeding 14th IUTAM congress, ed. Koiten W T, North-Holland Publ. Co. The Netherlands.1976,207-220.
    [35] N S Ottosen, K Runesso. Properties of discontinuous bifurcation solutions in elasto-plasticity [J]. Int. J. Solids Struct., 1991,27(4):401-421.
    [36]杨强,陈新,周维垣.拱坝的弹塑性局部化分析[J].水利学报,2002,(3):20-25.
    [37] M Oritiz, Y Leroy, Needleman. A finite element method for localized failure analysis[J]. Comp. Meth. Appl. Eng., 1987,61:189-214.
    [38] M Jirasek. Comparative study on finite elements with embedded discontinuities[J]. Comp. Meth. Appl. Mech. Eng. 2000,188:307-330.
    [39] E Rizzi, I Carol, K Willam. Localization analysis of elastic degradation with application to scalar damage[J]. Journal of Engineering Mechanics, 1995,121(4):541-554.
    [40]潘一山,袁旭东,章梦涛.岩石失稳破坏的应变梯度模型[J].岩石力学与工程学报,1998, 17(s):760-765.
    [41]赵吉东.岩土工程稳定破坏的应变梯度损伤局部化分岔模型及应用[D].清华大学博士学位论文,2002.
    [42]刘元高,周维垣,赵吉东等.裂隙岩体损伤局部化破坏分岔模型及其应用[J].力学学报,2003,35(4):411-418.
    [43]尹光志,鲜学福.岩石在平面应变条件下剪切带的分叉分析[J].煤炭学报,1999,24(4): 364-367.
    [44]曾亚武.岩石材料变形的稳定性分析及破坏形式的分叉分析[D].武汉水利水电大学博士学位论文,2000.
    [45]孙红,赵锡宏.软上的损伤对剪切带形成的影响[J].同济大学学报,2001,29(3):278-282.
    [46]张永强.岩土类材料损伤与非连续性分叉研究[D].西安交通大学博士学位论文,2002.
    [47]郭志.实用岩体力学[M].北京:地震出版社,1996.
    [48] K P Chong, P M Hoyt, J W Smith. Effects of strain rate on oil shale fracturing[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1980,17:35-43.
    [49] K P Chong, A P Boresi. Strain rate dependent mechanical properties of new Albany reference shale[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1990,27(3):199-205.
    [50] T L Blanton. Effect of strain rates from 10-2 to 10 sec-1 in triaxial compression tests on three rocks[J]. Int. J. Rock Mech. Min. Sci. &Geomech. Abstr., 1981,18:47-62.
    [51]郑永来,周澄,夏颂佑.岩土材料粘弹塑性连续损伤本构模型探讨[J].河海大学学报,1997,25(2):114-116.
    [52]东兆星,单仁亮.高应变率下岩石本构特性的研究[J].工程爆破,1999,5(2):5-9.
    [53] D Halm, A Dragon. An anisotropic model of damage and frictional sliding for brittle materials[J]. Eur. J. Mech. A/Solid, 1998,(17):439-460.
    [54] F Homand-Etienne, D Hoxha, J F Shao. A continuum damage law for brittle rocks[J]. Computers and Geotechnics, 1998,22(2):135-151.
    [55] J Vychytil, H Horii. Micromehcanics-based continuum model for hydraulic fracturing of jointed rock mass during HDR stimulation[J]. Mechanics of Material, 1998,(28):123-135.
    [56] Vincent Pensee, Djimedo Kondo, Luc Dormieux. Micromehcanics of anisotropic damage in rocks and concrete:unilateral effects modeling and coupling with friction[A]. 15th ASCE Engineering Mechanics Conference[C]. Columbia University, New York,2002.
    [57] A S Chiarellia, J F Shao, N Hoteitb. Modeling of elastoplastic damage behavior of a claystone[J]. International Journal of Plasticity, 2003,(19):23-45.
    [58] W Z Chen, W S zhu, J F Shao. Damage coupled time-dependent model of a jointed rock mass and application to large underground cavern excavation[J]. Int. J. Rock Mech. Min. Sci., 2004,(41):669-677.
    [59] J F Shao. R Khazraei. A continuum damage mechanics approach for time independent and dependent behavior of brittle rock[J]. Mechanics Research Communications, 1996, 23(3): 257-265.
    [60] J F Shao. Poroelastic behaviour of brittle rock materials with anisotropic damage[J]. Mechanics of Materials,1998,(30):41-53.
    [61] J F Shao, D Hoxhab, M Bart. Modeling of induced anisotropic damage in granites [J]. Int. J. Rock Mech. Min. Sci., 1999,(36):1001-1012.
    [62] J F Shao, Y F Lu, D Lydzba. Damage modeling of saturated rocks in drained and undrained conditions[J]. ASCE J. Engine. Mech., 2004,130(6):733-740.
    [63] Q Z Zhu, D Kondo, J F Shao. Micromehcanical analysis of coupling between anisotropicdamage and friction in quasi brittle materials: role of the homogenization scheme[J]. International Journal of Solids and Structures, 2008,45(5):1385-1405.
    [64] Q Z Zhu, D Kondo, J F Shao, V Pensee. Micromechanical modeling of anisotropic damage in brittle rocks and application[J]. International Journal of Rock Mechanics & Mining Sciences, 2008, 45:467-477.
    [65]冯西桥.脆性材料的细观损伤理论和损伤结构的安定分析[D].清华大学博士学位论文.1995.
    [66]夏蒙棼,韩闻生,柯孚久等.统计细观损伤力学和损伤演化诱致突变[J].力学进展,1995,25(1):1-40.
    [67] J M Kemeny. A model for non-linear rock deformation under compression due to sub-critical crack growth[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1991,28(6):459-467.
    [68] H Deng, S Nemat-Nasser. Dynamic damage evolution in brittle solids[J]. Mech. Mater., 1992, 14: 83-103.
    [69] S Nemat-Nasser, H Deng. Strain-rate effect on brittle failure in compression[J]. Acta Metall Mater., 1994,42(3):1013-1024.
    [70] G Ravichandran, G Subhash. A micromechanical model for high strain rate behavior of ceramics[J]. Int. J. Solids Structures, 1995,32(17/18):2627-2646.
    [71] H B Li, J Zhao, T J Li. Micromechanical modeling of the mechanical properties of a granite under dynamic uniaxial compressive loads[J]. Int. J. Rock Mech. Min. Sci., 2000,37:923-935.
    [72] C Y Huang, G Subhash. Influence of lateral confinement on dynamic damage evolution during uniaxial compressive response of brittle solids[J]. Journal of the Mechanics and Physics of Solids, 2003,51:1089-1105.
    [73] C Y Huang, G Subhash, S J Vitton. A dynamic damage growth model for uniaxial compressive response of rock aggregates[J]. Mech. Mater., 2002,34:267-277.
    [74] X P Zhou, J H Wang, Y X Zhang et al. Analysis of the localization of damage and the complete stress-strain relation for mesoscopic heterogenous rock under uniaxial tensile loading[J]. Applied Mathematics and Mechanics, 2004,25(9):1031-1038.
    [75] X P Zhou, Y X Zhang, Q L Ha, et al. Analysis of the localization of damage and the complete stress-strain relation for mesoscopic heterogenous rock subjected to compressive loads[J]. Applied Mathematics and Mechanics, 2004,25(9):1039-1046.
    [76] X P Zhou, Q L Ha, Y X Zhang, et al. Analysis of deformation localization and the complete stress- strain relation for brittle rock subjected to dynamic compressive loads[J]. International Journal of Rock Mechanics and Mining Sciences, 2004,41(2):311-319.
    [77] X P Zhou. Analysis of the localization of deformation and the complete stress-strain relationfor mesoscopic heterogeneous brittle material under dynamic uniaxial tensile loading[J]. Int. J. Solids Struct., 2004,41(5-6):1725-1738.
    [78] X P Zhou, Y X Zhang, Q L Ha, et al. Bounds on the complete stress-strain relation for a crack- weakened rock mass under compressive loads[J]. Int. J. Solids Struct., 2004, 41 (22-23):6173-6196.
    [79] X P Zhou. Localization of deformation and stress-strain relation for mesoscopic heterogeneous brittle rock materials under unloading[J]. Theoretical and Applied Fracture Mechanics, 2005,44(1): 27-43.
    [80] X P Zhou. Triaxial compressive behavior of rock with mesoscopic heterogeneous behavior: strain energy density factor approach[J]. Theoretical and Applied Fracture Mechanics, 2006,45(1): 27-43.
    [81] X P Zhou. Upper and lower bounds for constitutive relation of crack-weakened rock masses under dynamic compressive loads[J]. Theoretical and Applied Fracture Mechanics, 2006,46(1): 75-86.
    [82] X P Zhou, H Q Yang. Micromechanical modeling of dynamic compressive response of mesoscopic heterogeneous brittle rock[J]. Theoretical and Applied Fracture Mechanics, 2007, 48(1): 1-20.
    [83]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析[M].北京:清华大学出版社,1991.
    [84]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,1997.
    [85] Josko Ozbolt, Yijun Li, Ivica Kozar. Microplane model for concrete with relaxed kinematic constraint[J]. International Journal of Solids and Structures.2001,38:2683-2711.
    [86] A Hillerborg, M Modeer. Analysis of crack formation crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773-782.
    [87] Z P Bazant, B H On. Crack band theory for fracture of concrete[J]. Material and Structures, RILEM, Paris, France, 1983,16:155-177.
    [88] Z P Bazant. Nonlocal damage theory based on micromechanics crack interactions[J]. Journal of Engineering Mechanics, ASCE, 1994,120:593-617.
    [89] Z P Bazant, T P Chang. Nonlocal finite element analysis of strain-softening solids[J]. Journal of Engineering Mechanics, 1987,113(1):89-105.
    [90]林振宝,石济民,林岗等.快速自适应局部网格加密方法在气藏数值模拟中的应用[J].天然气工业,1994,14(3):33-35.
    [91]李同春,李淼,温召旺.局部非协调网格在高拱坝应力分析中的应用[J].河海大学学报(自然科学版),2003,31(1):42-45.
    [92] B Nayroles, G Touzot, P Villon. Generalizing the finite element method: Diffuse approximation and diffuse elements[J]. Computational Mechanics, 1992, 10:307-318.
    [93] T Belytschko, Y Y Lu, L Gu. Element-free galerkin method[J]. International Journal for Numerical Methods in Engineering, 1994,37:229-256.
    [94] T Liszka, J Orkisz. The finite difference method at arbitrary irregular grids and its application in applied mechanics[J]. Computers and Structures. 1980,11:83-95.
    [95] J J Monaghan. An introduction to SPH[J]. Computer Physics Communications, 1998, 48: 89-96.
    [96] W K Liu, S Jun, Y F Zhang. Reproducing kernel particle methods[J]. International Journal for Numerical Methods in Fluids, 1995,20:1081-1106.
    [97] Sam Qian, J Weiss. Wavelet and the numerical solution of partial differential equations[J]. Journal of Computational Physics, 1993,106:155-175.
    [98]庞作会.基于节理网格模型的岩体REV数值估算与无网格伽辽金法[D].中科院武汉岩土力学研究所博士论文,1998.
    [99]庞作会.一种新的数值方法—无网格伽辽金法[J].计算力学学报,1999,16(3):320-329.
    [100]寇晓东,周维垣.应用无单元法跟踪裂纹扩展[J].岩石力学与工程学报,2000,19(1):18- 23.
    [101]李卧东,王元汉,陈晓波.无网格法在断裂力学中的应用[J].岩石力学与工程学报, 2001,20(4): 462-466.
    [102] T Belytschko, T Black. Elastic crack growth in finite elements with minimal remeshing [J]. Int. J. Numer. Methods Engrg., 1999,45:601-620.
    [103] N Moes, J Dolbow, T Belytschko. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999,46:131-150.
    [104] C Daux, N Moes, J Dolbow, N Sukumar, T Belytschko. Arbitrary branched and interesting cracks with the extended finite element method[J]. Int. J. Num. Methods in Eng., 2000,48: 1741- 1760.
    [105] N Sukumar, D J Srolovitz, T J Baker, et al. Brittle fracture in polycrystalline microstructures with the extended finite element method[J]. International Journal for Numerical Method in Engineering, 2003,56:2015-2037.
    [106] T Nagashima, Y Omoto, S Tani. Stress intensity factor analysis of interface cracks using X-FEM[J]. International Journal for Numerical Methods in Engineering, 2003,56:1151-1173.
    [107] N Sukumar, N Moes, B Moran, et al. Extended finite element method for three-dimensional1549- 1570.
    [108] M Stokarska, D L Chopp, N Moes, et al. Modeling crack growth by level sets in the extended finite element method[J]. International Journal for Numerical Methods in Engineering, 2001,51: 943-960.
    [109] N Moes, A Gravouil, T Belytschko. Non-planar 3D crack growth by the extended finite element and level sets-Part I: Mechanical model[J]. International Journal for Numerical Mehtods in Engineering, 2002,53:2549-2568.
    [110] A Gravouil, N Moes, T Belytschko. Non-planar 3D crack growth by the extended finite element and level sets-Part II: Level set update[J]. International Journal for Numerical Methods in Engineering, 2002,53:2569-2586.
    [111] Shi Genhua. Discontinuous deformation analysis: a new numerical model for the statics and dynamics of block systems[D]. Ph. D Thesis. University of California, Berkey,1998.
    [112] Shi Genhua. Manifold method[A].In: Proc. Of the 1st Int. Forum on DDA and Simulations of Discontinuous Media[C]. Bekerley, California, USA, 1996:52-204.
    [113] Shi Genhua. Simplex integration for manifold method, FEM, DDA and analytical analysis[A], In:Proc. Of the 1st Int. Forum on DDA and simulations of Discontinuous Media[C], Bekerley, California, USA, 1996:205-250.
    [114] Shi Genhua. Numerical manifold method[A]. In: Ohnishi Y, editor. Proceddings of ICADD-2. The Second international Conference on Analysis of Discontinuous Deformation[C],1997: 1-15.
    [115]石根华.数值流形方法与非连续变形分析[M].裴觉民译.北京:清华大学出版社,1997.
    [116]王水林.数值流形方法与裂纹扩展的模拟[D].中科院武汉岩土力学研究所,1998.
    [117]王水林,葛修润.流形元方法在模拟裂纹扩展中的应用[J].岩石力学与工程学报,1997,16(5):405-410.
    [118]王水林,葛修润,章光.三节点二次协调元[J].应用力学学报,2000,17(4):149-153.
    [119]王水林,葛修润.四个物理覆盖构成一个单元的流形方法及应用[J].岩石力学与工程学报,1999,18(3):312-316.
    [120]王芝银,李云鹏.数值流形方法中的几点改进[J].岩土工程学报, 1998,20:33-36.
    [121]王芝银,王思敬.岩石大变形分析的流形方法[J].岩石力学与工程学报,1997,16(5):399- 404.
    [122]朱以文,曾又林,陈明祥.岩石大变形分析的增量流形方法[J].岩石力学与工程学报,1999, 18(1):1-5.
    [123]张湘伟,蔡永昌,骆少明.数值流形方法的对象设计[J].计算力学学报,2001,18(1):8-14.
    [124]蔡永昌,廖林灿,张湘伟.高精度四结点四变形流形单元[J].应用力学学报,2001,18(2): 75-80.
    [125]蔡永昌,张湘伟.使用高阶覆盖位移函数的数值流形方法及其精度的改善[J].机械工程学报,2000,36(9):20-25.
    [126] H J Gao, P Klein. Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bond[J]. Journal of the Mechancis and Physics of Solids, 1998,46(2):187-218.
    [127] P Klein, H Gao. Crack nucleation and growth as strain localization in a virtual-bond continuum[J]. Engineering Fracture Mechanics, 1998,61:21-48.
    [128] F Milstein. Review: Theoretical elastic behavior at large strains[J]. J. Mat. Sci., 1980,15: 1071-1084.
    [129] T Ganesh, A Misra. Fracture simulation for anisotropic materials using a virtual internal bond model[J]. International Journal of Solids and Structure, 2004,41:2919-2938.
    [130] T Ganesh, K J Hsia, Y G Huang. Finite element implementation of virtual internal spring model for simulating crack behavior[J]. Engineering Fracture Mechanics, 2004, 71(3):401-423.
    [131] H J Gao, B H Ji. Modeling fracture in nanomaterials via a internal bond method[J]. Engineering Fracture Mechanics, 2003, 70(14):1777-1791.
    [132]张振南,葛修润.多维虚内键模型(VMIB)及其在岩体数值模拟中的应用[J].中国科学,E辑:技术科学,2007,37(5):605-612.
    [133] Z N Zhang, X R Ge. A new quasi-continuum constitutive model for crack growth in an isotropic solid[J]. Eur. J. Mech. A-Solids, 2005,24(2):243-252.
    [134] Z N Zhang, X R Ge. Micromechanical consideration of tensile crack behavior based on virtual internal bond in contrast to cohesive stress[J]. Theor. Appl. Fract. Mech., 2005,43(3): 342-359.
    [135] Z N Zhang, X R Ge. Micromechanical modeling of elastic continuum with virtual multi- dimensional internal bonds[J]. Int. J. Numer. Methods Eng., 2006, 65(1):135-146.
    [136] G M Jan, Van Mier. Fracture processes of concrete[M]. New York: CRC press, 1997.
    [137] D F Malan, J A L Napier. Computer modeling of granular material micro fracturing[J], Tectnophyiscs, 1995, 248:21-37.
    [138] Siriwardance, Zaman. Computer method and advances in Geomechanics[M]. Balkema, Rotterdam, 1994.
    [139] C Faihurst. Geomaterials and recent developments in micro-mechanical numerical models[J], News Journal, 1997,4(2):11-14.
    [140] S C Blair, N G W Cook. Analysis of compressive fracture in rock using statistical techniques: Part I. A non-linear Rule-based model[J]. Int. J. Rock Mech. Min. Sci., 1998,35(7):837-848.
    [141]邢纪波.梁-颗粒模型导论[M].北京:地震出版社,1999.
    [142] C A Tang. Numerical simulation of progressive rock failure and associated seismicity[J]. Int. J. Rock Mech. Sci., 1997,34(2):249-261.
    [143] C A Tang, S Q Kou. Crack propagation and coalescence in brittle materials under compression[J]. Engineering Fracture Mechanics,1998,61:311-324.
    [144]金丰年,杨海杰.岩石的载荷速度效应[J].岩石力学与工程学报,1998,17(6):711-717.
    [145] Ouchterlony F. On the background to the formulae and accuracy of rock fracture toughness measurements using ISRM standard core specimens[J]. International Journal of Rock Mechanics and Mining Sciences,1989,26: 13-23.
    [146]王启智,鲜学福.一种人字形切槽三点弯曲圆棒试样的应力强度因子算法[J].重庆大学学报,1991,14(4): 20-24.
    [147] Zhao J, Li H B, Zhao Y H. Dynamic strength tests of the bukit timah granite[R]. Nanyang Technological University, Singapore,1998.
    [148]翟越,马伟国,赵均海,胡昌明.花岗岩在单轴冲击压缩荷载下的动态断裂分析[J],岩土工程学报,2007, 29(3):385-390.
    [149] L.B. Freund. Dynamic fracture mechanics[M]. Cambridge: Cambridge University Press, 1990.
    [150]李炼,徐钺,李启光等.花岗岩板渐近破坏过程的微观研究[J].岩石力学与工程学报,2001, 21(7): 940-947.
    [151] Kawakata H, Cho A T, Yanagidani M S, et al. The observations of faulting in Westerly granite under triaxial compression by X-ray CT scan[J]. International Journal of Rock Mechanics & Mining Sciences, 1997,34(3,4):151-162.
    [152]任建喜.三轴压缩岩石细观损伤扩展特性CT实时检测[J].实验力学,2001,16(4):387- 395.
    [153] M Sagong, A Bobet. Coalescence of multiple flaws in a rock-model material in uniaxial compression[J]. International Journal of Rock Mechanics & Mining Sciences, 2002, 39:229-241.
    [154]刘东燕,朱可善,胡本雄.含裂隙岩石受压破坏的声发射特性研究[J].地下空间,1998,18 (4): 210- 206.
    [155]朱泽奇,盛谦,冷先伦,张占荣.三峡花岗岩起裂机制研究[J],岩石力学与工程学报,2007, 26 (12): 2570-2575.
    [156] H Y Liu, S Q Kou, P-A Lindqvist, C A Tang. Numerical studies on the failure process andassociated microseismicity in rock under triaxial compression[J]. Tectonophysics, 2004,384: 149-174.
    [157] XU X H, MA S P, XIA M F, et al. Damage evaluation and damage localization of rock[J]. Theoretical and Applied Fracture Mechanics, 2004,42:131-138.
    [158] FREW D J, FORRESTAL M J, CHEN W. A split hopkinson pressure bar technique to determine compressive stress-strain data for rock materials[J]. Experimental Mechanics, 2001, 41(1):40- 46.
    [159] KE F J, LI H L, JIA Z K, et al. Effect of heterogeneous on catastrophe rupture[M], in: A. Donnellan, P. Mora (Eds.), 3rd ACES Workshop Proceedings, GOPRINT, Brisbane, 2002, 15–22.
    [160]徐松林,吴文.岩土材料局部化变形分岔分析[J].岩石力学与工程学报,2004,23(20): 3430-3438.
    [161] ZHANG Y Q, LU Y, HAO H. Analysis of fragment size and ejection velocity at high strain rate [J]. International Journal of Mechanical Sciences, 2004,46:27-43.
    [162] ZHOU X P, YANG H Q, ZHANG Y X. Rate dependent critical strain energy density factor of Huanglong limestone[J]. Theoretical and Applied Fracture Mechanics, 2009,51:57-61.
    [163] K.T.Chau, G.S.Wang. Condition for the onset of bifurcation in en echelon crack arrays[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001,25:289- 306.
    [164] H B Muhlhaus, K T Chau, A Ord. Bifurcation of crack pattern in arrays of two-dimensional cracks[J]. International Journal of Fracture, 1996,77: 1-14.
    [165] Ikeda K, Murota K, Nakano M. Echelon modes in uniform materials[J]. International Journal of Solids and Structrues, 1994,31(19):2709-2733.
    [166] Bai Y L, Bai J, Li H L, Ke F J, Xia M F. Damage evolution, localization and failure of solids subjected to impact loading[J]. International Journal of Impact Engineering, 2000,24:685- 701.
    [167] Bai Y L, Xia M F, Ke F J, Li H L. Statistical microdamage mechanics and damage field evolution[J]. Theoretical and Applied Fracture Mechanics, 2001,37:1-10.
    [168]赵吉东,周维垣,刘元高.基于应变梯度的损伤局部化研究及应用[J].力学学报,2002,34(3): 445-452.
    [169]王学滨,马剑,潘一山.岩样单轴拉伸损伤不均匀性分析——第二部分:损伤局部化[J].岩石力学与工程学报,2004,23(13):2211~2214.
    [170] Feng X Q, Yu S W. Analyses of damage localization at crack tip in a brittle damage material [J]. Engineering Fracture Mechanics, 1996,53(2):169-177.
    [171] Deng H, Nemat-Nasser S. Microcrack interaction and shear fault failure[J]. International Journal of Damage Mechanics, 1994,3:3-37.
    [172] Wang J, Fang J, Karihaloo B L. Asymptotics of multiple crack interactions and prediction of effective modulus[J], International Journal of Solids and Structures, 2000,37:4261-4273.
    [173] P.Baud, T.Reuschle. A theoretical approach to the propagation of interacting cracks[J]. Geophys. J. Int., 1997,130:460-468.
    [174] B. Paliwal, K.T. Ramesh. An interacting micro-crack damage model for failure of brittle materials under compression[J]. Journal of the Mechanics and Physics of Solids, 2008,56: 896- 923.
    [175] Rice J R. Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity[J]. Journal of the Mechanics and Physics of Solids.1971,19: 433-455.
    [176] SUKUMAR N, PREVOST J H. Modeling quasi-static crack growth with the extended finite element method. Part I: Computer implementation[J]. International Journal of Solids and Structures. 2003, 40(26):7513-7537.
    [177] STEPHANE BORDAS, PHU VINH NGUYEN, CYRILLE DUNANT, AMOR GUIDOUM, HUNG NGUYEN-DANG. An extended finite element library[J]. International Journal for Numerical Methods in Engineering, 2007,71(6):703-732.
    [178] WELLS G N, SLUYS L J. A new method for modeling cohesive cracks using finite elements[J]. International Journal for Numerical Methods in Engineering, 2001,50(12):2667- 2682.
    [179]杜效鹄,段云岭,王光纶.混凝土断裂的连续-非连续方法[J].固体力学学报, 2005,26(4): 405-413.
    [180] FLEMING M, CHU Y A, MORAN B, BELYTSCHKO T. Enriched element-free Galerkin methods for singular fields[J]. International Journal for Numerical Methods in Engineering, 1997, 40(8):1483-1504.
    [181] Stefan Loehnert, Ted Belytschko. A multiscale projection method for macro/ microcrack simulations[J]. International Journal for Numerical Methods in Engineering, 2007, 71:1466-1482.
    [182] JAU J F, WANG S S, CORTEN H T. A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity[J]. Journal of Applied Mechanics, ASME. 1980, 47 (2): 335-341.
    [183] SHIH C, ASARO R. Elastic-plastic analysis of cracks on biomaterial interfaces: part I-small scale yielding[J], Journal of Applied Mechanics, ASME. 1988,55(2):299-316.
    [184] DOLBOW J, MOES N, BELYTSCHKO T. An extended finite element method for modeling crack growth with frictional contact [J]. Computer Methods in Applied Mechanics and Engineering, 2001,190(51-52): 6825-6846.
    [185] J H Chang, J B Yeh. Calculation of J2-integral for 2-D cracks in rubbery materials[J]. Engineering Fracture Mechanics, 1998,59(5):683-695.
    [186] G. Legrain, N. Moes and E Verron. Robust and direct evaluation of J2 in linear elastic fracture mechanics with the X-FEM[J]. International Journal for Numerical Methods in Engineering,2008,76:1471-1488.
    [187] SIH G C. Mechanics of fracture initiation and propagation [M], Netherlands, Kluwer Academic Publishers, 1991.
    [188]周小平,张永兴.卸荷岩体本构理论及其应用[M].北京:科学出版社,2007.
    [189] J. Rethore, A Gravouil, A Combescure. An energy-conserving scheme for dynamic crack growth using the extended finite element method[J]. International Journal for Numerical Methods in Engineering. 2005,63:631-659.
    [190]金峰,方修君.扩展有限元法及与其它数值方法的联系[J].工程力学,2008,25(s1):1-17.
    [191]姚振汉,杜庆华.边界元法应用的若干近期研究及国际新进展[J].清华大学学报(自然科学版),2001,41(4/5):89-93.
    [192] M. Stolarska, D.L. Chopp, N. Moes, T. Belytschko. Modelling crack growth by level sets in the extended finite element method[J]. International Journal for Numerical Methods in Engineering, 2001,51:943-960.
    [193] Moes N, Belytschko T. Extended finite element method for cohesive crack growth[J]. Engineering Fracture Mechanics. 2002,69:813-833.
    [194]黄醒春,周斌,顾隽超.任意多裂纹应力强度因子的位移不连续数值算法[J].岩土工程学报,2001,23(3):370-373.
    [195]张振南,陈永泉.基于VMIB多裂纹岩石材料拉伸破坏数值模拟[J].岩土工程学报, 2008,30(10): 1490-1495.
    [196]沈海鸿,黄明利.岩石裂纹演化过程中围压效应的数值模拟[J].辽宁工程技术大学学报(自然科学版),2001,20(4):497-499.
    [197]中国水电顾问集团华东勘测设计研究院.雅砻江锦屏二级水电站招标设计阶段引水隧洞围岩稳定性及衬砌支护结构设计研究专题报告[R]. 2006年9月.
    [198] Q.H.Qian, X.P.Zhou, H.Q.Yang, Y.X.Zhang,X.H.Li. Zonal disintegration of surrounding rock mass around the diversion tunnels in Jinpin II Hydropower Station, Southwestern China[J]. Theoretical and Applied Fracture Mechanics, 2009,51:129-138.
    [199]吴世勇,任旭华,陈祥荣,张继勋.锦屏二级水电站引水隧洞围岩稳定分析及支护设计[J].岩石力学与工程学报,2005,24(20):3777-3782.
    [200]宫伟力,安里千,赵海燕,毛灵涛.基于图像描述的煤岩裂隙CT图像多尺度特征[J].岩土力学, 2010,31(2):371-377.
    [201]杨书申,邵龙义. MATLAB环境下图像分形维数的计算[J].中国矿业大学学报,2006,35 (4): 478-482.
    [202]尹小涛,王水林,党发宁,丁卫华,陈厚群. CT实验条件下砂岩破裂分形特性研究[J].岩石力学与工程学报, 2008,27(s1):2721-2726.
    [203]孙钧,汪炳鉴.地下结构有限元法解析[M].上海:同济大学出版社,1988年6月.
    [204]高继顺.雅砻江锦屏二级水电站引水隧洞围岩分类研究[D].成都理工大学硕士学位论文,2009年5月.