羟甲基化磷酸脒基脲/硼酸复合阻燃剂的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
社会物质文明不断进步,木质纤维材料得到更加广泛的使用,随之而来的火灾事故也频繁发生,木质纤维材料的阻燃研究和应用需求日益加剧。
     本文以磷-氮-硼复合阻燃剂为研究的主要切入点,结合前人对木材阻燃剂的科研成果和本课题组的研究积累,设计合成出以羟甲基化磷酸脒基脲(G21)和硼酸为主要阻燃活性物质的磷-氮-硼复合木材阻燃剂G21BA,从羟甲基化磷酸脒基脲的合成及表征、羟甲基化磷酸脒基脲和G21BA对胶合板的阻燃作用和热重分析、以及可控气氛锥形量热仪的火灾环境模拟的角度,展开了较为系统的阻燃性能评价和分析论述。
     以高纯度磷酸脒基脲(GUP)、甲醛和水为主要原料,控制反应条件使之完全反应,得到羟甲基化磷酸脒基脲,其具有溶液无色澄清透明、溶解性提高、酸碱性温和、吸湿性低、有一定抗流失性等特点。经FTIR和XRD分析表征,伯酰胺红外吸收峰减弱,羟甲基峰出现,说明在磷酸脒基脲分子上成功接上羟甲基,且随羟甲基化程度的增大,伯酰胺吸收峰逐渐消失,产物的无定形聚集态结构特征更加明显。TG结果显示其起始分解温度降低,但最终残余物质量分数较GUP稍有提高。CONE测试结果显示,随羟甲基化程度的增大,处理胶合板的热释放、烟释放和火势增长指数稍有提高,相对GUP的阻燃和抑烟效果,G21与之相当。
     采用复配技术制得G21BA阻燃剂,其在胶合板内部颗粒细密且分散均匀,具有较强的阻燃和抑烟性能,且力学性能得到一定程度的改善。可控气氛锥形量热仪模拟开放式火灾环境和相对封闭的室内火灾环境,结果表明,在开放式火灾环境中,G21BA阻燃胶合板的热释放量、质量损失率、火势增长指数、发烟量以及烟气毒性均降低。在相对封闭的室内火灾环境中,G21BA阻燃胶合板在低氧浓度环境中的发烟量和CO释放比在较高氧浓度条件下明显提高,而胶合板素材在较高氧浓度下的发烟量和热释放相对低氧浓度大大增大。G21BA阻燃胶合板在空气氧浓度高于18%时,与胶合板素材相比具有显著的阻燃和抑烟效果。G21BA阻燃胶合板的使用安全性得到大大提高。在相对封闭的室内,由于堆放较多易燃物而发生火灾并引燃所大量使用的G21BA阻燃胶合板,若环境严重缺氧则会生成较多CO气体和浓烟,为消防安全带来不利影响,因此建议在人员活动频繁并大量使用G21BA阻燃胶合板的公共场合,不宜堆放太多易燃物品。
     G21BA对胶合板主要是凝聚相阻燃机理,即在高温下使胶合板发生脱水、分解、缩合、聚合、芳构化等反应而快速成炭;另外G21BA分解出的水、氨气等不燃性气体对稀释周围氧气浓度也起到一定的阻燃作用,并且G21和硼酸的热解产物在高温下产生的磷酸硼可能会对抑制红热燃烧起到一定的物理覆盖和热屏蔽作用。
Lignocellulosic materials are more widely used along with the progress of the social material civilization. The fire disaster may occur frequently because of the use of this flammable material. The requirement of fire-retardant lignocellulosic materials'research and application is increasing.
     This paper combined the previous scientific research and our research accumulates about wood fire retardant based on phosphorus-nitrogen-boron fire retardant composites. A phosphorus-nitrogen-boron fire retardant complex G21BA was synthesized, which is mainly composed of methylolated guanylurea phosphate G21 and boric acid as fire retardant active substances. Systematic evaluation of its fire performance was performed by thermogravimetric analysis (TGA) of plywood treated with methylolated guanylurea phosphate and G21BA, the controlled atmosphere cone calorimeter analysis, and the fire retardant mechanism was discussed.
     By using the complete reaction of high pure guanylurea phosphate (GUP), formaldehyde and water at a controlled reaction condition, methylolated guanylurea phosphates were synthesized with different hydroxymethyl content. The characteristics of methylolated GUP are that the colorless clear solution, the enhanced solubility, the mild acidity, the low hygroscopicity and better leachability. The FTIR analysis results of methylolated GUP showed that the intensity of the primary amide absorption peak decreased compared to GUP and the hydroxyl methyl peak appeared, explaining the hydroxyl methyl group being grafted successfully on to GUP. Along with the increasing methylolated degree, the primary amide infrared absorption peak gradually disappeared. The X-Ray Diffraction (XRD) result showed the amorphous state structure of methylolated GUP is more apparent. TGA results showed that the initial decomposition temperature of methylolated GUP is lower than GUP, but eventually the residue mass fraction is slightly more than GUP. CONE testing results showed that the heat release, smoke release and fire growth index were increasing slightly along with the increasing methylolated degree. G21, which was synthesized from 2 mole GUP and 1 mole formaldehyde, was basically the same with GUP on fire-retardant and smoke inhibiting effect.
     Plywood was impregnated with G21BA aqueous solution. Tiny particles were found on the cell wall in dry plywood treated with G21BA, which were arranged very closely and scattered evenly. The fire-retardant and smoke inhibition performances were very strong and the plywood's mechanical properties had been improved by G21BA. The open fire environment and the relative close indoor fire environment were simulated by controlled atmosphere cone calorimeter. At the open fire environment, the cone results showed that the heat release, mass loss ratio, fire growth index, smoke product and toxicity of G21BA fire-retardant plywood were obviously lower than untreated plywood. In the relative close indoor fire environment, the smoke product and CO release under low oxygen concentration of G21BA fire-retardant plywood were obviously higher than that under high oxygen concentration. Meanwhile, the smoke product and heat release under high oxygen concentration of untreated plywood increased greatly compared with low oxygen concentration. When the oxygen concentration in the air was higher than 18%, the fire-retardant and smoke inhibition properties of G21BA fire-retardant plywood were lower greatly than untreated plywood, and the usage safety of G21BA fire-retardant plywood was improved significantly. In the relative close indoor, the G21BA fire-retardant plywood may be ignited by the fire caused by stacked much more inflammables. It would release much CO and heavy smoke if oxygen concentration in the air was very low. Therefore, we suggest that do not pile up too many flammable materials in the public places where much amount of G21BA treated plywood was used and human activities are frequent.
     G21BA fire-retardant mechanism on plywood mainly is condensed-phase fire-retardant mechanism. When plywood was heated to high temperature, dehydration, decomposition, condensation, polymerization, aromatization reaction was took place and formed charcoal rapidly. In addition, the non-flammable gas (such as water vapor and ammonia) formed during the decomposition of G21BA could play a role of fire-retardant effectively through diluting the oxygen concentration. The pyrolysis products from G21 and boric acid at high temperature may form boron phosphate which plays a certain physical cover and heat shielding effect to inhibit red-hot combustion.
引文
Babrauskas V.1984. Development of the Cone Calorimeter—A Bench-Scale Heat Release Rate Apparatus Based on Oxygen Consumption[J]. Fire and Materials.8(2):81-95.
    Babrauskas V., W.H. Twilley, M. Janssens, et al.1992. A Cone Calorimeter for Controlled-Atmosphere Studies[J]. Fire and Materials.16(1):37-43.
    Chang C.R, S.C. Hung.2003. Manufacture of Flame Retardant Foaming Board from Waste Papers Reinforced with Phenol-Formaldehyde Resin [J]. Bioresource Technology.86(2): 201-202.
    Chen-Yang Y.W., J.R. Chuang, Y.C. Yang, et al.1998. New UV-Curable Cyclotriphosphazenes as Fire-Retardant Coating Materials for Wood [J]. Journal of Applied Polymer Science. 69(1):115-122.
    Chou C.S., S.H. Lin, C. Wang.2009. Preparation and Characterization of the Intumescent Fire Retardant Coating with a New Flame Retardant[J]. Advanced Powder Technology.20(2): 169-176.
    Chou, C.S., S.H. Lin, C.I. Wang, et al.2010. A Hybrid Intumescent Fire Retardant Coating from Cake-and Eggshell-Type IFRC [J]. Powder Technology.198(1):149-156.
    Christy M.R., R.V. Petrella, J.J. Penkala.1995. Controlled-Atmosphere Cone Calorimeter [J]. Fire and Polymers II,Chapter 31:498-517.
    Devi R.R., C.N. Saikia, A.J. Thakur, et al.2007. Modification of Rubber Wood with Styrene in Combination with Diethyl Allyl Phosphate as the Flame-Retardant Agent [J]. Journal of Applied Polymer Science.105(5):2461-2467.
    Fabian T.2008. Fire Testing of Deck Materials [C]. In Proceeding 10th International Conference on Progress in Bio-fiber Plastic Composites. May 12-13,2008. Toronto, Canada.
    Gao M., S.S. Yang, R.J. Yang.2006. Flame Retardant Synergism of GUP and Boric Acid by Cone Calorimetry[J]. Journal of Applied Polymer Science.102(6):5522-5527.
    Garcia M., J. Hidalgo, I. Garmendia, et al.2009. Wood-plastics composites with better fire retardancy and durability performance [J]. Composites Part A:Applied Science and Manufacturing.40(11):1772-1776.
    Goff J.L.1993. Investigation of Polymeric Materials Using the Cone Calorimeter [J]. Polymer Engineering and Science.33(8):497-500.
    Goldstein I.S., Pittsburgh, W.A. Dreher.1959. Method of Imparting Flame Retardance to Wood [P]. US Patent 2917408.
    Goldstein I.S., Pittsburgh, W.A. Dreher.1964. Method of Imparting Flame Retardance to Wood and the Resulting Product [P]. US Patent 3159503.
    Griffin G.J.2005. Studies on the Effect of Atmospheric Oxygen Content on the Thermal Resistance of Intumescent Fire-Retardant Coatings[J]. Journal of Fire Sciences.23(4):303-328.
    Gu J.W., G.C. Zhang, S.L. Dong, et al.2007. Study on Preparation and Fire-Retardant Mechanism Analysis of Intumescent Flame-Retardant Coatings [J]. Surface & Coatings Technology.201(18):7835-7841.
    Hagen M., J. Hereid, M.A. Delichatsios, et al.2009. Flammability Assessment of Fire-retarded Nordic Spruce Wood Using Thermogravimetric Analyses and Cone Calorimetry[J]. Fire Safety Journal.44(8):1053-1066.
    Harada T., N. Yasushi, A. Yasushi.2007. The Effect of Ceramic Coating of Fire-Retardant Wood on Combustibility and Weatherability [J]. Journal of Wood Science.53(3):249-254.
    Hashim R., L.S. How, R.N. Kumar, et al.2005. Some of the Properties of Flame Retardant Medium Density Fiberboard Made from Rubber Wood and Recycled Containers Containing Aluminum Trihydroxide [J]. Bioresource Technology.96(16):1826-1831.
    Hashim R., O. Sulaimana, R.N. Kumar, et al.2009. Physical and Mechanical Properties of Flame Retardant Urea Formaldehyde Medium Density Fiberboard [J]. Journal of Materials Processing Technology.209(2):635-640.
    Hetndon J.F., D.J. Morgan.1992. Flame Retardant Composition and Method for Treating Wood [P]. US Patent 5151225.
    Hshieh F.Y, H.D. Beeson.1997. Flammability Testing of Flame-Retarded Epoxy Composites and Phenolic Composites[J]. Fire and Materials.21(1):41-49.
    Hshieh F.Y, R.R. Buch.1997. Controlled-atmosphere cone calorimeter studies of silicones[J]. Fire and Materials.21(6):265-270.
    Jimenez M., S. Duquesne, S. Bourbigot.2006. Intumescent Fire Protective Coating:Toward a Better Understanding of Their Mechanism of Action[J]. Thermochimica Acta.449(1-2): 16-26.
    Juneja S.C.1992. Stable and leaeh-resistant fire retardants for wood [J]. Forest Products Journal.22(6):17-27.
    Juneja S.C, L.R. Riehardson.1974. Versatile Fire retardants from amino-resins [J]. Forest Products Journal.24(5):19-23.
    Kandola B.K., A.R. Horrocks.1996. Flame-Retardant Treatments of Cellulose and Their Influence on the Mechanism of Cellulose Pyrolysis[J]. Journal of Macromolecular Science, Part C:Polymer Reviews,36 (4),721-794.
    Kartal S.N., N. Ayrilmis, Y. Imamura.2007. Decay and Termite Resistance of Plywood Treated with Various Fire Retardants [J]. Building and Environment.42(3):1207-1211.
    Kozlowski R., B. Mieleniak, M. Helwig, et al.1999. Flame Resistant Lignocellulosic-Mineral Composite Particleboards [J]. Polymer Degradation and Stability.64(3):523-528.
    Lawson J.R.2009. A History of Fire Testing:Past, Present, and Future [J]. Journal of ASTM International,6(4):1-39.
    Leonard J.E., P. A. Bowditch, V.P. Dowling.2000. Development of a Controlled-Atmosphere Cone Calorimeter [J]. Fire and Materials.24(3):143-150.
    LeVan S.L., J.E. Winandy.1990. Effects of fire retardant treatments on wood strength:A review [J]. Wood and Fiber Science.22(1):113-131.
    Li B., J.M. He.2004. Investigation of Mechanical Property, Flame Retardancy and Thermal Degradation of LLDPE-Wood-Fibre Composites [J]. Polymer Degradation and Stability. 83(2):241-246.
    Lindholm J., A. Brink, M. Hupa.2008. Cone calorimeter-A Tool for Measuring Heat Release Rate[C]. Proceedings; Combustion Institute Topical Meeting:Measuring Techniques in Combustion, October 23-24, Gothenburg, Sweden,9 pages
    Loyvet A.G., D.J. Morgan.1984. Fire-retardant treatment composition [P]. US Patent 4461720.
    Malvar, L.J., R. Tichy, D.E. Pendleton.2001. Fire Issues in Engineered Wood Composites for Naval Waterfront Facilities [C].46th International SAMPE Symposium and Exhibition. Long Beach, CA, May 2001,10 pages.
    Mikkola E.1993. Effects of oxygen on cone calorimeter results[R]. In:Franks CA, editor. Interflam 93. Sixth International Fire Conference, Oxford, UK,30 March-1 April 1993. Interscience Communications Ltd. pp49-56.
    Mulholland G.W., M.L. Janssens, S. Yusa, et al.1991. International Association for Fire Safety Science[C]. Fire Safety Science. Proceedings.3rd International Symposium. July 8-12, 1991, Edinburgh, Scotland, Elsevier Applied Science, New York, Cox, G. pp585-594.
    Myers G.C., M.J. Dobbin.1985. Fiberboard and Hardboard Research at the Forest Products Laboratory:A 50-Year Summary [R]. Gen. Tech. Rep. FPL-47. Madison, WI:U.S. Department of Agriculture, Forest Service, Forest Products Laboratory; 1985.39 pages.
    Nadir A.2007. Effect of Fire Retardants on Internal Bond Strength and Bond Durability of Structural Fiberboard [J]. Building and Environment.42(3):1200-1206.
    Oberley W.J.1983. Non-resinous, Uncured Fire Retardant and Products Produced Therewith [P]. US Patent 4373010.
    Peacock R.D., E. Braun.1999. Fire Safety of Passenger Trains, Phase I:Material Evaluation (Cone Calorimeter)[R]. National Institute of Standards and Technology NISTIR 6132,5:1-16.
    Pingree R.A., Cranston, C. Raymond.1949. Flame Resistant Materials [P]. US Patent 2488034.
    Robert F.1999. Fire Safety in the Low-Gravity Spacecraft Environment. NASA/TM-1999-209285.
    Sain M., S.H. Park, F. Suhara, et al.2004. Flame retardant and mechanical properties of natural fibre-PP composites containing magnesium hydroxide [J]. Polymer Degradation and Stability.83(2):363-367.
    Shen, K.K., E. Olson.2006. The Use of Borates and Talcas Fire Retardants in Wood Plastic Composite [C]. In Proc.17th Annual BCC Conference on Flame Retardancy. May 22-24,2006. Stamford, CT. pp.289-296.
    Shfizadeh F.1968. Advances in Carbohydrate Chemistry [M]. Academic Press, New York,23: 419.
    Song, Y.M., Q.W. Wang, L. Gong, et al.2011. Synergistic effects of expandable graphite with ammonium polyphosphate on flame retardancy of WPCs [J]. Scientia Silvae Sinicae. 47(5):121-128.
    Stark M.N., R.H. White, CM. CLemons.1997. Heat Release Rate of Wood-Plastic Composites [J]. Sampe Journal,33(5):26-31.
    Tang Y., D.Y. Wang, X.K. Jing, et al.2008. A Formaldehyde-Free Flame Retardant Wood Particleboard System Based on Two-Component Polyurethane Adhesive [J]. Journal of Applied Polymer Science.108(2):1216-1222.
    Ustaomer D., U. Mustafa, H. Salim.2008. Effect of Boron Treatment on Surface Characteristics of Medium Density Fiberboard (MDF) [J]. Journal of Materials Processing Technology.199(1-3):440-444.
    Valso A., E. Kleven.2000. Fire Retarding Composition and a Method for Impregnation of a Combustible Material [P]. US Patent 6042639.
    Wang Q.W., J. Li, J.E. Winandy.2004. Chemical Mechanism of Fire Retardant of Boric Acid on Wood [J]. Wood Science and Technology.38(5):375-389.
    Wang Q.W., W.H. Wang, J.E. Winandy.2005. Effects of a new GUP-B fire retardant on mechanical properties of Korean pine when exposed to elevated temperature [J]. Forest Products Journal.55(12):214-220
    Wang S.Y., T.H. Yang, L.T. Lin, et al.2008. Fire-Retardant-Treated Low-Formaldehyde-Emission Particleboard Made from Recycled Wood-Waste [J]. Bioresource Technology. 99(6):2072-2077.
    White R.H.1984. Use of Coatings to Improve Fire Resistance of Wood[C]. In:Fire Resistive Coatings:The Need for Standards, ASTM STP 826, Morris Lieff and F.M. Stumpf, Eds. Philadelphia:American Society for Testing and Materials,24-39.
    White R.H., M.A. Dietenberger, N.M. Stark.2007. Cone Calorimeter Tests of Wood-Based Decking Materials [C]. In Proceeding 18th Annual BCC Conference on Flame Retardancy. May 21-23.
    White R.H., M.S. Sweet.1992. Flame Retardancy of Wood:Present States, Recent Problems, and Future Fields[C]. Lewin, Menachem, ed. Recent advances in flame retardancyof polymeric materials:Proceedings of 3rd annual BCC conference on flame retardance; 1992 May 19-21; Stamford, CT. Norwalk, CT:Business Communications Company, Inc.; 1992:250-257.
    Winandy J E.1995. Effects of fire retardant treatments after 18 months of exposure at 150℃ (66℃)[R]. Res. Note FPL-RN-0264. USDA Forest Serv., Forest Prod. Lab., Madison, WI.
    Winandy J.E., S.L. LeVan, E.L. Schaffer, et al.1988. Effect of Fire-Retardant Treatment and Redrying on the Mechanical Properties of Douglas-Fir and Aspen Plywood [R]. U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory in Madison, WI.20 Pages.
    Winandy J.E, Q.W. Wang, R.H. White.2008. Fire-Retardant-Treated Strandboard:Properties and Fire Performance [J]. Wood and Fiber Science,40(1):62-71
    Yalinkilic M.K., Y. Imamura, M. Takahashi, et al.1998. Effect of Boron Addition to Adhesive and/or Surface Coating on Fire-Retardant Properties of Particleboard [J]. Wood and Fiber Science.30(4):348-359.
    Yalinkilic M.K., W.Y. Su, Y. Imamura, et al.1998. Boron Effect on Decay Resistance of Some Fire-retardant Coatings Applied on Plywood Surface [J]. European Journal of Wood and Wood Products.56(5):347-353.
    YANG L.Z., X.J. CHEN, X.D. ZHOU, et al.2003.The pyrolysis and ignition of charring materials under an external heat flux [J]. Combustion and Flame.133(4):407-413.
    Young G.E., H.S. Yang, H.J. Kim.2003. Combustion and Mechanical Properties of Fire Retardant Treated Waste Paper-Waste Acrylic Raw Fiber Composite Board [J]. Mokchae Konghak.31(3):1-10.
    白晓艳,王清文,房轶群,等.2008.过渡金属氧化物对木粉/PVC复合材料燃烧性能的影响[J].林业科学,44(10):103-108.
    陈长坤,汪箭,廖光煊,等.2002.受限空间火灾环境固体可燃物热释放速率模拟研究[J].燃烧科学与技术.8(2):122-125.
    陈琳,王清文,隋淑娟,等.2007.Py-GC-MS法研究硼及磷化合物对木质素热解产物的影响[J].东北林业大学学报.35(12):37-40.
    陈志.2008.高层建筑中的防排烟探讨[J].广西城镇建设.3:57-60
    陈志林,Z.Y. Cai, J.E. Winandy,傅峰.2009.美国阻燃人造板研究现状与应用[J].中国人造板.4:6-10.
    邓燕平.2010.膨胀阻燃剂合成与WPC阻燃机理研究[D].广州:华南农业大学硕士学位论文.
    邓玉和,张沛.2003.阻燃剂的种类及添加方法对刨花板性能影响的研究[J].林产工业.30(5):34-37,41.
    董吉,李斌.2007.膨胀型阻燃剂对聚丙烯-木粉复合材料阻燃及性能的影响[J].化学与黏合,29(4):269-273.
    房轶群,王清文,宋永明,等.2008.聚磷酸铵-淀粉对木粉/聚苯乙烯复合材料的阻燃作用[J].高分子材料科学与工程.24(11):83-86.
    高黎,王正,郭文静.2010.水溶性聚磷酸铵对木塑复合材料性能的影响[J].北京林业大学学报.32(4):247-250.
    高黎.2007.阻燃型木纤维—聚丙烯复合材料制备及性能研究[D].中国林业科学研究院博士学位论文.
    顾波.2007.BL-环保阻燃剂对脲胶胶合板性能影响的研究[D].北京:北京林业大学博士学位论文.
    顾逸平.1996.木材透明防火涂料[J].化学建材.2:59-60.
    郭成.1998.木质材料阻燃机理研究综述[J].东北林业大学学报.26(6):71-74.
    韩振,房轶群,王奉强,等.2010.高填充PVC基木塑复合材料的燃烧性能[J].东北林业大学学报.38(10):64-66.
    胡景娟,程瑞香,王清文,等.2008.杨木胶合板阻燃处理工艺及燃烧性能[J].木材加工机械.19(2):14-18.
    胡云楚.2002a.四溴双酚A的合成及其阻燃性能研究[J].林产化学与工业.22(2):31-34.
    胡云楚.2002b.2,6-二溴-4-硝基苯酚阻燃性能的热动力学研究[J].林产工业.29(1):30-32.
    胡云楚.2006.硼酸锌和聚磷酸铵在木材阻燃中的成炭作用和抑烟作用[D].长沙:中南林业科技大学博士学位论文.
    江进学,李建章,范东斌,等.2009.复合氮磷基木质材料阻燃剂的研究[J].北京林业大学学报.31(s1):39-42.
    李斌,姜洪丽,张淑芬,等.2004.氢氧化铝对PE-HD/木粉复合材料阻燃性能和力学性能的影响[J].中国塑料.18(6):21-23.
    李坚,王清文,李淑君,等.2002.用CONE法研究木材阻燃剂FRW的阻燃性能[J].林业科学.38(5):108-114.
    李坚.2006.木材保护学[M].北京:科学出版社.
    李兰杰.2006.聚乙烯基木塑复合材料及其无卤阻燃改性[D].青岛:青岛科技大学硕士学位论文.
    李杉,方桂珍,庞久寅.2009.化学改性大青杨木材的阻燃性能研究[J].林业科技.34(2):42-44.
    李珊珊,吕群,张清锋,等.2009.APP在PE基木塑复合材料中的阻燃作用研究[J].塑料工业.37(12):60-63.
    李淑君,钱学仁,于晶,等.1999a.FRW阻燃处理木材的颜色和涂饰性能[J].东北林业大学学报.27(6):38-40.
    李淑君,王清文,侯建敏.1999b.三种木材阻燃剂对木材吸湿性及尺寸稳定性影响的比较研究[J].东北林业大学学报.27(6):34-37.
    李晓东,郝万新,齐向阳.2006.超声波技术在木材阻燃浸渍处理过程中的应用[J].福建林业科技.33(1):64-67.
    刘燕吉,吴健身,李玉栋.1997.阻燃刨花板阻燃剂的研制[J].木材工业.6(4):17-21.
    刘燕吉.1997.木材材料的阻燃剂:木质材料的燃烧与阻燃系列讲座之三[J].木材工业.11(2):37-39,41.
    刘迎涛,曹军,李坚.2009.FRW阻燃刨花板制板工艺[J].东北林业大学学报.37(1):69-71.
    刘迎涛,李坚,王清文.2003b.FRW阻燃中密度纤维板的性能及其制板工艺[J].东北林业大学学报.31(2):4-5.
    刘迎涛,李坚,王清文.2004.FRW阻燃桦木胶合板的性能研究[J].林产工业.31(3):22-24.
    刘迎涛,王清文.2009.制板因素对FRW阻燃中密度纤维板性能的影响[J].林产工业.36(4):11-15
    刘迎涛,杨文斌,刘一星.2003a.FRW阻燃中密度纤维板与素板性能的比较[J].福建林学院学报.23(3):210-213
    骆介禹,李斌.1989.磷酸胍盐的合成[J].东北林业大学学报.17(6):88-92.
    马哲,舒中俊,薛刚,等.2005.几种地板燃烧性能的实验研究[J].火灾科学.14(3):132-136.
    那斌,周定国.2003.阻燃酚醛树脂胶阻燃性能的研究[J].林产工业.30(1):36-39.
    平田利美.1988.经药剂处理的胶合板的难燃性--表面燃烧性[J].木材志.34(4):337-345.
    秦特夫,吴玉章,黄洛华.2011.木塑复合材料燃烧性能的研究[J].南京林业大学学报(自然科学版).35(1):71-74.
    任英淳.2003.中密度阻燃纤维板及其制造方法[P].中国发明专利.专利号02 1 53877.8.
    邵博,张志军,王清文,等.2008.APP对木粉-HDPE复合材料阻燃和力学性能的影响[J].高分子材料科学与工程.24(4):93-96,100.
    宋长忠,方梦祥,余春江,等.2004.不同气氛和尺寸下可燃物热解与着火特性的试验研究[J].动力工程.24(6):863-868.
    汪浩明.2007.MDF的阻燃处理及热解研究[D].南京:南京林业大学硕士学位论文.
    王奉强,张志军,王清文,等.2007.膨胀型水性改性氨基树脂木材阻燃涂料的阻燃和抑 烟性能[J].林业科学.43(12):117-121.
    王清文,李坚,李淑君,等.2002.用CONE法研究木材阻燃剂FRW的抑烟性能[J].林业科学.38(6):103-109
    王清文,李坚,李淑君.2005.用FTIR法研究木材阻燃剂FRW的阻燃机理[J].林业科学.41(4):149-154.
    王清文,李坚,张世润,钱学仁.1997.木材阻燃剂的合成方法[P].中国发明专利.专利号ZL 971 18353.8.
    王清文,李坚.2005.木材阻燃剂FRW的阻燃机理[J].林业科学.41(5):123-126
    王清文,李坚.2004a.用CONE法研究木材阻燃剂FRW的阻燃机理[J].林产化学与工业.24(2):29-34.
    王清文,李坚.2004b.用热分析法研究木材阻燃剂FRW的阻燃机理[J].林产化学与工业.24(3):37-41
    王清文,李淑君,崔永志,等.1999a.新型木材阻燃剂FRW的阻燃性能[J].东北林业大学学报.27(6):31-33.
    王清文,谭海彦,陆志华,等.1999b.FRW阻燃木材的力学强度及胶合性能[J].东北林业大学学报.27(6):41-44.
    王清文,王奉强,张志军,等.2007.一种改性氨基树脂基膨胀型水性阻燃涂料[P].中国发明专利.专利号200710144321.9.
    王清文,张志军,陈琳,等.2006.氧浓度对阻燃木材发烟性能的影响[J].林业科学.42(12):95-100.
    王清文.2000a.新型木材阻燃剂FRW[D].哈尔滨:东北林业大学博士学位论文.
    王清文.1999.木材阻燃剂技术进展[J].东北林业大学学报.27(6):85-90.
    王清文.2000b.木材阻燃工艺学原理[M].哈尔滨:东北林业大学出版社.
    王晓辉,李光沛,胡庆堂.2006.环保型阻燃刨花板生产工艺研究[J].中国人造板.5:4-6.
    王晓辉.2006.环保阻燃型刨花板的工艺技术研究及效益分析[D].北京:北京林业大学博士学位论文.
    王艳良,李光沛.2005.刨花板环保阻燃处理的初步研究[J].中国人造板.12:25-27.
    吴志平.2006.超细硼酸锌对LDPE/IFR体系的协效阻燃和抑烟作用研究[D].长沙:中南大学博士学位论文.
    熊凯文,周定国,徐咏兰,等.2008.棉秆阻燃中密度纤维板[P].中国实用新型专利.专利号200720042049.9.
    徐亮.2007.典型热塑性装饰材料火灾特性研究[D].合肥:中国科学技术大学博士学位论文.
    薛恩钰,曾敏修.1988.阻燃科学及应用[M].北京:国防工业出版社.
    张建,李光沛.2006a.环保阻燃中密度纤维板的研制(续)[J].中国人造板.6:31-33.
    张建,李光沛.2006a.环保阻燃中密度纤维板的研制[J].中国人造板.5:26-28.
    张军,纪奎江,夏延致.2005.聚合物燃烧与阻燃技术[M].北京:化学工业出版社.
    张志军,陈成,王清文.2007.水基型木材阻燃剂吸湿性评价[J].林产工业.34(2):28-30.
    赵殊,刘本才,宋国育,等.1995.磷氮系木材阻燃剂的研究[J].东北林业大学学报.23(2):131-135.
    赵殊,宋国育,刘本才,等.1994.磷酸胍木材阻燃剂研究[J].化学工程师.3:13-14.
    赵永生,朱复华,薛平,等.2006.PVCT/F纳米复合材料性能研究[J].中国塑料.20(5):33-38.
    周友华.2006.新型木结构水性膨胀型防火涂料的研制[D].武汉:武汉理工大学硕士研究生毕业论文.