流形方法在岩体断裂特性与裂纹发展过程数值分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩体是经过漫长的时间而形成的,是经历过变形、遭受过破坏的地质体。岩体在形成过程中会在内部产生大量的节理和裂隙,这些节理和裂隙对岩体的性质有着极大的影响,在外载荷的作用下还会发生扩展,从而导致岩体的力学性质发生改变,甚至会引起岩体的破坏以及结构的失稳。因此,研究岩体中裂纹的扩展规律具有非常重要的理论与实际意义。
     研究岩体的方法主要有两种:试验方法和数值计算方法。试验方法能提供大量有用的数据,但应用极不方便,且要耗费大量的人力、财力。数值计算方法能很方便、快速地进行岩体的模拟分析,因此这种方法发展很快。本文就采用数值流形方法对岩体中的一些问题进行分析计算,对岩体中裂纹的起裂、扩展规律进行了研究。
     近年来,岩土力学中的数值分析方法发展迅速。其中尤以数值流形方法最为突出,以其新颖的数值思想、先进的数值技术得到了学术界的广泛关注。数值流形方法是20世纪90年代由美国华侨石根华博士提出来的,是一种新兴的数值计算方法,它基于数学上的拓扑流形和微分流形,吸收了传统的有限元技术和非连续变形分析(DDA)两方面的优点,应用流形的有限覆盖技术统一了连续与非连续性问题的数学描述,因此能够更适合处理非连续性问题。
     数值流形方法能很方便地处理非连续问题,因此本文利用数值流形方法来处理断裂力学中的裂纹问题。本文系统阐述了数值流形方法的基本思想,介绍了数值流形方法的一般原理以及全一阶多项式覆盖函数与全二阶覆盖函数两种形式的高阶流形方法的数学列式,编制了零阶、全一阶及全二阶多项式覆盖函数的数值流形方法计算程序,应用程序对裂纹的起裂及扩展进行了数值分析。计算结果表明采用高阶形式的覆盖函数能有效地提高数值流形方法的计算精度。
     应用数值流形方法进行数值分析计算时,其前处理网格的剖分一直是比较复杂的问题。现阶段还没有很好的数值流形方法前处理程序,本文结合有限单元法的网格自动剖分技术和面向对象的程序设计方法发展了一套适用于数值流形方法的网格剖分技术,应用这种方法可以快速地自动剖分网格,完成数值流形方法计算分析的前处理工作,在计算过程中不需要重新剖分网格,极大地减少了计算工作量,使数值流形方法能够真正地应用于工程计算。
     断裂力学中一直存在两种观点,一种是静态断裂力学观点,主要是从静态平衡来考虑裂纹的扩展规律,忽略裂纹扩展速度的影响。另一种是动态断裂力学观点,从动态理论来考虑裂纹的扩展,引入了裂纹扩展速度,考虑裂纹扩展速度对裂纹扩展过程的影响。本文应用数值流形方法对静态断裂力学和动态断裂力学两
    
    个方面都进行了计算分析。首先介绍了静态断裂力学的基本观点和基本理论、应
    力强度因子的计算方法、裂纹开裂的判断准则等,并编制了相应的计算程序,对
    裂纹的扩展规律进行了分析计算。
     从动态断裂力学观点分析裂纹扩展时考虑了裂纹扩展速度的因素。裂纹扩展
    速度对裂纹的应力强度因子以及裂纹的起裂、止裂都有影响。随着裂纹的扩展,
    在一定的载荷作用下,裂纹的扩展速度是一个先增大后减小的过程。裂纹扩展速
    度的变化影响着裂纹的应力强度因子和断裂韧度的变化,当应力强度因子大于断
    裂韧度时,裂纹继续扩展;当应力强度因子小于断裂韧度的时,裂纹就停止扩展。
    本文通过所编制的数值流形方法计算程序计算了裂纹的扩展速度,并在此基础上
    计算裂纹的动态应力强度因子,动态断裂韧度,由动态应力强度因子与动态断裂
    韧度动态地进行裂纹的扩展和止裂分析。
     本文对数值流形方法进行了一个全面的介绍,并应用数值流形方法对裂纹的
    扩展进行了分析计算,讨论了数值流形方法在模拟裂纹扩展中的应用,对数值流
    形方法的进一步应用与研究裂纹扩展规律都具有积极的作用与意义。
As a type of geomaterials naturally formed, rock mass is usually composed of many natural joints and cracks or other types of intact discontinuities due to long-term deformation and damage. When loaded, cracks will be initiated and expand in the rock mass and the then mechanical properties of rock mass will change. The study on the crack expansion is very important for the evaluation of damage and stability of rock masses.
    The main techniques for investigating rock mass include experimental method and numerical analysis method. Through numerical analyses, a large number of usable data can be obtained. But it is not convenience to apply this method, and it needs much manpower and financial resources. Numerical analyses can analyze problems of rock mass quickly. In this paper, crack expansion of rock mass is analyzed and computed with numerical manifold method.
    In recent years, the numerical analysis methods of geomechanics have achieved considerable development. As a new technique, the manifold method, proposed by Genhua, Shi in 1990s is based on the concept of topology manifold and differential manifold in mathematics. This method takes the advantage of both the traditional FEM technique and the discontinuous deformation analysis method (DDA). In this method, the finite-cover technique is used. The finite-covers can unify the mathematical description for both continuous problems and discontinuous problems in geomechanics and hence it can solve the discontinuous problems more rationally. Therefore, the manifold method is combined with fracture mechanics in this thesis to deal with the problems of crack expansion.
    The fundamental principle of the manifold method is demonstrated comprehensively in this thesis. The formulations of the high-order manifold methods with complete first order polynomial cover functions and the complete second order polynomial cover functions are presented. Then, the possibilities of applying the manifold method to numerical analyses of fracture behavior and crack expansion of rock masses are discussed. The treatments for the related special issues are given. The static fracture mechanics is used for analysis, in which the growth rule of crack is mainly taken into account by static equilibrium condition. However the velocity of crack growth is overlooked. In order to overcome such a shortcoming, the kinetic fracture mechanics is employed, in which the growth of crack is governed by kinetics and effect of crack growth velocity is considered. In the thesis, manifold method is incorporated with both static and kinematical theories of fracture mechanics to numerical simulation of the fracture beh
    avior and initiation and development of cracks.
    
    
    The general description of the problem is stated and stress intensity factor (SIF) is calculated and the criterion of crack growth is presented. The method is numerically implemented and numerical analyses for a number of benchmark problems are made.
    Then, the arresting mechanism of crack upon loading is discussed based on the proposed method. The crack growth velocity is introduced based on kinematical theory of fracture mechanics. The stress intensity factors of crack will be varied with crack development. Considering the effect of crack growth velocity on the stress intensity factors, the stress intensity factors computed by the proposed method are compared with the fracture roughness and the development process of crack can be predicted. The arresting will occur under the condition when the computed stress intensity factor is less than fracture roughness. Therefore the initiation, development and arresting which may be displayed in the process loading of rock masses can be presented by the proposed method.
    A special scheme for meshing and pre-treatment is required in applications of the manifold method. Based on the auto-meshing techniques used for finite element method (FEM) and the object oriented programming (OOP) method, a new meshing technique specially adapted for manifold method is developed in this thesis. The scheme is numerically impleme
引文
[1] 孙广忠.岩体结构力学.北京:科学出版社,1988.
    [2] 唐辉明,腾伟福.岩土工程数值模拟新方法.地质科技情报,1998,17:41-48.
    [3] 刘怀恒.岩土力学数值方法的应用与发展.岩土力学,1989,10(2):14-21.
    [4] 周维垣.岩体力学数值计算方法的现状与发展.岩石力学与工程学报,1993,12(1):84-88.
    [5] 王泳嘉,冯夏庭.关于计算岩石力学发展的几点思考.岩土工程学报,1996,8(4):103-104.
    [6] 栾茂田,Keizo Ugai.岩土工程研究中若干基本力学问题的思考.大连理工大学学报,1999,39(2):309-317.
    [7] 李宁,Swoboda G.当前岩石力学数值方法的几点思考.岩石力学与工程学报,1997,16(5):502-505.
    [8] Griffith A A. The phenomena of rupture and flow in solids. Phil. Trans., Ser. A, 1920, 221: 163-198.
    [9] Griffith A A. The theory of rupture. Proceeding of the First International Conference. on Application Mechanics, Delft, 1924, 55-63
    [10] Irwin G R. Analysis of stresses and strains near the end of a crack transversing a plate. J. Appl. Mech., 1957, 24:361-364
    [11] Tada H, Paris P C, Irwin G R. The Stress Analysis of Cracks Handbook (2nd Edition). St. Louis: Paris Productions Inc., 1985.
    [12] Billy B A, Cottrell A H, Swinden K H. The spread of plastic yield from a notch. Proc. Roy. Soc. London, Ser. A, 1963, 272:304-314.
    [13] Cottrell A H. Mechanisms of fracture, the 1963 Tewksbury lecture. Tewksbury Symposium on Fracture, 1963, 1-27.
    [14] Dugdale D S. Yielding in steel sheets containing slits. J. Mech. Phys. Solids, 1960, 8:100-108.
    [15] Bareblatt G I. the mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech., New York: Academic Press, 1962, 7: 55-129.
    [16] Wells A A. Application of fracture mechanics at and beyond general yielding. British Welding J. 1963, 10: 563-570.
    [17] Rice J R. A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech., 1968, 35: 379-386.
    [18] Hutchinson J W. Singular behavior at the end of a tensile crack tip in a hardening material. J. Mech. Phys. Solids, 1968, 16: 13-31.
    [19] Rice J R, Rosengren G F. Plane strain deformation near a crack tip in power-law hardening material. J. Mech. Phys. Solids, 1968, 16: 1-12.
    [20] Kumar V, German M D, Shih C F. An engineering approach for elastic plastic fracture
    
    analysis. EPRI Report, NP-1931. New York: EPRI, 1981.
    [21] Zahoor A. Ductile fracture handbook, (3 Volumes). New York: Novetech/EPRI, 1991.
    [22] 洪其麟等译.高等断裂力学.北京:北京航空学出版社,1987.
    [23] 铁摩辛柯,古地尔.弹性理论.北京:人民教育出版社,1964.
    [24] Zienkiewicz O C. The finite element method. London: McGraw-Hill. 1977.
    [25] 王泳嘉.边界元法有岩石力学中的应用.岩石力学与工程学报,1986,5(2):205-222.
    [26] 应隆安.无限元方法.北京:北京大学出版社,1992.
    [27] 王泳嘉.拉格朗日元法及其在岩土力学中的应用.第二届全国青年岩土力学与工程学术会议论文集《岩土力学与工程》.大连:大连理工大学出版社,1995,22-33.
    [28] Kawai T. New discrete structural models and generalization of the method of limit analysis. Finite Elements in Nonlinear Mechanics, NIT, Tronheim, 1977, 885-909.
    [29] Cundall P A. A computer model for simulating progressive, large-scale movements in blocky rock systems. Proceeding of the International Symposium on Rock Fracture, Nancy, France, 1971.
    [30] Shi G H. Discontinuous deformation analysis: A new numerical model for the static and dynamics of block systems. A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy, Berkeley: University of California, 1988.
    [31] 寇晓东.无单元法及其在岩土工程中的应用.岩土工程学报,1998,20(1):6-9.
    [32] Shi G H. Numerical manifold method. Proceedings of the First International Conference on Analysis of Discontinuous Deformation (ICADD-1) (Edited by Li J C, Wang C-Y and Sheng J), Chungli, Taiwan, 1995, 187-222.
    [33] 田荣.连续与非连续变形分析的有限覆盖无单元方法及其应用研究.大连理工大学博士学位论文,2000.
    [34] Margulies M. Combination of the boundary element and finite element methods. Proceeding of the International Boundary Element Method, 1981, 1: 258-288.
    [35] Chang C C. Computational simulation of progressive fracture in fiber composites. Journal of Composite Materials, 1987, 21: 834-855.
    [36] Cundall P A, Board M P. A microcomputer program for modeling large-strain plasticity problems. Proceeding of the 6th International Conference on Numerical Methods in Geomechanics, Innsbruck, 1988.
    [37] 王泳嘉,邢纪波.离散单元法同拉格朗日法元法及其在岩土工程中的应用.岩土力学,1995,16(2):1-14.
    [38] 盛谦,任放.连续介质快速拉格朗日分析及其在岩土工程中的应用.第一届全国大坝岩体力学研讨会暨第三届岩石力学与工程岩体物理数值模拟研讨会论文集.成都:成都科技出版社,1993.
    [39] 王勖成,邵敏.有限单元法基本原理和数值方法(第2版).北京:清华大学出版社,1997.
    [40] Brebbia C A, Walker S. Boundary Element Techniques in Engineering. Butterworth & Co.,
    
    1980.
    [41] Crouch S L. Analysis of stress and displacements around underground excavation: an application of the displacement discontinuity method. University of Minnesota, 1976.
    [42] 周维垣.高等岩石力学.北京:中国水利水电出版社,1989.
    [43] Cheng Y K. Finite strip method in structural analysis. Pergamon Press, 1976.
    [44] Bettess P. Infinite elements. International Journal for Numerical Methods In Engineering, 1977, 11(1).
    [45] Ngo D, Scordelis A C. Finite element analysis of reinforced beam. ACI Journal, 1967, 64.
    [46] Goodman R E, Taylor R L, Brekke T L. A model for the mechanics of jointed rock. Journal of the Soil Mechanics and Foundations Division, ASCE, 1968 94(3): 637-659.
    [47] Desai C S, Phan H V, Perumpral J V. Mechanics of three-dimensional soil-structure interaction. Journal of the Engineering Mechanics Division, ASCE, 1982, 108(2): 731-747.
    [48] Desai C S, Sargand S. Hybrid FE procedure for soil-structure interaction. Journal of Geotechnical Engineering, ASCE, 1984, 110(1): 471-486.
    [49] 姜礼尚,庞之垣.有限元方法及其理论基础.北京:人民教育出版社,1979.
    [50] Kawai T, Toi Y. A new element in discrete analysis of plane strain problem. Seisan Kenkyu, 1977, 29(4): 204-207.
    [51] Kawai T. New discrete model and their applications to seismic response analysis of structures. Nuclear Engineering and Design, 1978, 48: 207-229.
    [52] Qian L X, Zhang X. Rigid finite element in structural analysis. APCOM' 91, Hong Kong, 1991.
    [53] 钱令希,张雄.结构分析中的刚性有限元法.计算结构力学及其应用,1991,8(1):1-14.
    [54] 钱令希,张雄.刚性有限元的参变量变分原理及有限元参数二次规划解.计算结构力学及其应用,1992,9(2):117-123.
    [55] 张雄.刚性有限元的数学理论基础及其在岩土工程中的应用.大连理工大学博士学位论文,1992.
    [56] 卓家寿,赵宁.不连续介质静、动力分析的刚体.弹簧元法.河海大学学报,1993,21(5):34-43.
    [57] 赵宁,卓家寿.动力分析的刚体—界面元与有限元耦合法.河海大学学报,1994,22(6):8-15.
    [58] 任青文.块体单元法及其在岩体稳定分析中的应用.河海大学学报,1995,23(1):1-7.
    [59] Wang B L, Garga V K. A numerical method for modeling large displacement of jointed rocks Ⅰ: Fundamentals. Canadian Geotechnical Journal, 1993, 30: 96-108.
    [60] Garga V K, Wand B L. A numerical method for modeling large displacements of jointed rocks Ⅱ: Modeling of rock bolts and groundwater and applications. Canadian Geotechnical Journal, 1993, 30: 109-123.
    [61] Blair S C, Cook N G W. Analysis of compressive fracture in rock using statistical techniques:
    
    Part Ⅰ, A non-linear rule-based model. International Journal of Rock Mechanics and Mining Science, 1998, 35(7):837-848.
    [62] 王泳嘉,邢纪波.离散单元法的改进及其在颗粒介质研究中的应用.岩土工程学报,1990,12(3):51-57.
    [63] 王泳嘉.离散单元法及在岩石力学中的应用.沈阳:东北大学出版社,1991.
    [64] 刘建武.静力松驰离散单元法及其在岩土工程中的应用.中国科学院武汉岩土力学研究所硕士学位论文,1988.
    [65] 魏群.离散单元法的基本原理、数值方法及程序,北京:科学出版社,1991.
    [66] Cundall P A. Formulation of a three-dimensional distinct element model. Part Ⅰ: A scheme to detect and represent contacts in system composed of many polyhedral blocks. International Journal Reek Mechanics, 1988, 25(3): 107-116.
    [67] 刘连峰.三维离散单元法及其在边坡工程中的应用.东北大学博士学位论文,1995.
    [68] 王泳嘉,刘连峰.三维离散单元法软件系统TRUDEC的研制.岩石力学与工程学报,1996,15(3):201-210.
    [69] 焦玉勇.三维离散单元法及其应用.中国科学院武汉岩土力学研究所博士学位论文,1998.
    [70] 焦玉勇,葛修润.三维离散元法中的数据结构.岩土力学,1998,19(2):74-79.
    [71] 焦玉勇,葛修润,谷先荣.三维离散元法中地下水及锚杆的模拟.岩石力学与工程学报,1999,18(1):6-11.
    [72] 罗海宁,焦玉勇.对三维离散单元法中块体接触判断算法的改进.岩土力学,1999,20(6):37-45.
    [73] LUAN Maotian, TIAN Rong, YANG Qing. A new mesh-free method-finite-cover element-free method. Proceeding of the 10th International Conference on Computer Methods and Advances in Geomechanics, January 2001, University of Arizona, Tucson, Arizona, USA.
    [74] Shi G H. Manifold method. Proceedings of the First International Forum on Discontinuous Deformation Analysis (DDA) and Simulation of Discontinuous Media (Edited by Salami M R and Banks D), Berkeley, California, 1996: 52-204.
    [75] Blair S C, Cook N G W. Analysis of compressive fracture in reek using statistical techniques; part Ⅱ, Effect of micro-scale heterogeneity on macroscopic deformation. International Journal of Rock Mechanics and Mining Science, 1998, 35(7): 849-861..
    [76] 石根华著,裴觉民译.数值流形方法与非连续变形分析.北京:清华大学出版社,1997.
    [77] 裴觉民.数值流形方法与非连续变形分析.岩石力学与工程学报,1997,16(3):279-292.
    [78] 莫海鸿,陈尤雯.流形法在岩石力学研究中的应用.华南理工大学学报(自然科学版),1998,26(9):48-53.
    [79] Zhu T, Zhang J and Arluri S N, A meshless local boundary integral equation method for solving nonlinear problems. Computational Mechanics, 1998, 22(2): 174-184.
    
    
    [80] 周维垣,杨若琼,剡公瑞.流形方法及其在工程中的应用.岩石力学与工程学报,1996,15(3):211-218.
    [81] Lin Dezhang, Mo Haihong. Manifold methods of material analysis. The University of Oklahoma, 1994.
    [82] 王水林,葛修润.流形元法在模拟裂纹扩展中的应用.岩石力学与工程学报,1997,16(5):405-410.
    [83] 王水林.数值流形方法与裂纹扩展模拟.中国科学院武汉岩土力学研究所博士学位论文,1998.
    [84] 王水林,葛修润.四个物理覆盖构成一个单元的流形方法及应用.岩石力学与工程学报,1999,18(3):312-316.
    [85] Zhang G-X, Sugiuta Y, Hasegawa H. Crack propagation and thermal fracture analysis by Manifold Method. Proceedings of the 2nd International Conference on Analysis of Discontinuous Deformation, Kyoto, 1997: 282-297.
    [86] Tsay Ren-Jow, Chiou Yaw-Jeng, Chuang Wal-lin. Crack growth prediction by manifold method. Journal of the Engineering Mechanics, ASCE, 1999, 125(8): 884-890.
    [87] Shyu K, Salami M R. Manifold method with four-node isoparametric finite element method. Working Forum on the Manifold Method of Material Analysis, California, USA, 1995, 1: 165-182.
    [88] Ke T C. Artificial joint-based on manifold method. Working Forum on the Manifold Method of Material Analysis, California, USA, 1995, 1: 21-38.
    [89] Ohtsubo Hideomi, Suzuki Katsuyuki, Terada Kenjiro, Nahanishi Katsuyoshi. Utilization of finite covers in the manifold method for accuracy control. Proceedings of 2nd International Conference Analysis of Discontinuous Deformation, Kyoto, 1997:317-322.
    [90] Chen G, Miki S, Ohnishi Y. Automatic creation of mathematical meshes in manifold method of material analysis. Working Forum on the Manifold Method of Material Analysis, California, USA, 1995, 1: 105-126.
    [91] Wand C Y, Sheng J, Chen M H, Chuang C C. Approximation theories for the manifold method. Working Forum on the Manifold Method of Material Analysis, California, USA, 1995, 1: 61-86.
    [92] Sasaki T, Morikawa S, Ishii D, Yuzo O. Elastic-plastic analysis of jointed rock models by manifold method. Proceedings of 2nd International Conference Analysis of Discontinuous Deformation, Kyoto, 1997: 309-316.
    [93] 王芝银,王思敬,杨志法.岩石大变形分析的流形方法.岩石力学与工程学报,1997,16(5):399-404.
    [94] 朱以文,曾又林.岩石大变形分析的增量流形方法.岩石力学与工程学报,1999,18(1): 1-5.
    [95] Chen G Q, Ohnishi Yuzo, Ito Takahiro. Development of high-order manifold method.
    
    International Journal for Numerical Methods in Engineering, 1998, 43: 685-712.
    [96] 蔡永昌,张湘伟.数值流形方法在连续体数值分析中的应用.力学与实践,1999,21(6):53-54.
    [97] Ho-Le K. Finite element mesh generation methods: a review and classification. CAD, 1998, 20(1): 27-38.
    [98] 张湘伟,蔡永昌,骆少明.数值流形方法的对象设计.计算力学学报,2001,18(1):8-14.
    [99] 成基华,范玉青.二维有限元网格全自动生成.北京航空航天大学学报,1995,21(03):51-55.
    [100] Lo S H. Delaunay triangulation of non-convex planar domains. International Journal for Numerical Methods in Engineering, 1989, 28:2695-2707.
    [101] 张湘伟,蔡永昌,廖林灿.数值流形方法物理覆盖系统的自动剖分.重庆大学学报,2000,23(1):28-31.
    [102] 周本宽,曹中清,陈大鹏.面向对象的有限元程序的类的设计.计算结构力学及其应用,1996,13:269-278.
    [103] 习俊通,梅雪松,吴序堂.面向对象的接触问题的有限元分析.机械强度,1999,21(1):30-41
    [104] Sih G C. Methods of analysis and solutions of crack problem, 1972.
    [105] Sih G C and MacDonald. Application fracture mechanics engineer problems, 1972.
    [106] 杨晓翔,范家齐,匡震邦.求解混合型裂纹应力强度因子的围线积分法.计算结果力学及其应用,1996,13(1):84-89.
    [107] Tada H, Paris P C, and Irwin G R. The stress analysis of cracks handbook. Del Research Corp., Hellertown, Pa, 1973.
    [108] Belystchko T, Lu Y Y, and Gu L. Crack propagation by element-free Galerkin methods. Engineering Fracture Mechanics, 1995, 51,295-315.
    [109] Tsay Ren-Jow, Chiou Yaw-Jeng, and Chuang Wai-Lin. Crack growth prediction by manifold method. Journal for Engineering Mechanics, 1999, 125(8): 884-890.
    [110] 李义军,Zimmermann T H.混合型裂纹在应变软化材料中扩展的数值模拟.中国青年学者岩土工程及其应用讨论会论文集,1994,710-717.
    [111] 蔡永昌,朱合华.基于矩形覆盖的流形方法及其在模拟裂纹扩展中的应用.第七届岩土力学数值分析与解析方法研讨会论文集,大连:大连理工大学出版社,2001.
    [112] 杨庆.离单元法在边坡稳定分析中的应用.北京钢铁学院硕士学位论文,1988.
    [113] 黎勇.非连续变形计算力学模型及其在岩土工程中的应用.大连理工大学博士学位论文,2000.
    [114] 孙钧.岩石力学的若干进展.面向21世纪的岩石力学与工程—中国岩石力学与工程学会第四次学术大会论文集,北京:中国科学技术出版社,1996.
    [115] 张梅英,袁建新,尚嘉兰,孔常静.单轴压缩过程中岩石变形破坏机理.岩石力学与工程学报,1998,17(1):1-8.
    
    
    [116] 许江,李贺.对单轴应力状态下砂岩微观断裂全过程的实验研究.力学与实践,1986,4:16-21.
    [117] 唐春安.岩石破坏裂过程数值模拟方法发展的若干问题.中国CSRM软岩工程专业委员会第二届学术大会论文集.10-16
    [118] Tan S C. A progressive failure model for composite laminates containing openings. Journal of Composite Materials, 1991, 25: 556-577.
    [119] Liu Z, Myer L R and Cook N G W. Numerical simulation of the effect of heterogeneities on macro-behavior of granular materials. Siriwardane and Zaman (eds). Computer methods and advances in geomechanics. Balkema, Rotterdam, 1994, 611-616.
    [120] Kim Kunsoo and Yao Cunying. Effects of micromechanical property variation on fracture processes in simple tension. Daemen & Schultx. Rock mechanics. Balkema, Rotterdam, 1995, 471-476.
    [121] 崔维成.复合材料结构破坏过程的计算机模拟.复合材料学报,1996,13(4):102-111.
    [122] Fairhurst C. Geomaterials and recent development in micro-mechanical numerical models. News Joumal, 1997, 4(2):11-14.
    [123] 唐春安,赵文.岩石破裂过程分析软件系统RFPA~(2D).岩石力学与工程学报,1997,16(5):507-508.
    [124] 唐春安,刘红元,秦四清,杨志法.非均匀性对岩石介质中裂纹扩展模式的影响.地球物理学报,2000,43(1):116-121.
    [125] 陈忠辉,唐春安,付宇方.岩石微破坏损伤演化诱致突变的数值模拟.岩土工程学报,1998,20(6):9-15.
    [126] 付宇方.岩石破裂过程的数值模拟研究.东北大学硕士学位论文,1997.
    [127] 田荣,栾茂田,杨庆.连续与非连续变形分析的流形方法及其在土力学中的应用.见:王铁宏,杨灿文等.中国土木工程学会第八届土力学及岩土工程学术会议论文集.北京:万国学术出版社,1999,133-136.
    [128] 朱维申,陈卫忠,申晋.雁形裂纹扩展的模型试验及断裂力学机制研究.固体力学学报,1998,19(4):355-360.
    [129] Lu Y Y, Belytschko T and Tabbara M. Element-free Galerkin method for wave propagation and dynamic fracture. Computer Methods in Applied Mechanics and Engineering, 1995, 126, 131-153.
    [130] 布洛克 D著,王克仁,何明王,高桦译.工程断裂力学.北京:科学出版社,1980.
    [131] 褚武杨.断裂力学基础.北京:科学出版社,1979.
    [132] 范天佑.断裂力学基础.南京:江苏科学技术出版社,1978.
    [133] 李灏.断裂力学.济南:山东科学技术出版社,1980.
    [134] 何庆芝,郦正能.工程断裂力学.北京:北京航空航天大学出版社,1993.
    [135] 李洪升,周承芳.工程断裂力学.大连:大连理工大学出版社,1990.
    
    
    [136] 于骁中.岩石和混凝土断裂力学.湖南:中南工业大学出版社,1989.
    [137] Perrone N and Kao R. A General finite difference method for arbitrary meshes. Computers and Structures, 1977, 5: 45-47.
    [138] Liszka T and Orkisz J. The finite difference method at arbitrary irregular grids and its application in applied mechanics. Computers and Structures, 1980, 11: 83-95.
    [139] Liszka T. An interpolation method for an irregular set of nodes. International Journal Numerical Methods in Engineering, 1984, 20: 1594-1612,
    [140] Oden J T, Duarte C A and Zienkie O C. A New Cloud-based hp Finite Element Method. Computer Methods in Applied Mechanics and Engineering, 1998, 153: 117-126.
    [141] Liu W K, Jun S and Zhang Y F. Reproducing kernel particle methods. International Journal for Numerical Methods in Engineering, 1995, 20: 1081-1106.
    [142] Liu W K, Chen Y. Wavelet and multiple scale reproducing kernel methods. International Journal for Numerical Methods in Fluids, 1995, 21: 901-933.
    [143] Liu W K, Jun S and Zhang Y F. Reproducing kernel particle methods for structural dynamics. International Journal for Numerical Methods in Engineering, 1995, 38: 1655-1679.
    [144] Liu W K and Jun S. Multiple-scale Reproducing Kernel Particle Methods for large deformation problems. International Journal for Numerical Methods in Engineering, 1998, 41: 1339-1362.
    [145] Babuska I and Melenk J M. Partition of unity method. International Journal Numerical Methods in Engineering, 1997, 40: 727-758.
    [146] Melenk J M and Babuska I. Partition of unity finite element method: basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 1996, 39:289-314.
    [147] Babuska I and Zhang Z. Partition of unity method for the elastically supported beam. Computer Methods in Applied Mechanics and Engineering, 1998, 152(2): 1-18.
    [148] 钟万勰,张洪武,吴承伟.参变量变分原理及其在工程中的应用.北京:科学出版社,1997.
    [149] Gladwell G M L. Contact problems in the classical theory of elasticity. 1980.
    [150] Peric D and Owen D R. Computational model for 3D contact problems with friction based on the penalty method. International Journal of Numerical Methods in Engineering, 1992, 35: 1289-1309.
    [151] Yamazaki K, Sakamoto J, Takumi S. Penalty method for three-dimensional elastic contact problems by boundary element method. Computers and Structures, 1994, 52(5): 895-903.
    [152] Simo J C, Wriggers P and Taylor R L. A perturbed Lagrangian formulation for the finite element solution of contact problems. Computational Methods in Applied Mechanics and
    
    Engineering, 1985, 50: 163-180.
    [153] Zavarise G, Wriggers P and Schrefler B A. On augmented lagrangian algorithms for thermomechanical contact problems with friction. International Journal for Numerical Methods in Engineering, 1995, 38: 2929-2949.
    [154] Wriggers P, Vu Van T and Stein E. Finite element formulation of large deformation impact-contact problem with friction. Computers and Structures, 1990, 37: 319-331.
    [155] Simo J C and Lauren T A. An augmented lagrangian treatment of contact problems involving friction. Computers and Structures, 1992, 42(1): 97-116.
    [156] Zavarise G and Wriggers P. A super-linear convergent augmented lagrangian procedure for contact problems. Engineering Computations, 1999, 16(1): 88-119.
    [157] Zienkiewics O C, Best B, Dullage C and Stagg K G. Analysis of nonlinear problems in rock mechanics with particular reference of jointed rock system. Proceeding of the 2nd International Congress on Rock Mechanics, Belgrade, 1970.
    [158] Ghaboussi J, Wilson E L and Isenberg J. Finite elements for rock joints and interfaces. Journal of the Soil Mechanics and Foundations Division, ASCE, 1973, 99(10): 727-744.
    [159] Goodman R E and St. John C. Chapter 4: Finite element analysis for discontinuous rocks. Numerical Methods in Geotechnical Engineering (Edited by Desal C S and Christian J T), McGraw-Hill Book Company, 1977, 148-175.
    [160] Griffiths D V. Numerical modelling of interfaces using conventional finite elements. Proceedings of the Fifth International Conference on Numerical Methods in Geomechanics, Nagoya, 1985, 837-844.
    [161] 殷宗泽,朱泓,许国华.土与结构材料接触面的变形及其数学描述.岩土工程学报,1994,16(3):14-22.
    [162] 雷晓燕,Swobada G,杜庆华.接触摩擦单元的理论及其应用.岩土工程学报,1994,19(3):23-32.
    [163] 袁亚湘著.非线性数学规划.上海:上海科学技术出版社,1993
    [164] 唐焕文,秦学志.最优化方法.大连:大连理工大学出版社,1994.
    [165] 肖裕行,王泳嘉,王思敬.二维离散单元法接触处理的新算法.岩石力学与工程学报,1999,18(4):409-413.
    [166] Hoek E,Bray w.岩体边坡工程.北京:冶金工业出版社,1981.
    [167] 孙训芳,方孝淑,关来泰.材料力学.北京:高等教育出版社.1987.
    [168] Cavendish J C. Automatic triangulation of arbitrary planar domains for the finite element method. International Journal for Numerical Method Engineering, 1974, 8, 679-696.
    [169] Watson D F. Computing the n-dimensional Delaunay tessellation with applications to Voronoi polytopes. Computer Journal, 24(2): 76-85.
    [170] Cavendish J C, Field D A. An approach to automatic three dimensional finite element mesh generation. International Journal for Numerical Method Engineering. 1985, 21(2): 329-347.
    
    
    [171] Wordenweber B. Finite element mesh generation. Computer Aided Design, 1984, 16(5): 285-291.
    [172] Woo T C, Thomasma T. An algorithm for generating solid elements in objects with holes. Computer and Structure, 1984, 18(2): 333-342.
    [173] Thacker W C, Gonzalez A, Putland G E. A method for automating the construction of irregular computational grids for storm surge forecast methods. Journal of Computational Physics, 1980, 37(3): 371-381.
    [174] Yerry M A, Shephard M S. A modified quadtree approach to finite element meshes generation. IEEE Computer Graph and Application, 1983, 20(2): 39-46.
    [175] Yerry M A, Shephard M S. Automatic three-dimensional mesh generation by the modificd-octree technique. International Journal for Numerical Method Engineering. 1984, 20(11): 1965-1990.