晋西北小叶锦鸡儿(Caragana microphylla)人工灌丛营养特征与土壤肥力状况研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小叶锦鸡儿(Caragana microphylla Lam.)为锦鸡儿属(Caragana Fabr.)多年生豆科落叶灌木,是锦鸡儿属植物(又统称柠条)在我国黄土高原地区的主要栽培种之一。它既能防风固沙、保持水土,又是优质的灌木饲料植物资源,具有较高的生态经济价值。自20世纪60年代起,小叶锦鸡儿即在晋西北黄土丘陵区大量种植,成为当地退耕还林、植被恢复和水土保持的重要灌木树种之一。但在种植和管理过程中,一些地方出现了小叶锦鸡儿灌丛土壤肥力退化现象,还有部分地区因对其营养状况不了解,利用和管理措施不当,导致小叶锦鸡儿灌丛木质化严重、植被退化,使其生态和经济效益没有得到充分发挥。针对上述问题,本研究对晋西北黄土丘陵区小叶锦鸡儿人工灌丛的植物营养特征和土壤肥力状况进行了系统研究,以揭示小叶锦鸡儿灌丛对环境的响应和影响特征,提出对小叶锦鸡儿灌丛应采取的管理措施,为晋西北黄土丘陵区小叶锦鸡儿灌丛的可持续经营和生态环境重建提供理论依据。
     1.对小叶锦鸡儿灌丛地上部生物量和植株矿质养分含量的动态监测研究表明,其生物量和营养成分含量呈现随林龄增大先逐年增大而后逐年降低的态势。小叶锦鸡儿生物量(地上部干重)随生长年限的延长逐渐增大,30年时生物量最大,其后生物量开始减少。就植株不同器官(根、枝、叶)的各种矿质养分而言,以叶部的含量最高。与生物量趋势相同,小叶锦鸡儿不同器官的养分含量基本呈现先逐年(5龄、10龄、20龄)增高而后(30龄以后)有下降的趋势。
     对小叶锦鸡儿作为饲料的品质研究表明,其营养成分在平茬后随着生育期(从休眠期到开花期)的变化,主要营养成分含量逐步增加,呈浓缩型发展趋势,有利于家畜利用。随着生长年限延长体内粗蛋白、粗脂肪逐年下降,粗纤维含量上升,木质化程度高,适口性下降。综合考虑枝条生物量的大小和小叶锦鸡儿正常生长的需求,平茬后第3年应是小叶锦鸡儿作为饲料的最佳利用时间。
     2.在小叶锦鸡儿灌木林地,土壤的有机质、全氮、速效钾在植株根际土中均有一定程度的“富集现象”。由于小叶锦鸡儿根系的固氮作用和大量根系分泌物的存在,与土体土相比,根际土壤的全氮、有机质含量提高,pH下降,EC提高,养分有效性提高。
     在晋西北石灰性土壤上,磷是制约小叶锦鸡儿生长的关键因子。小叶锦鸡儿的生物量随磷肥用量的增加而显著增加。施磷能显著降低土壤pH,增加EC值,提高土壤各项速效养分的含量。
     3.营造小叶锦鸡儿人工灌丛有利于土壤团粒体形成,可降低土壤容重,改善土壤物理性状,增强土壤的抗冲蚀能力。随着小叶锦鸡儿灌丛生长年限的延长,0~40cm土壤容重逐渐减小,土壤总孔隙度提高;土壤机械组成中砂粒(>0.05mm)比例下降,粉粒(0.002~0.05mm)比例提高,土壤持水性、通气性等物理性状得以改善。
     随生长年限的增加,小叶锦鸡儿人工灌丛的土壤全氮、有机质和硝态氮含量均呈现先逐渐增大(30年生最大)随后降低的趋势;而全磷和全钾含量则无明显变化。与此同时,速效养分(尤其是有效磷和速效钾)则呈逐渐下降趋势。不同生长年限的小叶锦鸡儿灌丛的土壤全氮、有机质、有效磷和速效钾均具有明显的“表聚效应”,即0~20cm土层土壤养分含量显著大于20~40cm土层土壤。
     不同土地利用方式对土壤的物理性质影响较大。在0~20cm土层,土壤容重依次为小叶锦鸡儿人工林<混交林<农田<杨树林<撂荒地。0~20cm土层的土壤孔隙度则表现为小叶锦鸡儿人工林>混交林>农田>杨树林>撂荒地。小叶锦鸡儿杨树混交林的土壤有机质和全N含量最高,小叶锦鸡儿人工林和杨树林次之。在几种利用方式中,农田的有效磷含量最高,小叶锦鸡儿人工林和混交林的有效磷含量次之,而杨树林最低。农田有效磷含量较高与当地农民施磷肥有关。
     不同生长年限小叶锦鸡儿灌丛下各部位土壤有机质及土壤速效养分含量均呈现明显的“肥岛效应”,即丛心>丛中>丛边>带间。
     4.小叶锦鸡儿灌丛的土壤碱性磷酸酶和过氧化氢酶活性随着林龄的增长,酶活性先逐渐提高,20年达到最高,随后便下降。酶活性同时与土层深度有关,随土层加深土壤酶活性逐渐降低。
     根际土壤各种酶活性均高于根外土,但其活性与灌丛生长年限的关系则不明显。土壤磷酸酶活性自丛心、丛中、丛边、到带间依次减小,表现出明显的根际效应。
     不同土地利用类型之间的土壤(0~20cm)过氧化氢酶活性没有显著差异,但是其碱性磷酸酶活性的差异则很明显,即小叶锦鸡儿人工林>混交林>杨树林>撂荒>农田。
     在灌丛的不同部位,0~20cm土层土壤的微生物总数均大于20~40cm土层土壤。其中细菌数量占微生物总数的79%以上,尤其是丛心土壤细菌数达总数的90%以上。由丛心、丛中、丛边到带间,土壤微生物数量逐渐减少。土壤微生物区系随着距丛心距离的增加,自丛心、丛中、丛边到带间,细菌、真菌占总菌数的比例逐渐下降,放线菌的比例则增加。
     以上结果表明,在晋西北黄土丘陵区,30龄以上的小叶锦鸡儿灌丛已出现明显退化,土壤地力也开始衰退。结合试验区较为贫瘠的土壤以及管理粗放等现实情况,为充分发挥小叶锦鸡儿在退耕还林(草)和生态建设中的积极作用,我们初步提出以下几点建议:
     (1)对老龄林进行适当刈割、平茬
     小叶锦鸡儿萌蘖力极强,地上部分被破坏后会产生补偿或超补偿。对30年生以上灌丛,可以采取割条和樵采等方式进行合理利用。这些合理的刈割、平茬有利于老龄植株复壮更新,是促进其地上生物量快速恢复的有效方式。
     (2)在林地内酌情放牧
     当地畜牧业比较发达,尤以牧羊为主。由于在幼林内放牧会直接影响幼林的发育和郁闭度。建议禁止在幼龄林内放牧。在老龄林地内,每年开花期后可适当放牧。这样牲畜的啃食不仅能起到局部刈割的效果,而且牲畜活动的粪便等残留物也能起到培肥土壤的作用。
     (3)合理利用土地,营造灌乔混交林
     鉴于小叶锦鸡儿与杨树混交林对土壤的培肥效果强于小叶锦鸡儿灌木林。建议今后适当扩大此类灌乔混交林的营造。
Little leaf Peashrub (Caragana microphylla Lam.), a species of the genus Caragana Fabr. of Legume Family, is a deciduous and drought-resistant shrub. It is the main species cultivated in the Loess Plateau in northwestern Shanxi, China. Since1960s, this shrub has been widely planted and plays important roles in ecological environment management, such as windbreak, sand fixation, soil and water conservation, and as valuable forage in northwestern Shanxi. However, few studies have been carried out to study the dynamic changes of nutrient contents in the shrub-soil system which provides foundation information for the ecological recovery program (Grain-for-Green) in the Loess Plateau in northwestern Shanxi. The objectives of this study are (1) to characterize the dynamics of biomass and nutrient contents of the shrub;(2) to characterize the dynamics of nutrient contents at the rhizospheres of the shrub;(3) to determine the spatial and temporal changes of nutrient contents in soils under different land uses; and (4) the dynamics of soil enzyme activities in the soil-shrub system under different land uses.
     1. The content of nitrogen in the roots of the shrub was higher than the leaves because of the nitrogen fixing by the legumes in the roots. The contents of other mineral nutrients in the leaves of the shrub were higher than stems and roots.
     The fresh above-ground biomass of the shrub and nutrient contents of the shrub organs showed increase followed by a decrease with the increase of growth age and the peaks occurred at its age of30years old. As the increase of growth age, the contents of raw protein and raw fat of the shrub decreased and the contents of raw cellulose increased.
     2. The contents of soil organic matter and total nitrogen at rhizosphere of the shrub were higher than the bulk soil. This result may be interpreted by the two processes at root zone, nitrogen fixing by the legumes in the large root system and exudation of low molecular weight organic acids from roots.
     The content of soil available phosphorus at rhizosphere of the shrub was higher than the bulk soil. This result may be interpreted by the replacement of adsorbed phosphorus to CaCO3by the low molecular weight organic acids released into root zone. The biomass of the shrub increased when external addition of phosphorus fertilizer was applied, and the possible reason is that the shrub need a large amount of phosphorus to meet their growth requirement and phosphorus is a limiting factor in calcareous soil.
     The content of soil available potassium at rhizosphere of the shrub was higher than the bulk soil.
     3. The soil physical and chemical properties changed as the establishment of the shrub vegetation. As the growth of the shrub, there were increases in soil bulk density in the depth of0-20cm, soil porosity, field water holding capability, and soil aerating condition, and the content of sand with diameter>0.05mm decreased while the content of silt with diameter between0.002and0.05mm increased.
     As the growth of the shrub, the contents of soil total nitrogen, organic matter, and nitrate showed increases followed by decreases with the peaks at the shrub age of30years old. The contents of soil total phosphorus and potassium showed non-significant change, but the contents of soil available nutrient, especially phosphorus and potassium, decreased with the increase of the age of the shrub. The contents of soil total nitrogen, organic matter, available phosphorus and available potassium showed to be higher at the layer0~20cm than those at the layer20~40cm.
     Soil physical properties showed significant difference between land uses in this study. The order of soil bulk density in depth of0~20cm was shrub plantation shrub, shrub mixed with Poplar> Poplar. The highest content of soil available phosphorus in farmland was due to the large amount of phosphorus fertilizer applied.
     There was an obvious spatial distribution of soil chemical properties. The contents of soil organic matter and available nutrients decreased with the increase of distance from the center of the shrub, and this phenomenon was coincident with the fertile island effect in literature.
     4. As the increase of the age of the shrub, the soil enzyme activities in the shrub showed gradual increases followed by decreases with peaks at the shrub age of20years old. During the growth of the shrub, the soil enzyme activities decreased with the increase of soil depth and the horizontal distance from the center of the shrub.
     There was no significant difference of catalase activities between land uses. The order of soil alkaline phosphatase activities in the soil depth0~20cm was shrub> forest> Poplar> fallow> farmland.
     The soil microbial populations gradually decreased with soil depth in the shrub. The abundance of bacteria was dominant (>79%) of the total organisms, and it was as high as90%at the center of the shrub. The abundance of organisms decreased with the increase of distance from the center of the shrub. The community of soil organisms showed spatial distribution, i.e. decreases of the percentages of bacteria and fungi and increases of the percentage of actinomycetes with the increase of the distance from the center of the shrub.
     This study of the dynamics of nutrient contents in the shrub-soil system can be implemented in the practice follows.
     (1) Based on the observed temporal change of the biomass and nutrient contents in the shrub-soil system in this study, it is feasible to cut back the shrub with age older than30years in order to restore the shrub vegetation. New roots and shoots will sprout and the biomass of the new vegetation will be equal to or greater than the old one. Thus, mowing and cutting back of the shrub with age older than30years, such as cutting bars, is an effective means of rejuvenation. According to the comprehensive criteria in this study including above-ground biomass and the contents of nutrients, raw protein, raw fat and cellulose, the optimum time is recommended at the age of three years old for the shrub to be used as forage.
     (2) Proper grazing in the old shrub. Since animal husbandry especially herding in the region is well developed, sheep's eating young leaves and flowers of the shrub might have partial effect of mowing and cutting back old shrub mentioned above. Additionally, the manure of the sheep will improve soil physical and chemical condition for shrub growth. This grazing is not allowed in young shrubs because the young shrub will be simply destroyed or the establishment of its crown will be delayed.
     (3) The plantation of the shrub mixed with Poplar is recommended as an alternative way of land use because it showed improvements in soil physical and chemical properties and enhancement of soil enzyme activities in this study.
引文
[1]Akter M, Akagi T. Effect of fine root contact on plant-induced weathering of basalt. Soil Science Plant Nutrition,2005,51:861-871
    [2]Anmar KB, Richard PD. Field management affects on soil enzyme activities .Soil Biochem,1999,31:1471-1479
    [3]Badiane NNY, Chotte JL, Pate E, et al. Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions .Applied Soil Ecology,2001,18:229-238
    [4]Barrett JE, Burke IC.Potential nitrogen immobilization in grassland soils across a soil organic matter gradient .Soil Biology Biochemistry,2000,32:1707-1716
    [5]Barth RC, Klemmedson JO. Shrub induced spatial of dry matter, nitrogen, and organic carbon. Soil Sci Soc Am J,1978,64:635-639
    [6]Belsky AJ, Amundson RG, Duxbury JM, et al.The Effects of trees on their Physical, chemical, and biological environments in a semi-arid savanna in Kenya Journal of Applied Ecology,1989,26:1005-1024
    [7]Charley JL, Wes NE. Plant-induced soil chemical patters in some shrub dominated semi-desert ecosystems of Utah. Journal of Ecology,1975,63:945-963
    [8]Chew R M, Whitford W G. A long-term positive effect of kangaroo rats on creosote bushes. Journal of Arid Environments,1992,22:75-386
    [9]Craw C S, Gosz J R. Desert ecosystems:their resource in space and time. Environmental Conservation,1982,9(3):181-195
    [10]Dinkelaker B, Romheld V, Marschner H. Citrate acid exudation and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ,1989,12:285-292
    [11]Field C, Mooney HA. Leaf age and seasonal effects on light, water, and nitrogen use efficiency in a California shrub. Ecologia,1983,56:348-355
    [12]Fisher RF. Amelioration of degraded rain forest soils by plantations of native trees. Soil Science Society of America Journal,1995,59:544-549
    [13]Francioso O, Ciavatta C, Sanchez S, et al. Spectroscopic characterization of soil organic matter in long-tern amendment trials. Soil Sci.2000, (165):495-504
    [14]Gahoonia T S, Nielsen N E. The effects of root-induced pH change on the depletion of inorganic or organic phosphorus in the rhizosphere. Plant and Soil.1992, 143:185-191
    [15]Gahoonia T S, Claassen N, Jungk A. Mobilization of phosphate in different soils by ryegrass supplied with ammonium or nitrate. Plant and Soil.1992,140,241-248
    [16]Garcia-Moya E, Mckell C M. Contributions of shrubs to the nitrogen economy of a desert -wash plant community. Eeology,1970,51:81-88
    [17]Garner W, Steinberger Y. A proposed mechanism for the formation of fertile islands. Journal of Arid Environments,1989,16:257-262
    [18]Grover HK, Musick HB. Shrub land encroachment in southern New Mexico, U.S.A: an analysis of desertification processes in the American Southwest. Climatic Change, 1990,17:305-330
    [19]Halvorson JJ, Bolton HJ, Smith JL, et al. Geostatistical analysis of resource islands under Artemisia tridentate in the shrub-steppe. Great Basin Naturalist,1994, 54:313-328
    [20]Harrington GN. Effects of soil moisture on shrub seedling survival in a semiarid grassland. Ecology,1991,72:1138-1149
    [21]Helal HM, Sauer beck DR. Influence of plant roots on C and P metabolism in soil. Plant and Soil,1994,76:175-182
    [22]Herman RP, Provencio KR, Herrera Matos J, et al. Resources islands predict the dist ribution of heterotrophic bacteria in Chihuahua Desert soils. Applied and Environmental Microbiology,1995,61:1616-1621
    [23]Hinsinger P, Claude Plassard C, Caixian Tang C, et al. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints:A review. Plant and Soil,2003,248:43-59
    [24]Hofflanf B, Romheld V, Marschner H. Citric acid exudation and precipitation calcium citrate in the rhizosphere of white lupine. Plant Cell Environ,1992,12:285-292
    [25]Jones D, Kochian LV. Effect of root-derived organic acids on the kinetics of Al dissolution. Plant and Soil,1996,182:221-228
    [26]Jones DL. Organic acids in the photosphere-a critical review. Plant and Soil,1998, 205:25-44
    [27]Jungk A, Claassen N. Availability in soil and acquisition by plants as the basis for phosphorus and potassium supply to plants. Z. Pflanzenernahr. Bodenkd,1989, 152:151-157
    [28]Klemmedson J O, Barth R C. Distribution and balance of biomass and nutrients in desert shrub ecosystems//US/IBP Desert Biome Research Memo. Logan:Utah State University Press,1975,75-5
    [29]Kuchenbuch R, Jungk A. A method for determining concentration profiles at the soil-root interface by thin slicing rhizospheric soil. Plant and Soil,1982,68,391-394
    [30]Kumar JD, Sharma GD, Mishra PR. Soil microbial population numbers and enzyme activities in relation to altitude and forest degradation. Soil Biochem,1992, 24:761-767
    [31]Lee KK, Wani SP, Sahrawat KL, et al. Nitrogen and/or phosphorus fertilization effects on organic carbon and mineral contents in the rhizosphere of field grown sorghum. Soil Sci Plant Nutr,1997,43(1):117-126
    [32]Ludwig JA, Tongway DJ. Spatial organization of landscapes and its function in semi-arid woodlands, Australia. Landscape Ecology,1995, (10):51-65
    [33]Lynch JM, Whipps JM. Substrate flow in the photosphere. Plant and Soil,1990, 129:1-10
    [34]Marschner H, Romheld V, Cakmaek I. Root induced changes in the nutrient availability in the photosphere. Plant Nutr.1987, (10):1175-1184
    [35]Martinez ME, Whitford WG. Stem flow, through fall and canalization of stem flow by roots in three Chihuahua desert shrubs. Arid Environment,1996,32:271-287
    [36]Mazzarino MJ, Oliva L, Abril A, et al. Factors affecting nitrogen dynamics in semiarid woodland (Dry Chaco, Argentina). Plant and Soil,1991,138:85-98
    [37]Perez FL. Plant induced spatial patterns of surface soil properties near caules cent Andean rosettes. Plant and Soil,1995,68:101-121
    [38]Reynolds JF, Virginia RA, Kemp PR, et al. Impact of drought on desert shrubs: effects of seasonality and degree of resource island development. Ecological Monographs,1999,69(1):69-106
    [39]Riley D, Barber S A. Bicarbonate accumulation and pH changes at the soybean root-soil interface. Proceedings of Soil Science Society of America,1969,33:905-908
    [40]Schettelndreier M, Falkengren GU. Plant induced alteration in the rhizosphere and the utilization of soil heterogeneity. Plant and Soil,1999,209:297-309
    [41]Schlesinger WH, Reynolds JF, Cunningham Glee et al. Biological feedbacks in global desertification. Science,1990,247:1043-1048
    [42]Scholes R J, Archer S A. Tree-grass interactions in savannas. Annul Rev Ecol Syst, 1997,28:517-544
    [43]Smith CK, Gholz HL, Olivia F. Soil nitrogen dynamics and plant induced soil changes under plantations and primary forest in lowland Amazonian, Brazil. Plant and Soil,1998,200:193-203
    [44]Tarafdar JC, Marcher H. Phophatase activity in the rhizosphere and hypophere of VA mycorrhizal wheat supplied with inorganic and organic Phosphorus. Soil Biol Biochem.1994,26:387-395
    [45]Titus J H, Titus P J, Nowak R S, et al. Arbuscular mycorrhizae of Mojave Desert plants. Western North Am Natural,2002,62:327-334
    [46]Tofinger MP, Snaydom RW. The root activity of cereals and peas when grown in pure stands and mixtures. Plant and Soil,1992,142(2):281-285
    [47]Tongway DJ, Ludwig JA. Small scale resource heterogeneity in semiarid landscapes. Pacific Conservation Biology,1994, (1):201-208
    [48]Turner Ⅱ BL, Meyer WB. Global Land-use and land-cover change: challenges for geographers. GeoJournal,1994,3:237-240
    [49]VanArles I. M.. Growth and Interaction of arbuscular mycorrhial fungi in soils from limestone and acid rock. Geomicrobiology,1991,9:1-11
    [50]Virginia RA, Jarrell WM. Soil properties in a mesquite dominated Sonorant desert ecosystem. Soil Science Society of America Journal,1983,47:138-144
    [51]Wander M, Yang X. Influence of tillage on the dynamics of loose and occluded particulate and mummified organic matter fractions . Soil Biol.2000, (32):1151-1160
    [52]Wezel A, Rajot JL, Herbrig C. Influence of shrubs on soil characteristics and their function in Caelian agro-ecosystems in semi-arid Niger. Journal of Arid Environment, 2000, (44):383-398
    [53]Whitford WG, Anderson J, Rice PM. Stem flow contribution to the'fertile island' effect in creosote bush, Lariat tridentate. A rid Environ,1997,35:451-457
    [54]Whitford WG. Desertification: Implications and limitations of the ecosystem health metaphor. In:Rapport DJ, Daudet C, Xin ZB, Xu JX (eds). Responses of vegetation cover time space evolution on the Loess Plateau to the climate. Progress in Natural Science,2007,17 (6):770-778
    [55]Yan E, Wang X, Guo M, et al. Temporal patterns of net soil N mineralization and nitrification through secondary succession in the subtropical forests of eastern China. Plant Soil,2009,320:181-194
    [56]Youssef KA, Chino M. Root induced changes in the rhizosphere of plants. I. pH changes in relation to buck soil. Soil Sci Plant Nutr,1989,35:461-468
    [57]阿拉木萨,蒋德明,范士香等.人工小叶锦鸡儿灌丛土壤水分动态研究.应用生态学报,2002,13(12):1537-1540
    [58]安韶山,黄懿梅,李壁成等.云雾山自然保护区不同植物群落土壤酶活性特征研究.水土保持通报,2004,24(6):14-17,18
    [59]安韶山,黄懿梅,刘梦云等.宁南宽谷丘陵区植被恢复中土壤酶活性的响应及其评价.水土保持研究,2005,12(3):31-34
    [60]包青,郑学良,牛永杰.白桦林“维他”机制研究——白桦林下更新红松树冠下光场和温场特征.吉林林业科技,1997(4):20-21
    [61]鲍士旦.土壤农化分析.北京:中国农业出版社,1999
    [62]毕建琦,杜峰.黄土高原丘陵区不同立地条件下柠条根系研究.林业科学研究,2006,19(2):225-230
    [63]曹成有,蒋德明,骆永明等.小叶锦鸡儿防风固沙林稳定性研究.生态学报,2004a,24(6):1178-1186
    [64]曹成有,蒋德明,全贵静等.科尔沁沙地小叶锦鸡儿人工固沙区土壤理化性质的变化.水土保持学报,2004b,18(6):108-121
    [65]曹成有,蒋德明.小叶锦鸡儿人工固沙区植被恢复生态过程的研究.应用生态学报,2000,11(3):349-354
    [66]曹成有,寇振武,蒋德明等.沙地小叶锦鸡儿群落的持续管理.中国沙漠,1999,19(3):239-242
    [67]曹成有,滕晓慧,崔振波等.植物固沙工程对土壤生物活性的影响.辽宁工程技术大学学报,2006,25(4):606-609
    [68]曹成有,朱丽辉,蒋德明等.科尔沁沙地不同人工植物群落对土壤养分和生物活 性的影响.水土保持学报,2007,21(1):168-172
    [69]曹一平,崔健宇.石灰性土壤中油菜根际磷的化学动态及生物有效性.植物营养与肥料学报,1994,1(1):49-54
    [70]陈恩凤,关连珠,汪景宽等.土壤特征微团聚体的组成比例与肥力评价.土壤学报,2001,38(1):49-53
    [71]陈广生,曾德慧,陈伏生等.干旱和半干旱地区灌木下土壤肥岛研究进展.应用生态学报,2003,14(12):2295-2300
    [72]陈竑竣,李传涵.杉木幼林地土壤酶活性与土壤肥力.林业科学研究,1993,6(3):91-96
    [73]陈华癸、樊庆笙主编.微生物学.北京:农业出版社,1980
    [74]陈竣,李传涵.杉木幼林地土壤酶活性与土壤肥力.林业科学研究,1993,6(3):321-326
    [75]陈明昌,马红梅,张强等.石灰性土壤施磷、铁对柠条生长及根际土壤环境的影响.土壤学报,2005,42(5):783-791
    [76]陈祥伟.不同森林类型土壤氮矿化的研究.东北林业大学学报,1999,27(1):5-9
    [77]陈佐忠,黄德华,张鸿芳.内蒙古锡林河流域122种植物的化学元素特征.草地生态系统研究,北京:科学出版社,1985,(1):112-131
    [78]程国玲.水曲柳、落叶松纯林与混交林根际土壤N、P养分特点与变化.东北林业大学学报,2001,29(1):26-40
    [79]程积民,万惠娥,王静等.半干旱区柠条生长与土壤水分消耗过程研究.林业科学,2005,41(2):37-41
    [80]单敏.毒百蝉、百菌清、丁草胺对土壤微生物和土壤酶的影响.浙江大学,2006
    [81]范业宽,叶坤合.土壤肥料学.武汉:武汉大学出版社,2002
    [82]付晓莉,邵明安,吕殿青.土壤持水特征测定中质量含水量、吸力和容重三者间定量关系Ⅱ.原状土壤.土壤学报.2008,45(1):50-55
    [83]巩杰,陈利顶,傅伯杰等.黄土丘陵区小流域植被恢复的土壤养分效应研究.水土保持学报,2005,19(1):93-96
    [84]关松荫.土壤酶及其研究法.北京:农业出版社,1986
    [85]郭朝晖,张杨珠,黄子蔚.根际微域营养研究进展.土壤通报,1999,30(1):46-48
    [86]郭朝晖,张杨珠等.磷对杂交水稻根系特性与养分吸收的影响.湖南农业大学学报(自然科学版),2001,27(5):350-354
    [87]郭继勋,林海俊,姜世成等.不同草原植被碱化草甸土的酶活性.应用生态学报,1997,8(4):412-416
    [88]郭旭东,傅伯杰,陈利顶等.低山丘陵区土地利用方式对土壤质量的影响.地理学报,2001,56(4):447-455
    [89]郭正刚,张自和,肖金玉等.黄土高原丘陵沟壑区紫花苜蓿品种间根系发育能力的初步研究.应用生态学报,2002,13(8):1007-1012
    [90]韩方虎,沈禹颖,王希等.苜蓿草地土壤氮矿化的研究.草业学报,2009,18(2):11-17
    [91]何念祖.浙江省几种水稻土的酶活性及其与土壤肥力的关系.浙江农业大学学报1986,12(1):43-47
    [92]何跃军,钟章成等.石灰岩退化生态系统不同恢复阶段土壤酶活性研究.应用生态学报,2005,16(6):1077-1081
    [93]和文祥.土壤酶与重金属关系的现状.土壤与环境,2000,9(2):139-142
    [94]侯扶江,南志标,肖金玉.重牧退化草地的植被、土壤及耦合特征.应用生态学报,2002,13(8):915-922
    [95]侯杰,叶功富,张立华.林木根际土壤研究进展.防护林科技,2006,(1):30-33
    [96]侯喜禄,白岗栓,曹清玉.刺槐、柠条、沙棘林土壤入渗及抗冲性对比试验.水土保持学报,1995,9(3):90-95
    [97]黄昌勇.土壤学.北京:中国农业出版社,2000
    [98]黄艳霞.土壤微生物多样性分析技术研究进展.安徽农业科学,2009,37(32):15924-15925
    [99]黄志霖,傅伯杰,陈利顶.恢复生态学与黄土高原生态系统的恢复与重建问题.水土保持学报,2002,16(3):1-4
    [100]冀瑞瑞,张强,杨治平等.晋西北黄土高原丘陵区小叶锦鸡儿人工灌丛不同生育阶段土壤肥力特征研究.山西农业科学,2007,35(3):51-54
    [101]冀瑞瑞.晋西北黄土丘陵区小叶锦鸡儿灌丛土壤水分和肥力变化规律研究.山西大学,2007
    [1021贾丽.柠条研究进展.植物研究,2001,21(4):515-518
    [103]蒋齐,李生宝,潘占兵等.人工柠条灌木林营造对退化沙地改良效果的评价.水土保持学报,2006,20(4):23-27
    [104]金继运.土壤钾素研究进展.土壤学报,1993,30(1):94-101
    [105]李和生,马宏瑞,赵春生.根际土壤有机磷的分组及其有效性分析.土壤通报,1998,29(3):116-118
    [106]李菊梅,王朝辉,李生秀.有机质、全氮和可矿化氮在反映土壤供氮能力方面的意义.土壤学报,2003,40(2):233-457
    [107]李生荣.柠条平茬更新的生物量调查及综合利用.青海科技,2007,(5):12-13
    [108]李香兰.黄土高原不同林型对土壤物理性质的影响.林业科学,1992,(2):98-105
    [109]李香真,张淑敏,邢雪荣.小叶锦鸡儿灌丛引起的植物生物量和土壤化学元素含量的空间变异.草业学报,2002,11(1):24-30
    [110]李晓波,王德利.放牧对吉林羊草草原植物多样性的影响.东北师大学报自然科学版,1996,10(2):94-98
    [111]李晓林,曹一平.菌根和非菌根一叶草根际土壤磷钾变化.土壤通报,1992,23:180-182
    [112]李新宇,唐海萍,赵云龙等.怀来盆地不同土地利用方式对土壤质量的影响分析.水土保持学报,2004,18(6):103-107
    [113]李雪华,蒋德明,骆永明.小叶锦鸡儿固沙灌丛的肥岛效应及对植被影响.辽宁工程技术大学学报(自然科学版),2010,29(2):337-339
    [114]李永红,高玉葆.单嘧磺隆对土壤呼吸脱氢酶和转化酶活性的影响.农业环境科学学报,2005,24(6):1176-1181
    [115]李玉强,赵哈林,李玉霖等.科尔沁沙地不同生境土壤氮矿化/硝化作用研究.中国沙漠,2009,29(3):438-444
    [116]林益明,何建源,杨志伟等.武夷山甜槠群落凋落物的产量及其动态.厦门大学学报(自然科学版),1999,38(2):280-286
    [117]刘建军.秦岭火地塘林区主要树种根际微生态系统土壤性状研究.土壤侵蚀与水土保持学报,1998,4(3):52-57
    [118]刘建新.不同农田土壤酶活性与土壤养分相关关系研究.土壤通报,2004,35(4):523-525
    [119]刘世亮,介晓磊,李有田.土壤一植物根际磷的生物有效性研究进展.土壤与环境,2002,11(2):278-252
    [120]刘兴良.川西云杉人工林养分含量、贮量及分配的研究.林业科学,2001,37(4):10-18
    [121]刘耀宗,张经元.山西土壤.北京:科学出版社,1992
    [122]刘元.针叶树木中矿质元素的分布.世界林业研究,2001,14(1):15-20
    [123]刘增文,李雅素.黄土高原柠条林地土壤肥力与养分循环.生态学报,1997,16(6):27-29
    [124]刘芷宇.根际动态及其效应研究.土壤学报,1987,24(2):120-126
    [125]鲁如坤.土壤农业化学分析方法.北京:中国农业科学出版社,1999
    [126]陆景陵主编.植物营养学.北京:中国农业大学出版社,2000
    [127]陆文龙,曹一平,张福锁.根分泌的有机酸对土壤磷和微量元素的活化作用.应用生态学报,1999,10(3):379-382
    [128]律彬,谢明杰.各种果蔬Vc含量的比较.安徽农学通报,2009,15(06):25-29
    [129]马斌,周志宇,张彩萍等.超旱生灌木根际土壤磷的含量特征.草业学报,2005,16(3):106-110
    [130]马红梅,陈明昌,张强等.石灰性土壤上不同磷处理对柠条生长发育及磷有效性影响的研究.山西农业大学学报,2004,24(4):342-346
    [131]马红梅.石灰性土壤施磷、铁对柠条生长发育及根际土壤环境影响的研究.山西农业大学,2004
    [132]马子清.山西植被.北京:中国科学技术出版社,2000
    [133]孟亚利,王立国,周治国等.套作棉根际与非根际土壤酶活性和养分的变化.应用生态学报,2005,16(11):2076-2080
    [134]牛西午,丁玉川,张强等.柠条根系发育特征及有关生理特性研究.西北植物学报,2003a,23(5):860-865
    [135]牛西午,史清亮,张强等.山西柠条根瘤菌资源分布与生态学研究.西北植物学报,2003b,23(6):92 1-925
    [136]牛西午,张强,杨治平等.柠条人工林对晋西北土壤理化性质变化的影响研究.西北植物学报,2003c,23(4):628-632
    [137]牛西午.关于在我国西北地区大力发展柠条林的建议.山西农业科学,1999a,27(1):3-7
    [138]牛西午.柠条的栽培与利用.太原:山西科学教育出版社,1988
    [139]牛西午.柠条生物学特性研究.华北农学报,1998,13(4):122-129
    [140]牛西午.柠条研究.北京:科学出版社,2003
    [141]牛西午.中国锦鸡儿属植物资源研究—分布及分种描述.西北植物学报,1999b,19(5):107-133
    [142]潘瑞炽主编.植物生理学.北京:高等教育出版社,2001
    [143]裴世芳,傅华,陈亚明等.放牧和围封下霸王灌从对土壤肥力的影响.中国沙漠,2004,24(6):763-767
    [144]彭文英,张科利,陈瑶等.黄土坡耕地退耕还林后土壤性质变化研究.自然资源学报,2005,20(2):272-278
    [145]钦绳武,刘芷宇.土壤一根际微域区养分状况的研究:Ⅳ.不同形态氮素在根际的迁移规律.土壤通报,1989,26(2):117-123
    [146]邱莉萍,刘军,王益权等.土壤酶活性与土壤肥力的关系研究.植物营养与肥料学报,2004,10(3):277-280
    [147]邱扬,傅伯杰,王军等.黄土高原小流域土壤养分的时空变异及其影响因子.自然科学进展,2004,14(3):294-299
    [148]任雪.北疆绿洲—荒漠过渡带灌木“肥岛”效应特征及其环境学意义研究.石河子大学,2008
    [149]阮建云,马立锋,石元值.茶树根际土壤性质及氮肥的影响,茶叶科学.2003,23(2):167-170
    [150]沈慧,姜凤歧,杜晓军等.水土保持林土壤肥力及其评价指标.水土保持学报,2000,14(2):61-66
    [151]盛伟彤主编.人工林地力衰退研究.北京:科学出版社,1992
    [152]史德明,韦启潘,梁音等.中国南方侵蚀土壤退化指标体系研究.水土保持学报,2000,14(3):1-9
    [153]史竹叶.神木试区土壤水分资源状况,黄土高原水蚀风蚀交错带和神木试区的环境背景及整治方向.中科院西北水土保持研究所集刊,1993,18:132-21
    [154]苏永中,赵哈林,李玉霖.放牧干扰后自然恢复的退化沙质草地土壤性状的空间分布.土壤学报.2004b,41(3):369-374
    [155]苏永中,赵哈林,张铜会.几种灌木、半灌木对沙地土壤肥力影响机制的研究.应用生态学报,2002,13(7):802-806
    [156]苏永中,赵哈林,张铜会等.科尔沁沙地不同年代小叶锦鸡儿人工林植物群落特征及其土壤特性.植物生态学报,2004a,28(1):93-100
    [157]苏永中,赵哈林.科尔沁沙地不同土地利用和管理方式对土壤质量性状的影响.应用生态学报,2003,14(10):1681-1686
    [158]滕晓慧.不同年龄小叶锦鸡儿固沙群落土壤酶活性及微生物生物量的变化.生 态环境,2007,16(3):1030-1034
    [159]万忠梅.土壤酶活性因子研究进展.西北农林科技大学学报,2005,33(6):87-90
    [160]王百群,刘国彬.黄土丘陵区地形对坡地土壤养分流失的影响.水土保持学报,1999,(2):18-22
    [161]王德利,吕新龙,罗卫东.不同放牧密度对草原植被特征的影响分析.草业学报,1996,5(3):28-30
    [162]王恩荃.落实《决定》精神,加快干旱、半干旱地区灌木林发展.防护林科技,2004,1:22-24
    [163]王俊华,尹睿,张华勇等.长期定位施肥对农田土壤酶活性及其相关因素的影响.生态环境,2007,16(1):191-196
    [164]王娟,谷雪景,赵吉.羊草草原土壤酶活性对土壤肥力的指示作用.农业环境学报,2005,25(4):934-938
    [165]王莉,张强,牛西午等.黄土高原丘陵区不同土地利用方式对土壤理化性质的影响.中国生态农业学报,2007,15(4):53-56
    [166]王莉.晋西北不同土壤利用方式下土壤质量变化研究.山西大学,2007
    [167]王孟本,李洪建,柴宝峰.柠条的水分生理生态学特性.植物生态学报,1996,20(6):494-501
    [168]王孟本,李洪建.黄土高原人工林水分生态研究.北京:中国林业出版社,2001.1-38
    [169]王庆锁.我国北方干旱区草业的发展方略.中国草地,2001,23(3):67-691
    [170]王生芳,何世玉.柠条人工林地土壤肥力的评价.青海农林科,1998,(3):29-31
    [171]王卫卫,关桂兰,孔爱勤.河西走廊豆科植物结瘤固氮特性初步研究.西北植物学报,1997,17(4):450-457
    [172]王卫卫,胡证海,关桂兰.甘肃、宁夏部分地区根瘤菌资源及其共生固氮特性.自然资源学报,2002,17(1):48-54
    [173]王艳杰,邹国元,付桦等.土壤氮素矿化研究进展.中国农学通,2005,21(16):203-208
    [174]王玉魁,闫艳霞,安守芹.乌兰布和沙漠沙生灌木饲用营养成分的研究.中国沙漠,1999,19(3):280-284
    [175]吴钦孝,丁汉福,刘克俭等.黄土丘陵半干旱地区柠条根系的研究.水土保持通报,1989,9(3):45-49
    [176]吴仲民,卢俊培,杜志鹄.海南岛尖峰岭热带山地雨林及其更新群落的凋落量与贮量.植物生态学报,1994,18(4):306-313
    [177]武胜利,李志忠,肖晨曦等.灌丛沙堆的研究进展与意义.中国沙漠,2006,26(5):734-738
    [178]熊小刚,韩兴国.内蒙古半干旱草原灌丛化过程中小叶锦鸡儿引起的土壤碳、氮资源空间异质性分布.生态学报,2006,26(7):1678-1683
    [179]熊小刚,韩兴国.资源岛在草原灌丛化和灌丛化草原中的作用.草业学报,2006,15(1):9-14
    [180]徐炳成.半干旱黄土丘陵区沙棘和柠条水分利用与适应性特征比较.应用生态学报,2004,15(11):2025-2028
    [181]徐强,程智慧,孟焕文等.玉米-线辣椒套作系统中土壤养分与根际土壤微生物、酶活性的关系.应用生态学报,2007,18(12):2747-2754
    [182]徐阳春,沈其荣.有机肥和化肥长期配合施用对土壤及不同粒级供氮特性的影响.土壤学报,2004,4(1):87-92
    [183]许冬梅,崔慰贤,郭思加等.毛乌素沙地几种沙生灌木养分含量的动态.草业科学,2001,18(6):23-26
    [184]许光辉,郑洪元主编.土壤微生物分析方法.北京:农业出版社,1983:260-273
    [185]许明祥,刘国斌.黄土丘陵区刺槐人工林土壤养分特征及演变.植物营养与肥料学报,2004,10(1):40-46
    [186]薛梓瑜.旱生灌木根际及灌丛土壤中磷、钾变化特征研究.兰州大学,2009
    [187]严昶生.土壤肥力研究方法.北京:农业出版社,1998
    [188]杨承栋,焦如珍.杉木擦树根际土壤性质变化的研究.林业科学,1999,35(6):2-9
    [189]杨海君,肖启明,刘安元.土壤微生物多样性及其作用研究进展.南华大学学报(自然科学版),2005,19(4):21-26
    [190]杨万勤,王开运.森林土壤酶的研究进展.林业科学,2004,40(2):152-157
    [191]杨玉盛, 俞新妥,邱仁辉等.不同栽杉代数根际土壤肥力及生物学特性变化.应用与环境生物学报,1999,(3):254-258
    [192]杨玉盛,何宗明,邹双全等.格氏栲天然林与人工林根际土壤微生物及其生化特性的研究.生态学报,1998,18(2):20-23
    [193]杨治平,张强,周怀平.不同施磷水平对饲用柠条营养和产量的影响.草业学报, 2010,19(2):103-108
    [194]弋良朋,马健,李彦.荒漠盐生植物根际土壤盐分和养分特征.生态学报,2007,27(9):3065-3571
    [195]尹传华,冯固,田长彦等.塔克拉玛干沙漠北缘怪柳灌丛肥岛效应的变化规律及其生态学意义.北京林业大学学报,2008,30(1):52
    [196]曾曙才,苏志尧,陈北光等.植物根际营养研究进展.南京林业大学学报(自然科学版),2003,(06):79-83
    [197]詹媛媛,薛梓瑜,任伟等.干旱荒漠区灌木根际与非根际土壤氮素的含量特征.生态学报,2009a,29(1):59-66
    [198]詹媛媛.旱生灌木根际及灌丛土壤氮素含量特征研究.兰州大学,2009b
    [199]张成娥,陈小利.林地砍伐开垦对土壤酶活性及养分的影响.生态学报,1998,17(6):18-21
    [200]张崇邦,金则新,柯世省.天台山不同林型土壤酶活性与土壤微生物、呼吸速率以及土壤理化特性关系研究.植物营养与肥料学报,2004,10(1):51-56
    [201]张飞,陈云明,王耀凤等.黄土丘陵半干旱区柠条林对土壤物理性质及有机质的影响.水土保持研究,2010,17(3):105-109
    [202]张福锁,申建波,冯固等.根际生态学—过程与调控.北京:中国农业大学出版社,2008
    [203]张福锁.环境胁迫与植物营养.北京:北京农业大学出版,1993,373-381
    [204]张福锁.曹一平.根际动态过程与植物营养,土壤通报,1992,29(3):239-250
    [205]张福锁.植物根引起的根际pH值改变的原因及效应.土壤通报,1993,24(6):43-45
    [206]张宏,史培军,郑秋红.半干旱地区天然草地灌丛化与土壤异质性关系研究进展.植物生态学报,2001,25(3):366-370
    [207]张瑾,贾宏涛,盛建东.北疆荒漠植被梭梭林立地土壤特征及其空间变异性研究.新疆农业大学学报,2007,30(2):33-37
    [208]张俊华,常庆瑞,贾科利等.黄土高原植被恢复对土壤肥力质量的影响研究.水土保持学报,2003,17(4):38-41
    [209]张强,程滨,杨治平等.芦芽山鬼箭锦鸡儿灌丛营养特征及土壤养分分布规律.应用生态学报,2006,17(12):2287-2291
    [210]张强,杨治平等.晋西北黄土丘陵区小叶锦鸡儿人工灌丛营养动态特征研究. 水土保持学报,2006,20(3):66-69
    [211]张学利,杨树军,张百习.我国林木根际土壤研究进展.沈阳农业大学学报,2002,33(6):461-465
    [212]张彦东.落叶松根际土壤磷的有效性研究.应用生态学报.2001,(2):31-35
    [213]张宇清.梯田生物埂几种灌木根系的垂直分布特征.北京林业大学学报.2006,28(2):34-38
    [214]章家恩,刘文高,胡刚.不同土地利用方式下土壤微生物数量与土壤肥力的关系.土壤与环境,2002,11(2):140-143
    [215]赵斌,何绍江.微生物学实验.北京:科学出版社,2002
    [216]郑士光,贾黎明,庞琪伟等.平茬对柠条林地根系数量和分布的影响.北京林业大学学报,2010,32(3):64-69
    [217]中国土壤学会编.土壤农业化学分析方法.北京:中国农业科技出版社,1999
    [218]周道玮.锦鸡儿属植物分布研究.植物研究,1996,16(4):428-435
    [219]周海燕.科尔沁沙地主要植物种的生理生态学特性.应用生态学报,2000,11(4):587-590
    [220]周立三.中国农业地理.北京:科学出版社,2000,347-364
    [221]周志宇,张莉丽,高文星等.试论灌木是干旱、半干旱区草地恢复中重要的生物资源.草业科学,2007,24(12):19-21
    [222]周智彬,徐新文.塔里木沙漠公路防护林土壤酶分布特征及其与有机质的关系.水土保持学报,2004,15(5):10-15
    [223]朱春云,赵越,刘霞等.锦鸡儿等旱生树种抗旱性生理的研究.干旱区研究,1996,3(1):59-739