纳米磁性粒子动力学数值模拟与磁性液体密封研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性液体材料是一种由纳米磁性粒子通过表面活性剂分散于某种载液中而形成的性能稳定的胶体功能材料,是目前少数几种获得应用的纳米材料之一。其最主要的应用是在梯度磁场的约束下封堵密封间隙,即磁性液体密封。纳米磁性粒子多体微结构磁化动力学及其材料形态和磁场约束方法,是磁性液体及其各种高性能结构器件研制的基础。
     本文首先对纳米磁性液体材料的物理模型、微结构参数及实现方法进行了系统概述,通过真空蒸发实验进行了纳米磁性粒子的分子动力学特性分析与验证;而后利用分子动力学、磁场有限元和边界元等理论和方法,实现了纳米磁性液体磁化状态及多体动力学数值模拟;数值模型中考虑了纳米磁性粒子的布朗热运动、磁性粒子包覆层厚度、以及磁性粒子材料磁化非线性等多种实际因素的影响,并以磁性液体密封为典型实例分析了间隙梯度磁场对磁性液体的磁化作用,对现有密封聚磁结构磁场分布特性及所存在的问题进行了分析、改进与实验验证。
     真空条件下的蒸发实验表明,磁性液体材料以包覆了表面活性剂的纳米磁性粒子为基本粒子发生蒸发和气化。与其它数值模拟方法相比较,边界元方法是实现纳米磁性液体多体磁化动力学最佳方法,可精确反应动态响应时间、磁化状态、材料非线性、微结构动态序化过程、磁相互作用等有用信息,特别是可用于实现梯度复杂磁场对磁性液体的磁化作用分析。所进行的三粒子体系磁化状态、磁相互作用及动态序化过程数值模拟结果分别与ANSYS有限元数值模拟结果及磁偶极子相互作用势能理论预测结果一致;在微弱地磁场中,采用均值为0,均方差为2k_BTζ/τ的正态分布随机作用力模拟纳米磁性粒子的布朗运动时,其位移的模拟结果与分形理论所构造的正态分布位移函数完全相符。磁性液体的非线性饱和磁化曲线的数值模拟结果与实验测试结果基本吻合。
     在平行磁场中,随机分布的纳米磁性粒子将会经历短链序化和长链序化两个过程,短链序化时磁性液体磁化强度会有所下降,较长的磁性粒子链有优先生长并同时抑制短链生长的趋势。同一链上的磁性粒子之间以强磁场相链,并相互吸引,不同磁链之间以弱磁场相隔,并相互排斥,间距逐步增大;纳米磁性粒子的运动经历不完全序化加速和完全序化后减速运动的过程,粒子平均动能存在一个极大值;可根据磁性液体磁化强度及粒子的平均动能随时间的变化曲线来确定磁性液体的动态响应时间。
     磁性液体密封间隙磁场为复杂梯度磁场,间隙磁场的分布因聚磁结构的不同而不同。有限元分析结果表明,传统典型单侧多极齿聚磁结构在垂直于密封间隙面的方向上磁通密度分布会出现显著差异;对齿聚磁结构聚磁效果较好,间隙磁场分布形态相对一致,平行于密封间隙面的磁场梯度较单侧极齿提高一倍左右,且有利于克服转动离心力的作用,其密封性能和紧凑性得到了进一步的提高;新型叠加式磁性液体密封聚磁结构利用磁场的叠加使密封间隙路径上的有用磁通得到加强而使无用磁通得到减弱,与其它聚磁结构相比较其间隙路径上有着最大的磁场变化梯度,但是在垂直方向上很难形成平行的局部磁场。
     密封间隙梯度磁场对磁性液体多体磁化动力学数值模拟结果表明,磁性粒子在间隙磁场中同样会发生链状序化,所形成的磁链受到与密封间隙面平行和垂直两个方向的梯度磁场的作用。平行于密封间隙面的磁场梯度使磁链间距变小,而垂直于密封间隙面的梯度磁场使磁链向磁场强度较高的方向偏聚。单侧极齿聚磁结构中,磁链将向极齿侧发生偏聚,在极齿对侧发生磁性粒子的贫化,这是造成其静态密封性能下降的主要原因;对齿聚磁结构虽然在极齿附近也发生一定程度的偏聚,但极齿间隙中央区域属于相对平行的均匀磁场,使磁链相互排斥,磁链两端受到均衡梯度磁场作用,因而磁链不会向一个方向发生偏聚,结果使磁链在极齿间隙内以相对离散的方式分布,不会发生堆积,因而这种聚磁结构将具有较好的静态密封性能;叠加式磁性液体密封聚磁结构极齿间隙磁场在平行于密封间隙面的方向上梯度较大,因而磁链不会在极齿间隙中央区域相斥离散,由于磁链两端同时受到来自极齿附近梯度磁场的作用,而使相互拥挤和屏蔽的磁性粒子向两端极齿附近吸引和偏聚,最终造成极齿间隙中央区域的磁性粒子贫化,因而叠加式聚磁结构其静态密封性能较差,有待改进。三种聚磁结构的静态密封实验结果与上述数值模拟结果基本一致。
Magnetic fluid is stable colloidal function material containing nanometer magnetic particles coated with layers of surfactants and suspended in a liquid carrier. It is one of the few nano-materials in use now, mainly used for magnetic fluid sealing, which use magnetic fluid in the restriction of grade magnetic fields to stop up sealing gaps. The many body kinetic and the microstructure configuration control of magnetic fluids in the present of magnetic fields are the foundation for the development of high performance magnetic fluids and devices.
     Physical models, microstructure parameters and realization methods of the magnetic fluid materials are systematically summarized at first. The molecular dynamic characteristics of the magnetic nano-particles are studied and verified by evaporation tests of magnetic fluids in vacuum conditions. And then, based on the molecular dynamics, finite element methods and boundary element methods of magnetic fields, the numerical simulation of microstructure magnetization state and many-body kinetic of magnetic fluids in the presence of the magnetic fields are performed. Influence factors, such as, Brownian motions, surface coating layer thickness and nonlinear magnetization properties of magnetic nano-particles are considered in the numerical models. As a typical simulation example, the dynamic simulations of the magnetic fluid in the grade magnetic fields of magnetic fluid sealing gaps are carried out. The properties and shortcomings of the existing magnetic field concentration structures for magnetic fluid sealing are discussed, developed and experimentally verified.
     Evaporation tests show that magnetic fluids can be gasified in vacuum conditions with the surfactant coated magnetic nano-particle as elementary particles. In comparison, the boundary element method is the optimal method for the magnetization kinetic simulation of magnetic fluid, which can be employed to obtain such useful information as response time, magnetization states, non linear properties of the materials, the dynamic microstructure formation processes and magnetic interactions and so on, even in the complex grade magnetic fields. The simulation results of magnetization states, interaction between particles and dynamic microstructure formation processes of the three-particle systems are in agreement with the corresponding solutions calculated by finite element method software of ANSYS and interaction potential energy theory of dipole moments. On the bases of a normal distribution of dynamics force supposition, the statistic simulation results of the displacement and velocity of the Brownian particles are obtained, which are well consistent with the normal distribution formulas based on the fractional dimensionality theory of Brownian motion. What is more, the simulation results of non linear saturated magnetization properties of the magnetic fluid are also well fit with the testing results and Langevan curves.
     In the presence of parallel magnetic fields, randomly distributed magnetic particles will undergo short chain formation process and long chain formation and repelling process. During the short chain formation process, the magnetization strength of the magnetic fluids may descend to a low value. The relative long chains possess priority to collect the short chains near their ends and grow even longer; at the same time restrain the shorter chains to grow. The magnetic particles in the same chain connected by strong magnetic fields; different chains are separated by weak magnetic fields and repel each other, and the distances between them increased gradually. The magnetic particles are accelerated during short chain formation process and decelerate during long chain formation and repelling process. So, there exists a maximum value of mean kinetic energy of the magnetic particles. The response time can be determined according to the curves of magnetization vs. time or mean kinetic energy vs. time.
     The distribution of the magnetic fields in the magnetic fluid sealing gaps is complex and graded, and varied with different concentrating structures. Finite element solutions show that conventional magnetic fluid sealing structures, which possess single side pole teeth, result in notable flux distribution grade along the paths perpendicular to the sealing gaps surface. In comparison, the concentration effects of the structures with opposite pole teeth are very reasonable, distribution of the magnetic fields along the perpendicular direction to the sealing gap surfaces is very consistent, and the grade of the magnetic fields along the parallel direction is about two times that of the structures with single side pole teeth. Moreover opposite pole teeth can overcome the centrifugal forces applied on the magnetic fluid produced by high-speed rotation. Additive concentration structure, which is a new kind of magnetic fluid sealing design developed in this paper, can create two interference magnetic field periodically varying in strength along the sealing path, of which the directions are inverse but the modulus is the same. So the useful magnetic fields are increased and the useless magnetic fields are counteracted along the sealing path. In comparison, additive interference magnetic structure can create the largest magnetic field grade parallel to the sealing path; but it is difficult to create local parallel magnetic fields in the perpendicular direction in the sealing gaps.
     Dynamic simulations of the magnetic fluids show that, in the presence of complex and graded magnetic fields of the sealing gaps, chains or string aggregations are also formed. The forces applied on to the chains consisted of components perpendicular and parallel to the sealing gap surfaces. The magnetic field grades parallel to the sealing gap surfaces diminish the distance between the chains; the perpendicular component drives the chains move to the high magnetic field grade directions. For the structures with the single side pole teeth, the chains are segregated near the pole teeth areas, and make the opposite areas depleted. So the static magnetic sealing properties of the single side pole teeth are relatively poor. In the structures with opposite pole teeth, segregation near the pole teeth can also take place to some extent, but the chains is dispersed in the whole sealing gap areas, because the magnetic fields in the local areas of sealing gaps are relatively parallel and consistent, and the chains repel each other. Especially the forces applied to the chains by the opposite pole teeth are equilibrium, so they will not move from one side to another side. Accordingly the opposite pole teeth can suffer from high static sealing pressures. Distribution of the local magnetic fields in the sealing gap of additive concentrating structure are peaked along the parallel direction to the sealing path, so the repelling forces between the chains are relatively low, and the chains can not be well dispersed in the sealing gap. Owning to the forces applied from two end of every chain by the pole teeth, serious segregations will occur near the pole teeth areas, meanwhile the middle areas of the sealing gaps are depleted. Therefore, the static sealing properties of additive concentrating structures will be very poor, and further research should be done in the future. Static magnetic fluid sealing tests have been done with these three kinds of concentration structures, and the numerical prediction results are experimentally verified.
引文
[1] 周文运,永磁铁氧体和磁性液体设计工艺[B],成都:电子科技大学出版社,1991,268-351.
    [2] Frank C. Jacobs, Kensington, Magnetic testing material [P], US2179931, Nov. 6, 1936.
    [3] Alfred V., Magnetic testing material and mathod of preparing the same[P], US1960899, May 29,1934
    [4] Carl E. Betz,, Paste of paramagnetic particles for use in the examinination of paramagnetic materials for flaws by the magnetic method, [P] US2106882, Feb. 1,1938.
    [5] Terence B, Jordan, Fishkill,et al, Heat stable lithium-lead soap composition[P], US2859181, Nov. 4, 1958.
    [6] Andrew S. Gill, Jr., Magnetic fluid Mixtrue coupling[P], US2804955, Sept. 3, 1957.
    [7] Howard J. Findley, Chardon, Ohio, Magnetic drive [P], US2519449,Aug. 22, 1950.
    [8] Martin P. Winther, Magnetic drive structure[P], US2718946, Sept. 27,1950
    [9] Rwin J. Saxl, Harvard, Mass., Clutch with magnetic fluid [P], US2733792, Feb.7,1956
    [10] Frunk G. Logan, Kirkwoad, Mo., Magnetic fluid mixture clutch containing iron and nickel particles[P], US2736409, Feb. 28, 1956.
    [11] Arnold A. Bondi, Berkeley, Calif.,Magnetic fluids[P], US2751352, June 19, 1956.
    [12] Stephen Papell Solomon, Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles[P], US3215572, Nov. 02, 1965.
    [13] 温燕梅,磁性液体及其应用,广西化工[J],1996,30(4),35-36
    [14] Massart Rene, Magnetic fluids and process for obtaining them[P], US4329241,Nov. 05, 1982.
    [15] 伊藤博幸,磁性液体,工业材料[J],1982,30(7),17-21
    [16] R. E. Rosensweig, ferrofluid materials, International Science and Technology, July 1966, 45-56.
    [17] R.E. Rosensweig, J.W. Nestor, and R.S. Timmins, "Ferrohydrodynamic fluids for direct conversion of heat energy", Materials Association for Direct Energy Conversion, Proc. Symp. AlChE-IchemE, Ser 5, 1965, 104-118
    [18] Raj Kuldip, Aziz Lutful M, Method for manufacturing ferrofluid[P] EP0880149,1998-11-25
    [19] Kaiser Robert, FERROFLUID COMPOSITION [P], US3700595, Oct. 24, 1972
    [20] Khalafalla S, Reimers. G, MAGNETOFLUIDS AND THEIR MANUFACTURE[P], US3764540,Oct. 9, 1973.
    [21] Rosensweig Ronald E, Ferrofluid compositions and process of making same[P], US3917538, Nov. 4, 1975,
    [22] Reimers, et al., in the Bureau of Mines Technical Progress, Report No. 59, September, 1972
    [23] Khalafalla S; Reimers G, Magnetofluids and their manufacture[P], US3764540, 1973-10-09.
    [24] George W. Reimers, Burnsville, and Sanaa E. Khalafalla, Production of magnetic fluids by peptization techniques[p], US3843540, Patented Oct. 22,1974,
    [25] Khalafalla S. E. Magnetic Fluids, Chemical Technology[J], 1975, Vol.5(9), 540-546.
    [26] Massart Rene, Magnetic fluids and process for obtaining them[P], US4329241 1982-05-11
    [27] Yokouchi, Ferrofluid compositions[P], US5085789, February 4, 1992.
    [28] Ronald F. Ziolo, Webster. N. Y., Elizabeth C. Kroll. Clinton Township, et al, High magnetization aqueous ferrofluids and processed for preparation and use thereof[P], US5667716 Sep.16, 1997.
    [29] Kuldip Raj,, Lutful M. Aziz, Low cost method for manufacturing ferrofluid[P], US5958282, sep. 28, 1999.
    [30] 刘思林,藤荣厚,于英仪,金属磁性液体的制备,功能材料[J],31(4),369~370.
    [31] T. A. Manuel, T. A. Manuel etal, Metal-containing polymers prepared from carbonyl and inert gas mixtures[P], US3281403 Oct. 25, 1966
    [32] l. M. P. Winther, Dynanoelectric machine containing a magnetic fluid mixture[P], US2525571, Oct. 10, 1950
    [33] Thomas J. Black, William B. Mraz, On-site Fillable Ferrofluidic Seal, US5474302, 1995-12-12
    [34] Wakayama, Magnetic fluid[P], US4,608,186 August 26, 1986.
    [35] Wakayama, et al. Magnetic fluid[P] US 4,626,370, US4,624,797, December 2, 1986,
    [36] Henmi Takashi, Magnetic Fluid Composition[J], JP2239603, 1990-09-21.
    [37] Nakatani Isao, Production Device Of Fine Particle Colloid And Magnetic Fluid[P], JP3187907 1991-08-15
    [38] Kageyama Yoshiteru, Manufacture Of Magnetic Fluid[P], JP3292703 1991-12-24.
    [39] Nakatani Isao, Production Of Fine Colloid Particle Or Magnetic Fluid[P], JP5070784 1993-03-23
    [40] 于英仪,氮化铁纳米复合材料的研制和性能研究,钢铁研究总院,博士论文,2001/11
    [41] 李德才,磁性液体理论及应用,北京:科学出版社,2003/8
    [42] Takeishi Yoshiyuki, Magnetic Fluid[P], JP9027414, 1997-01-28
    [43] Wakayama, Magnetic fluid[P], US 4,626,370, December 2, 1986
    [44] Tsuda Shiro; Takayama Mayumi, Ferrofluid having improved oxidation resistance[P], US5879580 1999-03-09
    [45] Nakatani Isao, Manufacture Of Nitrided Metallic Magnetic Fluid[P], JP6132110 1994-05-13.
    [46] Nakatani Isao, Metallic Nitride Magnetic Fluid [P], JP6204026 1994-07-22
    [47] Nakatsuka Katsuto (Jp); Kim Young-Sam (Kr); Fujita Toyohisa (Jp); Atarashi Takafumi (Jp) Magnetic Fluid And Process For The Production Thereof [P], WO9914767, 1999-03-25
    [48] Y.S. Kim, K. Nakatsuka, T. Fujita, T. Atarashi Application of hydrophilic magnetic fluid to oil seal, Journal of Magnetism and Magnetic Materials[J], 201 (1999) 361-363
    [49] T. Atarashi, Y.S. Kim, T. Fujita, K. Nakatsuka, Synthesis of ethylene-glycol-based magnetic fluid usingsilica-coated iron particle, Journal of Magnetism and Magnetic Materials[J], 201 (1999) 7-10,
    [50] V. Socoliuc, D. Bica, and L. Vekas, Estimation of magnetic particle clustering in magnetic fluidsfrom static magnetization experiments, Journal of Colloid and Interface Science 264 (2003) 141-147
    [51] Adolph Razdowit, Z Rotary joint[P], US2557140, June 19, 1951
    [52] Ronald E, Rosenswelg Lexington, Mass, Magnetic fluid seals[P], US3620584, Nov. 16,1971
    [53] Fuse, Magnetic fluid seal device[P], US4,995,622, February 26, 1991]
    [54] Raj, et al., Long-life multi-stage ferrofluid seals incorporating a ferrofluid reservoir [P], US4,865,334, September 12, 1989.
    [55] Anzai, Magnetic fluid seal[P], US6,672,592, January 6, 2004
    [56] Mikhalev etal., Magnetic fluid seal apparatus for a rotary shaft[P], US5954342, Sep.21, 1999.
    [57] Gowda; Hanumaiah L., High-pressure ferrofluid seal apparatus[P],US4527805, July 9, 1985.
    [58] Black, Jr, Thomas J. Onsite tillable ferrofluidic seal[P], US5,560,620, October 1, 1996
    [59] Heshmat; Hooshang, Plural fluid magnetic centrifugal seal, US4,335,885, June 22, 1982.
    [60] Pinkus Oscar, Ferrotin magnetic seal with opposed fin-like projections[P], US4,440,402, April 3, 1984.
    [61] Sato; Kimio Magnetic fluid sealing device[P], US4,605,233, August 12, 1986.
    [62] Bras, Johan C. M., Sealing and friction bearing unit containing a magnetic fluid[P], US5,100,159, March 31, 1992.
    [63] Ezekiel; Frederick D., Magnetic disc liquid supporting[P], US4,526,381, July 2, 1985.
    [64 Yokouchi, et al., Magnetic fluid seal apparatus[P], US5,271,631, December 21, 1993.
    [65] 李德才,磁性液体密封机理及实验研究,北京航空航天大学硕士论文,1992.
    [66] 王瑞金、楼允洪,密封间隙对磁流体耐压能力的影响,真空[J],2001,36(2).42-44
    [67] 王俊勇、蒋生发,用有限元方法合理设计磁流体密封结构,润滑与密封[J],1999(5).15-17,14
    [68] 解奉生、宋华秀,氨水泵磁流体密封,润滑与密封[J],1996(3).21-23.
    [69] 刘若茜、董增仁,磁流体密封磁聚焦结构的有限元分析,电工电能新技术 [J],1991(2).41-46.
    [70] Zenon Kazenas, Radioactive magnetic flaw detection composition and process for making same[P], US3155622, Nov. 3, 1964.
    [71] W.D.Murphy, V. Rokhlin, M. S. Vassiliou, Acceleration methods for the iterative solution of electromagnetic scattering problems, Radio Science, 1993, (28(1), 1-12.
    [72] R. T. Bonnecaze and J. F. Brady, Dynamic simulation of an electrorheotogical fluid, J. Chem. Phys. 1992, 96(3), 2183-2202
    [73] H. J. H. Clercx and G. Bossis, Many-body electrostatic interactions in electrorheological fluids, Physical Review E, 1993, 48(4), 2721-2738
    [74] Mark Gross and Stephen Kiskamp, New long-range interaction between dipolar chains, Physical Review Letters, 1997, 79(13), 2566-2569.
    [75] Mayer, et al,. Method and device for separating particles or molecules by migration through a ferrofluid[P], US 6,610,186, August 26, 2003.
    [76] Van Schyndel, Magnetic fluid loudspeaker assembly with ported enclosure[P], US5,757,946, May 26, 1998
    [77] Max L. Libman, Falls Church, Va,.Magnetoresistor[P], US2500953, Mar. 21, 1950.
    [78] Hong, Magnetic fluid thin film displays, monochromatic light switch and tunable wavelength filter[P], US5,948,321, September 7, 1999
    [79] Seo, Magnetic fluid display panel and method of making the pane[P]1, US5,912,652, June 15, 1999
    [80] Overby, Ⅲ, James W, Ferrofluid transducer[P], US4,308,603, December 29, 1981
    [81] 徐来自,人室温附近的稀土磁液体材料及其磁致冷设备[P],CN1368743A,2002年9月11日,
    [82] 邹继斌,陆永平,磁性流体密封原理与设计[B],fundamentals and design method of magnetic fluid seals[B],北京:国防工业出版社,2000年8月
    [83] Hwang, Y.H. AND X.L. Wu, Quasi-two-dimensional domain structures of magnetic particles in a static field, Phys. Rev. E[J], 49(4), 1994,3102-3108,
    [84] Hwang, Y.H. and X.L. Wu, Dynamics of glasslike transitions in a quasi two-dimensional system, Phys. Rev. lett[J]. 74(12), 1995,2284-2287,
    [85] Lemaire, E., Y. Grasselli and G. Bossis, Field induced structure in magneto- and electro-rheological fluids, J. Phys [J]. II France, 2, 1992, 359-369.
    [86] Lawrence, E.M., M.L. Ivey, Field-induced structure of confined ferrofluid emulsions, Intl. J. of Mod. Phys[J]. B8(20-21), 1994,2765-2777],
    [87] Mou, T., G.A. Flores, J. Liu, J. Bibette and J. Richard, The evolution of field-induced structure of confined ferrofluid emulsions, Intl. J. of Mod. Phys. [J] B8(20-21), 1994, 2779-2787
    [88] Lozovik, Y.E. and V.A. Mandelshtam, 2D dipole system in astrong field, Phys. Lett.[J] A 138(4,5), 1989, 204-207
    [89] Menear, S., A. Bradbury and R. W. Chantrell, A model of theproperties of colloidal dispersions of weakly interacting fine ferromagnetic particles, J. Magn. Magn. Mat.[J] 43, 1984, 166-176
    [90] Zubarev, A. Y. and A.O. Ivanov, Kinetics of a magnetic fluid phase separation induced by an external magnetic field, Phys. Rev.[J] E55(6), 1997, 7192-7202
    
    [91] Xu, M. and P.j. Ridler, Linear dichroism and birefringence effects in magnetic fluids, J. Appl. Phys.[J] 82(1), 1997, 326-332.
    [92] Shulman,Z. P., V. I. Kordonsky, E. A. Zaltsgendier, I. V. Prokhorov, B.M. Khusid, et al., Physical properties and dynamics of magnetorheological suspensions, Int. J. Multiphase Flow [J], (1986),12(6), 935-955
    [93] Liu, J., E.M. Lawrence, A. Wa, M.L. Ivey, G.A. Flores, K. Javier, J. Bibette, Field-induced structures in ferrofluid emulsions, Phys. Rev, Lett.[J], (1995) 74(14), 2828-2831.
    
    [94] Zhu. Y, M. Gross and J.Liu, Nucleation theory of structure evolution in magnetorheological fluid, J. of Intel. Mat. Sys. And struct.[J], (1996) 7, 594— 598.
    [95] Mohebi, M., N. Jamasbi and J. Liu, simulation of the formation of nonequilibrium structures in magnetorheological fluids subject to an external magnetic field, Phys. Rev. E[J], (1996) 54(5), 5407-5413.
    [96] M. Fermigier and A.P. Gast, J. Colloidal interface sci. (1992)154, 522
    [97] Farida Grinberg, Rainer Kimmich, Surface effects and dipolar correlations of confined and constrained liquids investigated by NMR relaxation experiments and computer simulations, Magnetic Resonance Imaging, 2001, 19, 401-404
    [98] B. Berkovski, V. Bashtovoy, Magnetic Fluids and Applications Handbook,Begell House, New York, 1996.
    [99] Stefan Odenbach Thomas Rylewicz, Michael Heyen, A rheometer dedicated for the investigation of viscoelastic effects in commercial magnetic fluids, Journal of magnetism and magnetic materials[J], 1999, 201,155-158
    [100] C. Flament, S. Lacis, J.-C. Bacri, A. Cebers, S. Neveu, and R. Perzynski, Measurements of ferrofluid surface tension in confined geometry, Physical Review E.[J], 1996, 53, (5), 4801~4806,
    [101] Andrej Yu. Zubarev, Laarisa Yu. Iskakova, Andrej V. Yushkov, Dynamical properties of dense magnetic suspensions, Journal of Magnetism and Magnetic Materials, 1999, 226-229
    [102] Adriana de Souza E Silva, Kinetics and Dynamics of magnetic suspensions under applied magnetic fields, A dissertation submitted to the Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy, Baltimore, Maryland-USA, 1998
    [103] 周寿增等人,磁性液体磁特性的Monte Carlo方法模拟研究,北京科技大学学报[J],1995,17(6),529-533.
    [104] 张齐,王建华等人,磁性液体三维蒙特卡洛模拟,自然科学进展—国家重点实验室通讯[J],1995,5(1),105~113
    [105] Joanne H. E. Promislow and Alice P. Gast, Aggregation kinetics of paramagnetic colloidal particles, Chem. Phys.[J], 1995, 102 (13), 5492~5498.
    [106] K.T. Wu, Y.D. Yao, Dynamic structure study of Fe_3O_4 ferrofluid emulsion in magnetic field, Journal of magnetism and magnetic magerials, 1999, 201, 186-190.
    [107] Alexey O. Ivanov, Andre J Yu. Zubarev, Kinetics of a ferrofluid phase separation induced by an external magnetic field, Journal of Magnetism and Magnetic Materials, 1999, 201,222-225
    [108] H.V.Ly, K.Ito, H.T.Banks, Dynamic simulation of the temporal response of microstructure formation in magnetorheological fluids, International journal of modem physics B[J], 2001, 15, (6&7) 894-903,
    [109] Toshihiko Shiraishi, Shin Morishita, Henri P. Gavin, Estimation of Equivalent Permeability in Magnetorheological Fluid Considering Cluster Formation of Particles, Journal of Applied Mechanics, MARCH 2004, 71,201-207
    [110] P. Meakin, Phys. Rev. Lett.[J], 1983, 51, 1119
    [111] M. Kolb, R. Botet, and R. Jullien, Phys. Rev. Lett.[J], 1983,.51, 1123
    [112] Vicsek and Family T. Vicsek and F. Family, Phys. Rev. Lett.[J], 1984, 52, 1669.
    [113] S. Miyazima, P. Meakin, and F. Family, Phys. Rev. A [J], 1987, 36, 1421.
    [114] David Kittipoomwong and Daniel J. Klingenberg, Simulation of bidisperse magnetorheological fluids, International Journal Of Modern Physics B[J], 2002, 16 (17&18) 2732-2738,
    [115] 李国斌,宋顺成等,典型磁性液体密封磁场有限元分析,润滑与密封 167(1),2005/1,79-81
    [116] 李国斌,宋顺成等,对齿聚磁结构特性分析,兵器材料科学与工程,28(6),2005/11,65-70
    [117] Chantrell, G.N. Coverdale, R.W. Chantrell, A. Satoh, R. Vietch, J. Appl. Phys. 1997, 81, 3818.
    [118] Jibin Zou, Xuehui Li, Yongping Lu, Numerical analysis on the action of centrifuge force in magnetic fluid fotating shaft seals, Journal of Magnetism and Magnetic Materials[J], 2002, 252, 321-323.
    [119] V.V. Murashov, G.N. Patey, J. Chem. Phys. 2000, 112,9828
    [120] D.J.Klingenberg, F. van Swol, and C. F.Zukoski, Dynamic simulation of electrorheological suspensions, J. Chem. Phys., 1989, 91, 7888-7892
    [121] Yoshihisa Enomoto, Katsumi Oba, Masafumi Okada, Simulation study on microstructure formations in magnetic fluids, Physica A [J], 2003, 330, 496-506
    [122] Toshihiko Shiraishi, Shin Morishita, Henri P. Gavin, Estimation of Equivalent Permeability in Magnetorheological Fluid Considering Cluster Formation of Particles, Journal of Applied Mechanics[J], 2004, 71(3), 201-207
    [123] 夏平畴,永磁机构[B],北京工业大学出版社,2000
    [124] Janine Larie Fales, A three dimensional study of nonlinear particle magnetization in an idealized magnetorheological fluid, Dissertation of Doctor of philosophy, University of California, 2001
    [125] H. V. Ly, F. Reitich, M. R. Jolly etal, Simulations of particle dynamics in magnetorheological fluids, Journal of Computational Physics [J], 1999, 155, 160~177
    [126] 项红卫,流体的热物理化学性质——对应态原理与应用[B],北京:科学出版社,2003.
    [127] 赵凯华,罗蔚茵,热学[B],北京:高等教育出版社,2002,26~86,263-282
    [128] 江龙,胶体化学概论[B],北京:科学出版社,2002,17~20
    [129] 柳学全,周寿增,王润,磁流变液磁性能的计算机随机模拟方法研究,计算物理[J],1997,14(1) 13~18
    [130] 李洪涛、牛熠,电流变液的分子动力学模拟,东莞理工学院学报[J],1999,6(1) 29~32
    [131] 杨仕清,龚捷,张万里等,磁流变智能液场致微结构变化的Monte Carlo模拟,原子与分子物理学报[J],1998,15(3),411~415
    [132] 李俊凤,吴奇久,王倩等,零磁空间对金黄仓鼠脑中几种神经递质的影响,生物化学与生物物理进展[J].2001,28(3),358-361
    [133] James E. Martin, Kimberly M. Hill, and Chris P. Tigges, Magnetic-field-induced optical transmittance in colloidal suspensions, Physical Review E[J], 1999, 59(5), 5676~5692.
    [134] B. Bossis, the rheology of Brownian suspensions J. chem. phys.[J], 1989, 91(3), 1866-1874.
    [135] Chantrell, R. W., A. Bradbury, J. Popplewell and S.W.Charles Particle cluster configuration in magnetic fluids, J. Phys. D: Appl. Phys. [J], 1980,13, 119~122
    [136] H.V. Ly, K. Ito, H. T. Banks, M.R.Jolly, Dynamic simulation of the temporal response of microstructure formation in magnetorheological fluids, International Journal of Modem Physics B[J], 2001, 15(6 & 7), 894-903
    [137] M.Mohebi and N. Jamasbi, G.A.Flores and Jing Liu, Numerical study of the role of magnetic field ramping rate on the structure formation in magnetorheological fluids, International Journal of Modern Physics B[J], 1999, 13(14, 15 & 16), 2060-2067
    [138] Sonia Melle, Oscar G. Calderon, Miguel A. Rubio, Rotational dynamics in dipolar colloidal suspensions: video microscopy experiments and simulations results, J. Non-Newtonian Fluid Mech. 2002, 102 135-148.
    [139] 刘娟芳,曾丹苓,刘朝,王德明,工程热物理学报[J],2004,25(2),205-207
    [140] I.Abu-Aljarayesh, Sh.Migdadi, Numerical calculations of the entropy and magnetization of magnetic fluids with chain aggregates, Journal of Magnetism and Magnetic Materials[J], 1999, 191, 174-180]
    [141] 柳玉敬,非线性静磁场的边界元解法,哈尔滨工业大学博士论文,1988/10/30
    [142] 张世伟、杨乃恒,用于密封液体的磁流体转轴动密封,真空[J],1999(1).36-39
    [143] 张瑗、张建斌,磁流体密封的磁场分析,润滑与密封[J],2002(4).24-26,28
    [144] B.M. Berkovsky, M.S. Krakov, S.G. Pogirnitskaya, Influence of Axisymmetric Flow Structure on Energy Dissipation in a Ring-shaped Layer of Magnetic Fluid, Journal of Magnetism and Magnetic Materials[J], 1995, 149, 101-103.
    [145] Vladimir V. Murashov and B. N. Patey, Structrue formation in dipolar fluids driven by rotation fields, Journal of Chemical Physics, 2000, 112(22), 9828-9833
    [146] Hyo S. Lee, I. Nakatani, On the chemical stability of iron-nitride magnetic fluids in atmospheric conditions, Journal of magnetism and Magnetic Materials 1999, 201, 23-26.
    [147] 邹继斌,尚静,孙桂瑛,磁流体密封压差的数值计算,摩擦学学报,2000,20(1),46-49。
    [148] 赵国伟,池长青,王之珊,矩形齿磁流体密封装置的磁场计算,北京航空航天大学学报,2000,26(4),447-450。
    [149] Yoshihisa Enomoto, Katsumi Oba, Simulation of structures and their rheological properties in electrorheological fluids. Physica A 2002, 309, 15-25.