高炉喷吹煤粉催化强化燃烧机理及应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于国家对钢铁行业节能减排要求的不断严格和企业炼铁成本压力的不断加大,优化高炉效能成为提高钢铁企业竞争力的重要途径。其中,高炉喷煤是优化高炉原燃料结构,降低原燃料消耗的重要措施,该措施不但能节约炼铁成本,还可降低炼焦工艺对环境的污染。因此,提高高炉煤比已成为钢铁企业共同追求的目标。喷吹煤粉在风口前的燃烧率是目前限制喷煤量提高的决定性因素。研究者已采用诸多措施强化喷吹煤粉在此区域的燃烧。尽管如此,目前我国钢铁企业的高炉平均煤比与国外先进水平仍存在一定差距。
     在化石燃料燃烧涉及的相关领域,催化燃烧技术是改善燃料燃烧性能的重要手段。尽管煤的催化燃烧研究工作起步较晚,但近年来发展迅速。根据高炉喷吹煤粉的燃烧特点和未燃煤粉生成原因,在喷吹煤中加入适量添加剂可提高燃料利用效率,改善料柱透气/液性,提高喷煤量。将催化燃烧技术应用于高炉喷煤工艺前需要评估的核心问题是添加剂的作用效果和适用性,即高炉喷煤添加剂既要有催化强化煤粉燃烧的功效,又要对高炉炼铁无富集损坏作用,还应具有较低廉的成本。而高炉喷吹煤粉的催化强化燃烧机理研究可为添加剂的选择提供理论依据。
     本文围绕高炉喷吹煤粉催化强化燃烧机理及应用基础,采用实验和理论计算相结合的方式开展了催化燃烧行为及动力学、催化燃烧过程中的氧传递/释放机理、高温催化燃烧机制及复合添加剂及应用基础等方面的研究。
     采用以热分析法为主的实验方法,研究了不同添加剂对煤粉的催化强化燃烧行为及机理。首先,研究了不同升温速率对煤粉燃烧规律的影响,建立了煤粉燃烧过程的非等温动力学机理模型;在此基础上,考察了适合高炉喷吹的典型催化剂对煤粉燃烧特征和动力学参数的影响规律,并根据实验现象分析了产生此规律的原因。基于喷吹煤粉燃烧特点,发展了喷煤添加剂的种类:①经筛选和热分析实验得出含有Fe2O3、CaO等催化活性物质的转炉除尘灰在8种含铁冶金粉料中的助燃催化效果最佳;②基于过氧化钙分解温度(362~456℃)与煤粉热分解温度相近,提出以过氧化钙作为复合添加剂配方组分的思路,通过实验研究表明过氧化钙在煤粉燃烧过程具有分解释氧、改善半焦结构和催化半焦燃烧的多重作用,对促进煤粉燃烧反应性和提高燃烧效率作用效果明显。
     采用基于密度泛函理论(DFT)的第一性原理(First principles)系统地研究了CaO、-Fe2O3等催化剂在强化煤粉燃烧过程中促进氧传递的机理过程。研究结果表明:①CaO(001)面的Ca-O桥键位、Fe2O3(0001)面及Fe2O3(1102)面的氧空穴位、FeO(001)面的Fe原子上方是催化反应的活性位,O2可在这些位置稳定吸附并生成活性氧物种;②C或CO优先与生成的活性氧物种反应,产物的脱附过程容易进行;③Fe2O3(0001)面及Fe2O3(1102)面的氧空穴生成原因为表面被C或CO还原。解释了催化剂促进碳-氧反应的微观机理,丰富了煤粉催化燃烧机理关于“氧传递理论”内容。
     利用滴管炉(DTF)模拟高炉风口喷吹煤粉的快速升温过程,考察了三种催化剂对煤粉燃烧率和气体产物组成的影响。结果表明:催化剂对烟煤的催化活性顺序为:CaO> Fe2O3> MnO2,对无烟煤的催化活性顺序为:Fe2O3> CaO> MnO2;催化剂对无烟煤的催化作用明显优于烟煤。通过比较分析添加催化剂前后未燃煤粉的微观结构、微晶结构和反应性变化,解释了快速升温条件下的煤粉催化燃烧机制为:①催化剂促进半焦表面和内孔的碳氧化学反应进行,加快内孔的塌陷、交联、破碎和粒径缩小速度;②催化剂加快了半焦的不饱和脂肪类结构燃烧,使未燃煤粉中脂肪类结构比例降低,晶格尺寸增加,燃烧后期碳原子有序性排列趋势增强。通过热分析结果发现,催化燃烧生成的未燃煤粉的气化反应性也高于普通的未燃煤粉,有利于未燃煤粉在高炉内的后续消耗。
     针对喷吹煤粉燃烧产物在高炉内的衍变规律,采用FactSage软件对催化燃烧产物的高温熔融及粘温特征进行了理论计算,通过实验考察了燃烧产物对焦炭性质的影响。结果表明:①Fe2O3和CaO在原煤中添加量低于1.5%条件下,降低了煤灰全液相温度和粘度。②煤粉燃烧产物在焦炭表面均不润湿,但含有催化剂的煤灰(简称“催化煤灰”,下同)对焦炭的侵润性强于原煤灰。③未燃煤粉与焦炭表面反应较弱,对焦炭表面形貌影响不大;原煤灰与焦炭反应导致焦炭表面孔径增加,对焦炭结构影响只停留在焦炭表面及孔隙入口处;催化煤灰熔融后则会浸入焦炭内部,与焦炭反应后造成焦炭孔径增加。④原煤灰和未燃煤粉降低了焦炭的反应性;催化煤灰则提高了焦炭的反应性,其中添加Fe2O3的影响强于添加CaO。⑤高炉喷煤催化强化燃烧应用中应考虑喷吹煤自身的性质,使用灰熔点高且灰分流动性较差的煤粉,并应控制添加剂的加入量。
     采用实验室扩大的喷煤设备分别进行了3组分和含有转炉除尘灰的4组分复合添加剂的研制。由Fe2O3、CaO2、CaO组成的三组分添加剂按最佳配比添加后,对高炉喷吹煤粉的燃烧具有良好的催化强化效果;采用转炉除尘灰替代部分化学试剂Fe2O3后,在添加量为0.6%条件下,可提高煤粉燃烧率8.94%。利用COMSOLMultiphysics多物理场耦合仿真软件对加入复合添加剂后煤粉燃烧速率、温度、气体组分进行了数值模拟计算。分析了本采用催化强化燃烧技术对高炉生产相关指标的影响。本研究成果对强化高炉喷吹煤粉燃烧具有较好的指导意义。
Due to the higher requirements of government on energy conservation andemission reduction for iron and steel industry as well as the cost increase of ironmaking,optimizing energy efficiency of BF become an important measure for improving thecompanies’ competiveness. Pulverized coal injection (PCI) is a primary solution foroptimizing the structure of fuels and reducing the fuels consumption. This technologycould not only benefit the cost saving for ironmaking process, but could reduce thepollution of the environment from coke making process. Thus, increasing the PCI rate isthe objective for iron and steel companies. The burnout rate of pulverized coal (PC) inthe tuyere and raceway is an especially important restriction in BF. Researchers takemany measures to enhance the PC combustion in these zones. However, there arecertain gaps for China in PCI rate when compared with international advanced levels.
     Catalytic combustion is an important technique for utilization of fossil fuels.Although the research of catalytic combustion on coal started late, it developed rapidlyin recent years. Depending on the features of PC combustion in BF and the generationfor unburnt char (UBC), adding an adequate additive in the PC before injection into theBF could increase the utilization efficiency of fuel, and improve the gas/liquidpermeability of charging column, leading to a higher PCI rate. The effect and adaptationof additives are the innermost core that need to be evaluated before application ofcatalytic combustion for PCI coal. The PCI additive should have these featuresincluding obvious catalytic effect, no negative on iron-making process and inexpensive.The research results of catalytic combustion mechanism of PCI coal could provide abasis for selecting the PCI additives.
     This paper centered on the research target of catalytic combustion-ralted issues andits foundamental application on PCI technology. A careful theoretical analysis and anumber of experiments were carried out for investigating the catalytic combusitionbehavior, oxygen reserve/transmit during catalytic combusiton process, catalyticmechanism at high temperature, and compound additives for application in PCI.
     Firstly, the catalytic effect of different of additives on pulverized coal combustionwas investigated by Thermal analysis (TA). The effect of heating rate on pulverized coalcombustion process was investigated, and the isoconversional and Melak method is applied to establish the pulverized coal kinetics model. Combustion characteristic andkinetic study was carried out for investigating the typical catalyst, and the experimentalphenomena was explained by the microcosmic mechanism. Two novel additives wereproposed and the catalytic mechanism was analyzed:①Due to the active compoundin the dust such as Fe2O3, CaO and its special microstructure, BOF dust is the bestsubstance for catalytic combustion in the eight iron-containing powder;②Due to thedecomposition temperature of CaO2approached the coal pyrolysis, CaO2supports thecoal combustion based on its three effects, including the released oxygen, improving thechar morphology and catalyzing char combustion.
     To solve the insufficiency understand of the “oxygen transmit theory”, a Firstprinciple study of CaO,-Fe2O3and its derivative-FeO on catalytic combustion basedon density functional theory (DFT) was employed. The storage/transmit oxygen lawwas proposed based on DFT, and the results showed that:①The top of Ca-O bonds ofCaO(001) surface, the oxygen vacancies of Fe2O3(0001) and Fe2O3(1102) surface, andtop of Fe atoms on FeO(001) surface are the catalytic active sites, where have strongability of adsorption of O2result in generation of active oxygen species;②The carboncluster and CO preferentially reacted with these active oxygen species, and the productscould easily desorbed from catalytsts surface;③The reduction of Fe2O3(0001) andFe2O3(1102) surface by C and CO, leading the generation of active oxygen species.Then the catalytic route and discipline of oxygen reserve/transmit were proposed, andoxidation reaction mechanism was analyzed.
     In order to investigate the influences of applying catalysts on PCI and BFoperations, the catalytic combustion was simulated by using a drop tube furnace (DTF),and variation of structures as well as the reactivity of unburnt chars (UBC) wereexamined. For bituminous, the relative active sequence of catalysts to the burnout ratewas: CaO> Fe2O3> MnO2. For anthracite, it as follows: Fe2O3> CaO> MnO2. Ingeneral, these three catalysts exhibited better catalytic effect on anthracite thanbituminous coal. The catalytic features can be analyzed by these aspects:①Thestructural study shows that a decrease in particle size and surface area of unburnt charsformed form catalytic combustion, implying that the chemical reactions on char particleand pore surface were enhanced greatly by catalysts;②the X-ray diffraction analysisshows that chars became more ordered with catalysts addition. Nevertheless, the TGAand kinetic study results indicates that unburnt chars formed from catalytic combustionstill have a higher reactivity than pure unburnt char, these results imply that the catalytic combustion in PCI operation facilitates the combustion process of pulverized coal inraceway, as well as the following consumption of unburnt char out of raceway.
     To analysis the catalytic products in the following evolution in BF, the fusion andviscosity were investigated by the FactSage software, and the effect of products on cokeproperties was discussed based on experiment. It can be found that:①Fe2O3and CaOcould decrease the liquid temperature and viscosity below the1.5%of addition in coal;②The coal combustion products has not wettability on the coke surface, however, thecatalytic combustion product could infiltrated in the coke surface;③The reactionbetween UBC and coke is slow, therefore, there was little change on the morphology ofcoke. The pore diameter increased by coal ash, however, the effect only appeared on theentrance of pores and coke surface. The catalytic product could enter into the inside ofcoke, leading to the pore diameter increase.④The reactivity of coke prepared by coalash and UBC was decreased, while the catalytic products increased the coke reactivity,and this effect of Fe2O3is more remarkable than CaO.⑤Based on this results, itshould consider the intrinsic property of PCI and control the addition.
     Finally, a three component additive and a four component additives weredeveloped by the expand experiment. In the three component additive, the bestproportion of Fe2O3、CaO2and CaO was presented, which has obvious effect on PCIcoal combusion. In addition, when part of Fe2O3was replaced by BOF dust, thecombustion rate was increased by8.94%at the addition content of0.6%. The softwarewas used to forecasting the effect of catalytic combustion on the properties of tuyereand raceway, such as combustion kinetics, temperature, and gas composition. A forecastabout the operating parameter of BF after adopting the technique of catalyticcombustion was presented.
     To sum up the above results, in this paper, author carried out an exploratoryresearch on the catalytic combustion of PCI coal, and proposed a complex additivewhich is suitable for BF. Moreover, the influence of catalytic combustion on BFoperation was analyzed. These results could give a guidance on the combustionenhancement of PCI.
引文
[1]王筱留.提高高炉喷煤量的措施[J].鞍钢技术,2007,343(1):1-6.
    [2] John G. M., John S. T., Harold R.. Toward and understanding of coal combustion in blastfurnace tuyere injection [J]. Fuel,2005,84(10):1229-1237.
    [3]金玉喜.世界高炉喷煤技术新发展[J].包钢科技,1992,(2):8-14.
    [4]马继波,方贻留.我国高炉喷煤技术的发展[J].山东冶金,2009,31(1):9-16.
    [5]温大威.中国高炉喷煤史回顾[J].宝钢技术.2005(1):6-9.
    [6]徐万仁,李肇毅,郭艳玲.宝钢1号高炉经济喷煤比生产实践[J].炼铁2010,29(1):29-31.
    [7]余水生,韦韬,黄玉梅,廖玉通.提高高炉喷煤比的措施[J].柳钢科技,2010(2):11-20.
    [8]金艳娟.高炉喷煤技术[M].北京:冶金工业出版社,2005.
    [9] Lu L., Sahajwalla V., Harris D.. Coal char reactivity and structural evolution duringcombustion-Factors influencing blast furnace pulverized coal injection operation [J].Metallurgical and Materials Transactions B,2001,32(5):811-820.
    [10] Leimalm U., Lundgren M., kvist L., et al. Off-gas dust in an experimental Blast Furnacepart1: characterization of flue dust, sludge and shaft fines [J]. ISIJ International,2010,50(11):1560-1569.
    [11] Borrego A.G., Osório E., Casal M.D., et al.. Coal char combustion under a CO2-richatmosphere: implications for pulverized coal injection in a blast furnace [J]. Fuel ProcessingTechnology,2008,89(11):1017-1024.
    [12] Chung J. K., Han J. W., Lee J. H.. Coke properties at tuyere level in Blast Furnace withpulverized coal injection [J]. Metals and Materials,1996,2(1):1-7.
    [13] Goto K., Murai R., Murao A., et al. Massive combustion technology of solid fuels injectedinto Blast Furnace [C]. International Blast Furnace Lower Zone Symposium,2002, Australia.
    [14] Shen Y., Shen F., Zhu M., et al. New process for pulverized coal injection into Blast Furnace
    [C]. International BF Lower Zone Symposium,2002, Australia.
    [15]吴铿,陈洪飞,徐万仁,等.高喷煤比时高炉炉尘灰中含碳物质研究[J].北京科技大学学报,30(6):664-668.
    [16] Wu K., Ding R., Han Q., et al. Research on unconsumed fine coke and pulverized coal of BFdust under different PCI rates in BF at Capital Steel Co.[J]. ISIJ International,2010,50(3):390-395.
    [17]王筱留.钢铁冶金学(炼铁部分)[M].北京:冶金工业出版社,2000.
    [18]文广远.铁冶金学[M].重庆:重庆大学出版社,1993.
    [19] Campbell D., Flierman G., Malgarini G. et al. Oxy-coal injection at Cleveland Ironworks [J].Ironmaking Steelmaking,1992,19(6):120-125.
    [20] Du S., Chen W., Lucas J. A.. Pulverized coal burnout in blast furnace simulated by a drop tubefurnace [J]. Energy,2010,35(2):576-581.
    [21] Raygan S., Abdizadeh H., Rizi A. E.. Evaluation of four coals for blast furnace pulverizedcoal injection [J]. Journal of Iron and Steel Research International,2010,17(3):8-12.
    [22] Jiang H., Zhang j., Fu J., et al. Properties and structural optimization of pulverized coal forblast furnace injection [J]. Journal of Iron and Steel Research International,2011,18(3):6-12.
    [23] Osório E., Gomes M., Ant nio C.F. Vilela, et al. Evaluation of petrology and reactivity of coalblends for use in pulverized coal injection (PCI). International Journal of Coal Geology,2006,68(1-2):14-29.
    [24]郑文书,何志军.基于TOOSIS决策的高炉喷煤配煤优化[J].冶金能源,2013,31(1):38-41.
    [25]欧阳曙光,吴天礼,刘凤,等.基于模糊综合评价的高炉配煤方案筛选研究[J].煤质技术,2012(2):1-9.
    [26] Babich A., Yaroshevskii S., Formoso A., et al. Increase of pulverized coal use efficiency inblast furnace [J]. ISIJ international,1996,36(10):1250-1258.
    [27]姜秀民,杨海平,刘辉,等.煤粉颗粒粒度对燃烧特性影响热分析[J].中国电机工程学报,2002,22(12):142-160.
    [28]王再义,邢本策,王相力,等.高炉喷吹煤粉的适宜粒度研究[J].鞍钢技术,2009,359(5):17-19.
    [29]马政峰,吴铿,杨天钧,等.放宽高炉喷吹煤粉粒度的工业实验[J].北京科技大学学报,2003,25(3):211-214.
    [30] Du S., Chen W.. Numerical predication and practical improvement of pulverized coalcombustion in blast furnace [J]. International Communications in Heat and Mass Transfer,2006,33(3):327-334.
    [31] Guo Y.C., Chan C.K., Lau K.S.. Numerical studies of pulverized coal combustion in a tubularcoal combustor with slanted oxygen jet [J]. Fuel,2003,82(8):893-907.
    [32]吴铿,魏欣,张向国,等.高炉喷煤交叉式双枪的基础研究[J].北京科技大学学报,2003,25(6):515-519.
    [33]李相国,马保国,徐立,等.废轮胎胶粉与煤混烧的热重分析[J].中国电机工程学报,2007,14(5):51-55.
    [34] Zie bik A., Stank W.. Forecasting of the energy effects of injecting plastic wastes into theblast furnace in comparison with other auxiliary fuels [J]. Energy,2001,26(12):1159-1173.
    [35] Chen W., Wu J.. An evaluation on rice husks and pulverized coal blends using a drop tubefurnace and a thermogravimetric analyzer for application to a blast furnace [J]. Energy,2009,34(1):1458-1466.
    [36]赵俊东,王恒,杨永昌,等.煤粉预热对高炉喷吹中煤粉燃烧行为的影响[J].过程工程学报,2011,11(8):606-612.
    [37]刘通.微波对高炉用喷吹煤粉改性作用的研究[D].辽宁科技大学,2012.
    [38]朱川,姜英,丁华.国内燃煤助燃剂的研究进展[J].煤质技术,2010(4):41-44.
    [39]袁贤鑫.催化燃烧法治理工业有机废气[J].化工环保,1984,4(4):210-225.
    [40]夏治强.催化燃烧法治理有机废气[J].城市环境与城市生态,1993,6(1):33-38.
    [41] Jiménez R., García X., LópezT T. et al. Catalytic combusiton of soot. Effects of added alkalimetals on CaO-MgO physical mixtures [J]. Fuel Processing Technology,2008,89(11):1160-1168.
    [42]张绍强.一种高效清洁燃料-煤矿瓦斯[J].中国能源,1990(4):33.
    [43] Franco A., Diaz A. R.. The future challenges for “clean coal technologies”: Joiningefficiency increase and pollutant emission [J]. Energy,2009,34(3):348-354.
    [44]杜娟,田成问,范庆伟.催化燃烧技术研究进展及其应用[J].节能,2006,283(2):37-39.
    [45] Saint-Just J., Kinderen J.. Catalytic combusiton: from reaction mechanism to commercialapplication [J]. Catalysis Today,1996,29(1-4):387-395.
    [46]杨乐夫,袁强,史春开,等.高温催化燃烧技术及其核心催化剂的研制[J].厦门大学学报(自然科学版),2001,40(2):486-494.
    [47] Shen B., Lei L.. Study on MSW catalytic combusiton by TGA [J]. Energy Conversion andManagement,2006,47(11-12):1429-1437.
    [48]余种亮,李春玉,景旭亮,等.碳酸钾催化的铁基氧载体煤催化化学链燃烧[J].燃料化学学报,2013,41(7):826-831.
    [49]卢冠忠,郭耕,郭杨龙.稀土在化石燃料催化燃烧中的作用及其研究[J].中国基础科学·科学前沿,2003,(4):19-24.
    [50] Heek K. H.. Progress of coal science in the20thcentury [J]. Fuel,2000,79(1):1-26.
    [51] Gopalakrishnan R., Bartholomew C. H.. Effect of CaO, high-temperature treatment, carbonstructure, and coal rank on intrinsic char oxidation rates [J]. Energy Fuels,1996,10(3):689-695.
    [52] Mochida I., Sakanishi K.. Catalysts for coal conversions of the next generation [J]. Fuel,2000,79(3-4):221-228.
    [53]王俊宏,常丽萍,谢克昌.煤催化燃烧技术研究进展[J].化工进展,2008,27(suppl.):219-222.
    [54]欧阳德刚,罗安智.煤燃烧催化剂的研究现状与发展方向的分析[J].钢铁研究,2004,139(4):1-7.
    [55] Ma B.G., Li X.G., Xu L., et al.. Investigation on catalyzed combustion of high ash coal bythermogravimetric analysis [J]. Thermochimica Acta,2006,445(1):19-22.
    [56] Zhang L. M., Tan Z. C., Wang S. D., et al.. Combustion calorimetric and thermogravimetricstudies of graphite and coals doped with a coal-burning additive [J]. Thermochimica Acta,1997,299(1-2):13-17.
    [57] Gong X., Guo Z., Wang Z.. Reactivity of pulverized coals during combustion catalyzed byCeO2and Fe2O3[J]. Combustion and Fuel,2010,157(2):351-356.
    [58] Gong X., Guo Z., Wang Z.. Variation on anthracite combustion efficiency with CeO2andFe2O3addition by Differential Thermal Analysis (DTA)[J]. Energy,2010,35(2):506-511.
    [59]王敏燕,苍大强,王颖茹.用TG-DTA法研究新型燃烧促进剂对煤燃烧性能的影响[J].冶金能源,2008,27(2):32-34.
    [60]袁中山,吴迪镛,谭志成,等.燃煤固硫及催化燃烧一体化添加剂的催化作用机理研究[J].燃料化学学报,2005,33(3):267-272.
    [61] Y. Liu, D. Che, T. Xu. Catalytic reduction of SO2during combustion of typical Chinese coals[J]. Fuel Processing Technology,2002,79(2):157-169.
    [62] Sowa J.M, Fletcher H. F.. Investigation of an iron-based additives on coal pyrolysis andchar oxidation at high heating rates [J]. Fuel Processing Technology,2011,92(12):2211-2218.
    [63]公旭中,郭占成,王志.热重法研究K2CO3和Fe2O3对煤粉燃烧反应性的影响[J].燃料化学学报,2009,37(1):42-48.
    [64]徐万仁,杜鹤桂.催化剂对煤粉燃烧特性的影响[J].燃烧化学学报,1995,23(3):272-277.
    [65] Levendis Y.A., Nam S.W., Lowenberg M., et al. Catalysis of combustion of synthetic charparticles by various forms of calcium additives [J]. Energy Fuels,1989,3(1):28-37.
    [66]许莹.高炉喷吹煤粉助燃催化机理的研究[D].沈阳,东北大学,2006.
    [67]周明石,欧阳德刚,张奇光,等.强化煤粉燃烧的添加剂研究[J].1998,33(1):10-13.
    [68] Zou C., Wen L., Zhang S., et al. Effects of catalysts on the combustion behavior of pulverizedcoal injection (PCI) anthracite and its mechanism [J]. Metalurgia International,2011,16(6):53-60.
    [69] Jianglong Y., Lucas J. A., Wall T. F. Formation of the structure of chars during devolatilizationof pulverized coal and its thermoproperties: A review [J]. Progress in Energy and CombustionScience,2007,33(2):135-170.
    [70] Gong X., Guo Z., Wang Z.. Anthracite combustion catalyzed by Ca-Fe-Ce series catalyst [J].Journal of Fuel Chemistry and Technology,2009,37(4):421-426.
    [71] Miyazaki T., Tokubuchi N., Arita M., et al. Catalytic combusiton of carbon by alkali metalcarbonates supported on perovskite-type oxide [J]. Energy Fuels,1997,11(4):832-836.
    [72] Wu Z., Xu L., Wang Z., et al. Catalytic effects on the ignition temperature of coal [J]. Fuel,1998,77(8):891-893.
    [73]陈海峰,尹桂芳,沙兴中,等.催化剂对煤着火特性的影响:不同催化剂对煤催化着火的影响[J].燃料化学学报,1993,21(2):180~184.
    [74] Wu X., Radovic R. L.. Catalytic oxidation of carbon/carbon composite materials in thepresence of potassium and calcium acetates [J]. Carbon,2005,43(2):333-344.
    [75] Tomita A.. Catalysis of carbon-gas reactions [J]. Catalysis Surveys from Japan,2001,5(1):17-24.
    [76]魏国,杜鹤桂,刁日生.攀钢高炉煤粉混加添加剂的实验研究[J].钢铁钒钛,2000,21(1):6-11.
    [77]沈峰满,彭雪飞,赵庆杰. MnO2对煤粉燃烧的助燃作用及机理[J].钢铁,1998,33(9):1-3.
    [78] Skowroński J.M.. Study of graphite-manganese oxide catalysts via modified DTA curves [J].Journal of Thermal Analysis,1983,27(1):69-76.
    [79]刘艳华,车得福,李萌堂,等.几种含铁化合物对煤燃烧特征的影响[J].西安交通大学学报,2000,34(9):20-24.
    [80]公旭中,郭占成,王志. Fe2O3催化无烟煤燃烧燃点降低机理的实验研究[J].化工学报,2009,60(7):1707-1703.
    [81]武增华,寇鹏,许玲.催化剂对煤的燃烧特征影响的计算机辅助研究:过渡金属类催化剂对于煤燃烧的催化机制和作用[J].计算机与应用化学,1998,15(1):49-52.
    [82]张卉,郭占成,王志,等.综合热分析法研究催化剂对煤粉燃烧过程的影响[J].过程工程学报,2007,7(6):1154-1158.
    [83]田君,朱百鸣,尹敬群.稀土催化劣质燃煤燃烧动力学研究[J].稀土,2002,23(2):16-19.
    [84]公旭中,郭占成,王志.煤质特征对CeO2催化煤粉燃烧的影响[J].燃料化学学报,2010,38(1):29-34.
    [85] McKee D. W.. Metal oxides as catalysts for the oxidation of graphite [J]. Carbon,1970,8(5):627-635.
    [86]高斌,顾飞,宋忠平,等.高炉喷吹煤粉助燃机理研究[J].钢铁,1999,第34卷(增刊):229-231.
    [87]刘仁生,赵兵,吴小军.高炉喷吹煤燃烧促进剂的优化选择[J].煤炭加工与综合利用,2009,(5):42-45.
    [88]冯帅,吕庆,孙艳芹,等. KMnO4助燃高炉喷吹煤粉的机制[J].钢铁研究学报,2013,25(9):11-15.
    [89]谭志成,王树东,李莉.热重法研究煤燃烧添加剂的催化助燃效果及作用机理[J].催化学报,1999,20(3):263-266.
    [90]耿曼,石林,陈定盛.天然矿物固硫剂及其对煤粉燃烧的影响[J].环境工程学报,2009,3(11):2047-2051.
    [91]王培平,陈旺生,孟康.高炉喷吹配煤催化燃烧特征的研究[J].武汉科技大学(自然科学版),2012,35(6):432-436.
    [92] Fan Y., Zhang F., Zhu J., et al. Effective utilization of waste ash from MSW and coalco-combusiton power plant-Zeolite synthesis [J]. Journal of Hazardous Materials,2008,253(1-2):382-388.
    [93]常健,苏步新,张建良,等.煤粉添加高炉除尘灰混合燃烧特征及动力学研究[J].过程工程学报,2012,12(2):239-246.
    [94] Wagner R., Mühlen H. J.. Effect of a catalyst on combustion of char and anthracite [J]. Fuel,1989,68(2):251-253.
    [95] Mccollor D. P., Jones M. L., Benson S. A.. Promotion of char oxidation by inorganicconstituents [J]. Symposium (International) on Combustion.1989,22(1):59-67.
    [96] Jenkins R. G., Nandi S. P., Walker Jr P. L.. Reactivity of heat-treated coals in air at500°C [J].Fuel,1972,52(4):288-293.
    [97] Rivera-Utrillab J., López-Peinadob A., Moreno-Castillab C., et al. Reactivity of Spanish coalchars in dry air: Effect of the addition of potassium carbonate and acetate [J]. Fuel,1987,66(2):237-241.
    [98] L. Fangxian, L. Shizong, C. Youzhi. Thermal analysis study of the effect of coal-burningadditives on the combustion of coals [J]. Journal of Thermal Analysis and Calorimetry,2009,95(2):633-638.
    [99]许莹.高炉喷吹煤粉助燃催化机理的研究[D].沈阳,东北大学,2006.
    [100] Zolin A., Jensen A., Jensen P. A., et al. The Influence of inorganic materials on the thermaldeactivation of fuel Chars [J]. Energy Fuels,2001,15(5):1110-1122.
    [101] Gopalakrishnan R., Fullwood M. J., Bartholomew C. H.. Catalysis of char oxidation bycalcium minerals: Effects of calcium compound chemistry on intrinsic reactivity of dopedspherocarb and zap chars [J].1994,8(4):984-989.
    [102] McCarthy M. J., Mathieson J. G., Nomura, S., et al. Combustion of pulverized Australiancoals under simulated Blast Furnace Conditions [C]. Proceedings of International Conferenceon Coal Science, Sydney,423-426.
    [103] Watanabe W. S., Zhang D.. The effect of inherent and added inorganic matter onlow-temperature oxidation reaction of coal [J]. Fuel Processing Technology,2001,74(3):145-160.
    [104] Haykiri-A ma H., Yavuz R., Ersoy-Meri boyu A., et al. Effect of mineral matter on thereactivity of lignite [J]. Thermochimica Acta,1999,342(1-2):79-84.
    [105] Newall H. E.. The influence of inorganic compounds on the combustion of coal. part III: Theeffect of water of constitution of added compounds moisture and mineral matter in coal [J].Fuel in Science and Practice,1939,18(1):13-20.
    [106] Spears D. A.. Role of clay minerals in UK coal combustion [J]. Applied Clay Science,2000,16(1-2):87-95.
    [107] Walker P. L. J., Shelef M., Anderson R. A.. Chemistry and Physics of Carbon [M], New York,1996.
    [108] Li X.G., Ma B.G., Xu L., et al. Catalytic effect of metallic oxides on combustion behavior ofhigh ash coal [J]. Energy Fuels,2007,21(5):2669-2672.
    [109]许莹,窦玉博.稀土氧化物在高炉喷吹煤粉助燃催化剂中的应用及机制分析[J].中国稀土学报,2009,27(5):635-640.
    [110] Zhao Y., Wang S., Shen Y., et al. Effects of nano-TiO2on combustion and desulfurization [J].Energy,2013,56(1):25-30.
    [111] Sentorun, C., Haykiri-Acma H., Kucukbayrak S.. Effect of mineral matter on the combustionCurve of Chars [J]. Thermochimica Acta,1996,277(1):65-73.
    [112] Kurose R., Ikeda M., Makino, H.. Combustion characterestics of high ash coal in a pulverizedcoal combustion [J]. Fuel,2001,80(10):1447-1455.
    [113] Wigley F., Williamson J., Gibb, W. H.. The. Distribution of mineral matter in pulverized coalparticles in relation to burnout behaviour [J]. Fuel,1997,76(13):1283-1288.
    [114] Mitchel R. E.. Variation in the temperature of coal-char particles during combustion: aconsequence of particle-to-particle variation in ash-content [J]. Symposium (International) onCombustion,1991,23(1):1297-1304.
    [115] Menendez R., Alvarez, D., Fuertes, A. B., et al. Effect of clay minerals on char texture andcombustion [J]. Energy Fuels,1994,8(5):1007-1015.
    [116] Warne S. S.. Thermal analysis and coal assessment: an overview with new developments [J].Thermochimica Acta,1996,272(1):1-9.
    [117] Russell N.V., Beeley T.J., Man C.-K., et al. Development of TG measurements of intrinsicchar combustion reactivity for industrial and research purposes [J]. Fuel processingTechnology,1998,57(3):113-130.
    [118] K k M. V., Pamir M. R.. Pyrolysis and combustion studies of fossil fuels by thermal analysismethods [J].1995,35(2):145-156.
    [119] Li X., Ma B, Xu L., et al. Thermogravimetric analysis of the co-combustion of the blendswith high ash coal and waste tyres [J]. Thermochimica acta,2006,441(1):79-83.
    [120] Otero M., Gomez X., Garcia A. I., et al. Effects of sewage sludge blending on the coalcombustion: A thermogravimetric assessment [J]. Chemosphere,2007,69(1):1740-1750.
    [121] K k M. V., Pamir M. R.. Pyrolysis and combustion studies of fossil fuels by thermal analysismethods [J].1995,35(2):145-156.
    [122] Thermal analysis evaluation of coal [P]. Japanese Patent93-59288.
    [123] Chen Y.,Mori S.,Pan W.. Studying the mechanisms of ignition of coal particles by TG-DTA[J]. Thermochim Acta,1996,275(1):149-158.
    [124] Li M., Zhang Z. C., Tan, S. D., et al. Combustion calorimetric and thermogravimetric studiesof graphite and coals doped with a coal-buring additive. Thermochimica Acta,1997,299(1-2):13-17.
    [125]张保生,刘建忠,周建虎,等.利用Popescu法对煤燃烧反应机理的研究[J].中国电机工程学报,2006,26(15):68-72.
    [126] Arenillas A., Rubiera F, Pevida C, et al. A comparison of different methods for predicting coaldevolatilisation kinetics [J]. Anal. Appl. Pyrolysis,2001,58-59(1):685-701.
    [127] Ozbas K. E.. DSC study of the combustion properties of Turkish coals [J]. Journal of ThermalAnalysis and Calorimetry,2003,71(1):849-856.
    [128]何宏舟,骆仲泱,岑可法.不同热分析方法求解无烟煤燃烧反应动力学参数的研究[J].动力工程2005,25(4):493-499.
    [129]马正中,姜凡,徐洋,等.滴管炉技术特点及其研制进展[J].洁净煤技术,2009,15(4):71-75.
    [130]周明石,欧阳德刚,张奇光,肖坤伟.强化煤粉燃烧的添加剂研究[J].钢铁,1998,33(1):10-13.
    [131] Kajitani S., Hara S., Matsuda H.. Gasification rate analysis of coal char with a pressurizeddrop tube furnace [J]. Fuel,2002,81(1):539-546.
    [132] Biswas S., Choudhury N., Sarkar P., et al. Studies on the combustion behavior of blends ofIndian coal by TGA and Drop Tube Furnace [J]. Fuel processing technology,2006,87(1):191-199.
    [133] Vamvuka D., Schwanekamp G., Gudenau H. W.. Combustion of pulverized coal withadditives under conditions simulating blast furnace injection [J]. Fuel,1996,75(9):1145-1150.
    [134]刘金刚,程云飞,王延庆.过渡金属硫酸盐对煤粉燃烧的催化作用[J],煤炭转化,2009,32(1):65-67.
    [135]徐立.水泥工业劣质煤活化燃烧及机理研究[D].武汉:武汉理工大学,2008.
    [136]朱之培,高晋生.煤化学[M].上海:上海科学技术版社,1984.
    [137] Li Q., Zhao C., Chen X., et al. Comparison of pulverized coal combustion in air and inO2/CO2mixtures by thermo-gravimetric analysis [J]. J. Anal. Appl. Pyrolysis,2009,85(1-2):521-528.
    [138] Marinov S. P., Gonsalvesh L., Stefanova M., et al. Combustion behaviour of somebiodesulphurized coals assessed by TGA/DTA [J]. Thermochimica Acta,2010,497(1-2):46-51.
    [139]郝丽芳,李松庚,崔丽杰,等.煤催化热解技术研究进展[J].煤炭科学技术,2012,40(10):108-112.
    [140] Gong X., Guo Z., Wang Z.. Variation of char structure during anthracite pyrolysiscatalyzed by Fe2O3and its influence on char combustion reactivity [J]. Energy Fuels,2009,23(9):4547-4552.
    [141]公旭中,郭占成,王志. Fe2O3对高变质程度脱灰煤热解反应性与半焦结构的影响[J].化工学报,2009,60(9):2321-2326.
    [142] McKee D.W.. Mechanism of the alkali metal catalyzed gasification of carbon [J]. Fuel,1983,62(2):170-175.
    [143] Wagloehner S., Kureti S.. Study on the mechanism of the oxidation of soot on Fe2O3catalyst [J]. Applied Catalysis B: Environmental,125(21):158-165.
    [144] Zhang Z., Kyotani T., Tomita A.. Dynamic behavior of surface oxygen complexes during O2chemisorption and subsequent temperature-programmed desorption of calcium-loaded coalchars [J]. Energy Fuels,1989,3(5):566-571.
    [145]公旭中,陈彦广,郭占成,等.铈化合物对无烟煤催化燃烧的影响[J].中国稀土学报,2008,26(专辑):128-133.
    [146]刘小杰,冯帅,吕庆,等. Fe2O3对高炉喷吹煤粉助燃机理的研究[J].钢铁钒钛,2013,34(5):43-47.
    [147]岑可法,姚强,骆仲泱,等.燃烧理论与污染控制[M].北京:机械工业出版社,2004.
    [148] Chen W., Du S., Yang T.. Volatile release and particle formation characteristics of injectedpulverized coal in blast furnace [J]. Energy Conversion and management,2007,48(7):2025-2033.
    [149] Jianglong Y., Lucas, J. A., Wall T. F. Formation of the structure of chars duringdevolatilization of pulverized coal and its thermoproperties: A review [J]. Progress inEnergy and Combustion Science,2007,33(2):135-170.
    [150] Oka1N., Murayama1T., Matsuoka1H., et al. The influence of rank and maceralcomposition on ignition and char burnout of pulverized coal [J]. Fuel ProcessingTechnology,1987,15(1):213-224.
    [151]岑可法.高等燃烧学[M].浙江,浙江大学出版社:2002.
    [152] Borrego A. G., Osório E., Casal M. D., Vilela A. C. F.. Coal char combustion under aCO2-rich atmosphere: implications for pulverized coal injection in a blast furnace [J]. FuelProcessing Technology,2008,89(11):1017-1024.
    [153] Lu L., Kong C., Sahajwalla V., et al. Char structural ording during pyrolysis and combustionand its influence on char reactivity [J]. Fuel,2002,81(9):1215-1225.
    [154] Smith I. W.. The combustion rates of coal chars: A review [J]. Symposium (International)on Combustion,1982,19(1):1045-1065.
    [155] Robert H. H., Jon R. G.. Residual carbon from pulverized coal fired boilers:1. Sizedistribution and combustion reactivity [J]. Fuel,1995,74(4):471-480.
    [156] Lorenz H., Carrea E., Tamura M., et al. The role of char surface structure development inpulverized fuel combusiton [J]. Fuel,2000,79(10):1161-1172.
    [157] Kevin A. D., Robert H. H., Nancy Y. C. et al. Evolution of char chemistry, crystallinity,and ultrafine structure during pulverized-coal combustion [J]. Combustion and Flame,1995,100(1-2):31-40.
    [158] Gupta S., Sahajwalla V., Al-Omari Y., et al. Influence of carbon structure and mineralassociation of coals on their combustion characteristics for pulverized coal injection (PCI)application [J]. Metallurgical and Materials Transaction B,37(7):457-473.
    [159]徐万仁,吴信慈,陈君明,等.高喷煤比操作对焦炭劣化的影响[J].钢铁,2003,38(3):4-7.
    [160] Khairil K., Kamihashira D., Naruse I.. Interaction between molten coal ash and coke inraceway of blast furnace [J]. Proceedings of the Combustion Institute,2002,29(1):805-810.
    [161] Gudenau H. W., Senk D., Fukada K., et al. Coke, char and organic waste behavior in theblast furnace with high injection rate [J]. Revista de Metalurgia,2003,39(5):367-377.
    [162]郁庆瑶,曹进,沈峰满.未燃煤粉对炉内焦炭反应性能影响的实验研究[J].宝钢技术,2006(增刊):31-34.
    [163]张丙怀,朱子宗,邹德余,等.未燃煤粉对焦炭性能的影响[J].钢铁,1994,29(3):22-26.
    [164] Naruse I., Nakayama K., Higuchi A., et al. Reaction behavior of coke lump in raceway ofBlast Furnace with pulverized coal injection [J]. ISIJ International,2000,40(8):744-748.
    [165]梁明宇,韩志刚.助燃剂在高炉喷煤中的应用效果[J].现代冶金,2001,1(2):27~29.
    [166]蔡漳平,王金华,孔凡朔.高炉喷煤助燃剂的应用研究[J].山东冶金,28(5):29-30.
    [167]经文波,钟国英,万淑霞.南钢高炉喷吹煤粉使用助燃剂研究[C].2007年中国钢铁年会论文集,2007,北京.
    [168]周剑伟.喷煤助燃剂在三钢1000m3高炉的试验研究[J].钢铁,2009,44(6):101-104.
    [169]王洪波. SYP喷煤助燃剂在西钢高炉的试验[J].黑龙江冶金,2009,29(2):6-8.
    [170]佘雪峰,薛庆国,董杰吉,等.钢铁厂典型粉尘的基本物性与利用途径分析[J].过程工程学报,2009,9(增刊1):7-12.
    [171]邹冲,温良英,尹成彬,等. TG-DSC法研究含铁冶金副产品对煤粉燃烧性能影响[C].第八届中国钢铁年会论文集,2011,北京.
    [172] Malek J., Smercka V.. The kinetic analysis of the crystallization processes in glasses [J].Thermochim Acta,1991,186(1):153-169.
    [173] Malek J. The kinetic analysis of non-isothermal data [J]. Thermochim Acta,1992,200(8):257-269.
    [174] Malek, J. Kinetic analysis of crystallization processes in amorphous materials [J].Thermochimica Acta,2000,355(1-2):239-253.
    [175] Yu T., Li C.. Thermal analysis method to study the combustion characteristic of coal.Metallurgical Energy Engineering [J].1989,8(5):41-44.
    [176] Criado, J. M, Malek J., Gotor. F. J.. The applicability of the esták-Berggren kineticequation in constant rate thermal analysis (CRTA)[J]. Thermochim Acta,1990,158(2):205-213.
    [177]胡荣祖等,热分析动力学[M].北京:科学出版社,2008.
    [178] Lu Z., Sun J., Yang L., et al. Synthesis, spectral and structural characterization andthermal decomposition kinetics of dinitrato (N,N,N’,N’-tetra-n-butyl aliphatic diamide)urany(II) by thermogravimetric analysis [J]. Thermochim Acta,1995(1):281-295.
    [179] Liu N. A., Fan W. C.. Critical consideration on the Freeman and Carroll method forevaluating global mass loss kinetics of polymer thermal degradation[J]. Thermochim Acta,1999,338(1-2):85-94.
    [180] Gupta S., French D., Sakurove R., et al. Minerals and iron-making reactions in blastfurnaces [J]. Progress in Energy and Combustion Science,2008,34(2):155-197.
    [181]葛飞,李权,刘海宁,等.过氧化钙的制备与研究进展[J].无机盐工业,2010,42(3):1-4.
    [182]陈舜麟.计算材料科学[M].北京:化学工业出版社,2002.
    [183]张敬来.密度泛函理论在n电子共轭体系中的运用[M].开封:河南大学出版史,2004.
    [184]肖慎修,王崇愚,陈天朗.密度泛函理论的离散变分方法在化学和材料物理学中的应用[M].1998.
    [185]李震宇,贺伟,杨金龙.密度泛函理论及其数值方法新进展[J].化学进展,2005,17(2):192-200.
    [186]李震宇.新材料物性的第一性原理研究[D].中国科技大学,2004.
    [187] Guo P., Guo X., Zheng C.. Computational insights into interactions between Hg speciesand-Fe2O3(001)[J]. Fuel,2011,90(5):1840-1846.
    [188] Dong C., Sheng S., Qin W., et al. Density functional theory study on activity of-Fe2O3in chemical-looping combustion system [J]. Applied Surface Science,2011,257(20):8647-8652.
    [189] Preda G., Pacchioni G.. Formation of oxygen active species in Ag-modified CeO2catalystfor soot oxidation: A DTF study [J]. Catalysis Today,2011,177(1):31-38.
    [190]闫志国,王会,杨小俊,等.氧气在LaMnO2(001)表面吸附的第一性原理研究[J].计算机与应用化学,2012,29(3):287-290.
    [191] Cheng H., Reiser D. B., Sheldon D. J.. On the mechanism and energetics of boudouardreaction at of FeO (100) surface:2CO→C+CO2[J]. Catalysis Today,1999,50(3-4):579-588.
    [192] Yorulmaz S.Y., Atimtay A.T.. Investigation of combustion kinetics of treated anduntreated waste wood samples with thermogravimetric analysis [J]. Fuel ProcessingTechnology,2009,90(3):939–946.
    [193] Fonseca R.L., Landa I., Elizundia U., et al. A kinetic study of combustion of poroussynthetic soot [J]. Chemical Engineering Journal,2007,129(1):41–49.
    [194] Goni C., Helle S., Garcia X, et al. Coal blended combustion: fusibility ranking frommineral matter composition [J].Fuel,2003,82(15-17):2087-2095.
    [195] Du S., Bygden J., Seetharaman S.. A model for estimation of viscosities of complexmetallic and ionic melts [J]. Metallurgical and Materials Transaction B,1994,25(4):519-525.
    [196]任山,张建良,刘伟剑,等.高炉喷吹煤粉的灰熔融特性[J].钢铁研究学报,2012,24(10):11-15.
    [197] Castro J. A., Mattos Araújo G., Oliveira da Mota I., et al. Analysis of the combinedinjection of pulverized coal and charcoal into large blast furnaces [J]. Journal of MaterialsResearch and Technology,2013,2(4):308-314.
    [198] Du S., Chen W., Lucas J.. Performances of pulverized coal injection in blowpipe andtuyere at various operational conditions [J]. Energy Conversion and Management,2007,48(1):2069-2076.
    [199] Wijayanta A. T., Alam M. S., Nakaso K., et al. Combustibility of biochar injected into theraceway of a blast furnace [J]. Fuel Processing Technology,117(1):53-59.
    [200] Asanuma M., Ariyama T., Sato M., et al. Development of waste plastics injection processin Blast Furnace [J]. ISIJ Inernational,2000,40(3):244-251.