甘薯胚性悬浮细胞的遗传转化和转基因植株的有效再生
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以甘薯品种栗子香的胚性悬浮细胞为材料,用根癌农杆菌菌株EHA101对根癌农杆菌介导的甘薯遗传转化进行了系统的研究。该菌株所携带的pROA93质粒上含有新霉素磷酸转移酶基因(NPTⅡ)和β-葡萄糖苷酸酶基因(GUS)。结果表明,将达到对数生长期的根癌农杆菌菌液稀释至OD_(600nm)=0.5,与继代培养3d后的胚性悬浮细胞共培养,转化效率最高,适宜的共培养时间为4d。将共培养后的材料在含有300mg/L Carb和2.0mg/L 2,4-D的MS液体培养基中培养5~8d,再进行选择培养,有利于转化细胞的增殖。将转化材料在含有300mg/L Carb、25~75mg/L Kan和2.0mg/L 2,4-D的MS液体培养基中进行选择培养,结果表明,Carb和Kan的适宜浓度分别为100mg/L和50mg/L。选择培养2~4周后,共获得2453个直径约1mm的小细胞团,将这些小细胞团转移到添加100mg/L Carb、50mg/L Kan和2.0mg/L 2,4-D的MS固体培养基上,经过8~20周的选择培养,获得46个Kan抗性愈伤组织。将得到的Kan抗性愈伤组织转移到添加100mg/L Carb、25mg/L Kan和1.0mg/L ABA的MS固体培养基上,Kan抗性愈伤组织分化形成体细胞胚并发芽,最后转移到添加50mg/L Kan的MS基本培养基上,获得了138株再生植株。PCR和PCR-Southern检测结果表明,其中的104株(75.4%)再生植株是转基因植株。
     利用该转化体系,对水稻巯基蛋白酶抑制剂(OCI)基因的遗传转化进行了研究。根癌农杆菌LBA4404携带质粒pBinh,该质粒携带OCI和NPTⅡ基因。将达到对数生长期的根癌农杆菌菌液稀释至OD_(600nm)=0.5,与继代培养3d后的胚性悬浮细胞共培养4d。将共培养后的材料在含有300mg/L Carb和2.0mg/L 2,4-D的MS液体培养基中培养5~8d,然后将转化材料在含有300mg/L Carb、50mg/L Kan和2.0mg/L 2,4-D的MS液体培养基中进行选择培养,总共获得1847个直径约1mm的小细胞团。将这些小细胞团转移到添加100mg/L Carb、50mg/L Kan和2.0mg/L 2,4-D的MS固体培养基上,经过8~20周的选择培养,获得19个Kan抗性愈伤组织。将得到的Kan抗性愈伤组织转移到添加100mg/L Carb、25mg/L Kan和1.0mg/L ABA的MS固体培养基上,Kan抗性愈伤组织分化形成体细胞胚并发芽,最后转移到添加50mg/L Kan的MS基本培养基上,获得了31株再生植株。PCR和PCR-Southern检测结果表明,其中的16株(51.6%)再生植株是转基因植株。通过对OCI转基因植株和阴性对照植株中水稻巯基蛋白酶抑制剂的SDS聚丙烯酰胺凝胶电泳,结果表明OCI蛋白在转基因植株中有一定量的累积。
     将GUS转基因植株和OCI转基因植株转移到温室,结果发现大部分转基因植株没有出现形态特征的变异。然而,在部分OCI转基因植株和GUS转基因植株上都发现叶片脉基色从淡褐色变为淡绿色、茎颜色从淡绿色出现局部淡褐色的变异。其中,GUS转基因植株中还出现1株丛生型的株型变异。这些变异究竟是由于基因转化造成的、或是由于体细胞无性系变异等其他原因造成的,还需要进一步的研究。
An Agrobacterium tumefaciens-mediated transformation system of sweetpotato, Ipomoea batatas (L.) Lam., was established by using embryogenic suspension cultures of the cultivar Lizixiang. A.tumefaciens strain EHA101 harboring a binary vector pROA93 with p-glucuronidase (GUS) and neomycin phosphotransferase (NPT II) genes was used in the present study. Embryogenic suspension cultures of 3 d after subculture were cocultivated with EHA101 (OD600nm=0.5) for 4 days. After cocultivation, the infected suspension cultures were first cultured for 1 week in MS medium with 2 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 300 mg/L carbencillin but without kanamycin and then transferred into MS medium with 2 mg/L 2,4-D, 50 mg/L kanamycin and 300 mg/L carbencillin for the selection culture. 2~4 weeks after selection, 2453 kanamycin-resistant cell aggregates about 1 mm in size from the embryogenic suspension cultures were transferred to MS solid medium supplemented with 2 mg/L 2,4-D, 50 mg/L kanamycin and 100 mg/L carbencillin. and after 8 ~ 20 weeks of selection formed 46 kanamycin-resistant embryogenic calluses. After transfer to MS medium supplemented with 1 mg/L abscisic acid (ABA), 50 mg/L kanamycin and 100 mg/L carbencillin, these embryogenic calluses formed 138 plantlets via somatic embryogenesis. PCR and PCR-Southern blot analysis indicated that 104 regenerated plants (75.4%) were transgenic plants.
    Using such gene transfer system, the transfer of OCI gene to sweetpotato cv. Lizixiang was also conducted. A.tumefaciens strain LBA4404 harboring a binary vector pBinh with OCI and neomycin phosphotransferase (NPT II) genes was used in the study. Embryogenic suspension cultures of 3 d after subculture were cocultivated with LBA4404 (OD600nm=0.5) for 4 days. After cocultivation, the infected suspension cultures were first cultured for 1 week in MS medium with 2 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 300 mg/L carbencillin but without kanamycin and then transferred into MS medium with 2 mg/L 2,4-D, 50 mg/L kanamycin and 300 mg/L carbencillin for the selection culture. 2-4 weeks after selection, 1847 kanamycin-resistant cell aggregates about 1 mm in size from the embryogenic suspension cultures were transferred to MS solid medium supplemented with 2 mg/L 2,4-D, 50 mg/L kanamycin and 100 mg/L carbencillin. and after 8-20 weeks of selection formed 19 kanamycin-resistant embryogenic calluses. After transfer to MS medium supplemented with 1 mg/L abscisic acid (ABA), 50 mg/L kanamycin and 100 mg/L carbencillin, these embryogenic calluses formed 31 plantlets via somatic embryogenesis. PCR and PCR-Southern blot analysis showed that 16 regenerated plants (51.6%) were transgenic plants. SDS-PEG analysis of OCI from transgenic plants with OCI negative control indicated that accumulation was found in transgenic plants with OCI gene.
    These transgenic plants with gusA or OCI gene were transferred to greenhouse. No obvious morphological variations were observed in most of transgenic plants. However, some variations in vein base color and stem color were observed in part of transgenic plants with gusA or OCI gene. Also, one transgenic plaint with gusA gene showed variation in plant type. It needs further study if these morhphological variations are due to the transformation or the somatic mutations.
引文
1 陈品三.甘薯糠腐茎线虫病.见:中国农业科学院植物保护所研究所.中国农作物病虫害,北京:中国农业出版社,1995,512~517
    2 陈思学,李洪泉.农杆菌介导的单子叶植物遗传转化研究进展.生物技术,1993,3(3):1~5
    3 陈颖,姜鸿,王兴智.无选择标记基因植物转化系统研究进展.生物工程进展,2001,1(21):4~7
    4 程玉鹏,邹雪艳,王茜等.Ti质粒转化胡萝卜细胞的初步研究.哈尔滨师范大学自然科学学报,1999,15(1):81~85
    5 丁群星,谢友菊,戴景瑞等.用子房注射法将Bt毒蛋白基因导入玉米的研究.中国科学(B),1993,23(7):707~71
    6 杜海莲、陈启锋.植物遗传转化应用中的问题与分析.生物技术学报,1999,10(3)suppl.:102~107
    7 高峰.甘薯基因工程的研究:现状及展望.中国甘薯,1996,8:126~132
    8 高峰,龚一富,林忠平,等.根癌农杆菌介导的甘薯遗传转化及转基因植株的再生.作物学报.2001,27(6):751~756
    9 巩振辉.以PCR鉴定转基因植株的微量DNA提取方法.西北农业大学学报,1997,25(1):45~4817
    10 韩生成,刘清利,孟颂东等.植物寄生线虫分子生物学和线虫基因工程策略的研究进展.农业生物技术学报,1999,7(4):395~400
    11 郝贵霞,朱祯,朱之梯.转水稻巯基蛋白酶抑制剂基因毛白杨获得.高技术通讯,1997,11:17~21
    12 贺晨霞,夏光敏.农杆菌介导的单子叶植物基因转化研究进展.植物学通报,1999,16(5):567~573
    13 侯学文,姜悦,郭勇.转基因植物中的标记基因.生物学通报,1997,32(1):19~21
    14 胡小琴、贾士荣.水稻巯基蛋白酶抑制剂基因导入马铃薯和茄子.园艺学报,1998,25(1):65~69
    15 卢晓风,夏玉先,裴炎.植物蛋白抑制剂在植物抗虫与抗病中的作用,生物化学与生物物理进展.1998,25(4):328~332
    16 贾士荣.植物遗传转化的进展.江苏农业学报,1990,6(1):44~47
    17 贾士荣、曹冬孙.转基因植物.植物学通报,1992,9(2):3~1
    18 贾士荣.转基因植物食品中标记基因的安全性评价.中国农业科学,1997,30(2):1~15
    19 金万枚,巩振辉,李桂荣等.植物遗传转化方法和转基因植株的鉴定.陕西农业科学,2000,(1):24-29
    20 李倩,雷祚荣.外源基因表达与代谢超负荷.生物技术,1997,7(6):4~6
    21 李旭刚,谢迎秋,朱祯.外源基因在转基因植物中的失活.生物技术通报,1998,(3):1~8
    22 李子银,胡会庆.农杆菌介导的植物遗传转化进展.生物工程进展,1998,18(1)22~26
    23 李思经.生物技术发展的现状和展望.生物工程进展,1997,17(1):48~51
    24 李卫,郭光沁,郑国锠.根癌农杆菌介导遗传转化研究的若干新进展.科学通报,2000,45(8):798~807
    25 刘金元.植物基因转移及应用前景.生物技术,1994,4(6):4~8
    26 刘巧泉,张景六,王宗阳等.根癌农杆菌介导的水稻高效转化系统的建立.植物生理学报,1998,24(3):259~271
    27 刘庆昌,鲁迪慧,马彪,等.甘薯细胞悬浮培养及有效植株再生.农业生物技术学报,1996,3:238~242
    28 刘庆昌,罗建钦,周海鹰等.甘薯高频率体细胞胚胎发生及植株再生.农业生物技术学报,1993,2:91~96
    
    
    29 刘庆昌,陆漱韵.我国甘薯育种的发展方向.作物杂志,1996,(5):12~13
    30 刘颖,金振华,林忠平.利用PCR技术鉴定转化根癌农杆菌中外源和内源的GUS基因.生物工程进展.1995,15(2):46~47
    31 柳武革,薛庆中.蛋白酶抑制剂及其在抗虫基因工程中的应用生物技术通报,2000,1:20~25
    32 刘武革,薛庆中.蛋白酶抑制剂及其在抗虫基因工程中的应用.生物技术学报.2001,(1):20~22
    33 陆漱韵,刘庆昌,李惟基.甘薯育种学.北京:中国农业出版社,1998
    34 罗红蓉,张勇为,张义正.根癌农杆菌转化甘薯高频率获得抗性愈伤组织的研究.四川大学学报,2002,39:21~24
    35 卢小凤,夏玉先,裴炎.植物蛋白酶抑制剂在植物抗虫与抗病中的作用.生物化学与生物物理进展,1998,25(4):328~330
    36 倪万朝,张震林,郭三堆.转基因抗虫棉的培育.中国农业科学,1998,31(2):8-13
    37 苏宁,冯丽,杨波等.水稻巯基蛋白酶抑制剂基因在烟草叶绿体中表达.作物学报,2002a,28(3):301-304
    38 苏宁,孙萌,杨波等.双价抗虫基因叶绿体共转化植株抗性及其后代表型分析.遗传,2002b,24(3):288-292
    39 孙建华,彭德良,宇克莉等.甘薯糠腐茎线虫病组织病理学扫描电镜研究.华北农学报,1998,13(1):101~105
    40 田颖川,秦晓峰,许丙寅等.表达苏云金杆菌δ-内毒素基因的转基因烟草的抗虫性.生物工程学报,1991,7(1):1~10
    41 王关林,方宏筠,那杰.外源基因在转基因植物中的遗传特性.遗传.1996,18(6):37~41
    42 王关林,方宏筠.植物基因工程原理与技术.北京:科学出版社,1998
    43 王景雪,孙毅.农杆菌介导的植物基因转化研究进展.生物技术通报,1999,(1):7~13
    44 王琛柱,钦俊德.大豆蛋白酶抑制剂与棉酚或丹宁混用对棉铃虫中肠蛋白酶和生长率的影响.昆虫学报,1996,39(4):337~341
    45 王树凤,徐礼根.抗虫转基因植物研究进展.杀虫剂.2000,39(9):6~9
    46 王芋华,毛双林,李浩杰等.Xa21基因导入水稻及转基因植株的鉴定.应用与环境生物学报,2001,3:228~231
    47 王玉萍,刘庆昌,李爱贤等.作物学报.慢照射与茎尖培养相结合筛选甘薯同质突变体.2002,28(1):18~23
    48 辛淑英,张祖珍.甘薯外植体组织培养和植株再生.植物学报,1987,29:114~116
    49 徐子勤,贾敬芬,胡之德.发根农杆菌A4菌株转化苜蓿悬浮培养物.生物工程学报 1997,13 (1):53~57
    50 杨金水,王光清.植物转基因的失活与沉默.生物工程进展,1995,15(3):41~45
    51 杨美珠,潘乃禾遂,陈章良.高效马铃薯遗传转化体系的建立及甜蛋白基因的导入.植物学报,1992,34(1):31~36
    52 姚敦义,张慧娟.1981.甘薯块根和叶片的培养.植物生理学通讯,4:41~42
    53 尹中朝,许耀,杨凡等,1996.一种检测转基因植物细胞中β-葡萄苷酸酶(GUS)活性的实用方法.遗传,18(4):36~37
    54 俞志华.抗虫基因的抗虫原理及其应用现状和展望.生物学通报,2000,35(7)7:8~10
    55 许耀,贾敬芬,郑国锠.酚类化合物促进根癌农杆菌对植物外植体的高效转化.科学通报,1988,33(22):1745~1748
    56 章冰,卫志明.根癌农杆菌介导的水稻转化及转基因R1代植株表型特征植物生理学报,1999,25(4):313~320
    57 张根义,徐武,李鸣等.植物细胞感受态研究初探,农业生物技术学报.1997,5(1):100~102
    58 张少柏,弭耳英,赵百灵等.甘薯茎线虫病药剂防治的研.农药,1990,29(5):45~46
    59 赵建周,范云六,范贤林等.转双基因抗虫烟草延缓棉铃虫抗性的作用评价.科学通报,1999,44(15):1635~1639
    
    
    60 赵荣敏,范云六,石西平.获得高抗虫转双基因烟草.生物工程学报,1995,11(1):1~5
    61 曾仲奎,谢文胜,鲍锦库等.水稻巯基蛋白酶抑制剂的纯化及其性质研究.生物化学杂志,1996a,12(6):703-7082
    62 曾仲奎,鲍锦库,等.水稻巯基蛋白酶抑制剂的分子修饰与其对稻瘟病的抑制作用.生物化学杂志,1996b,12(6):709~714
    63 周兆斓,朱祯.植物抗虫基因工程研究进展.1994,14(4):18~24
    64 朱宝成,王俊钢,李庆余.Ti质粒对甘薯叶片和愈伤组织的转化.植物生理学通讯,1991,16:310
    65 朱成松,顾和平,陈新.大豆抗虫基因工程研究进展.大豆科学,1999,18(3):260~264
    66 Abe K, Hiroto K, Arai S, et al. Molecular cloning of a cysteine proteinase inhibitor of rice (ocryzacystatin): Homology with animal systatins and transient expression in the ripening progress of rice seeds. J Biol Chem, 1987, 262:16793~16797
    67 Abrahamson M, et al. Identification of the probable inhibitor re-active sites of the cysteine proteinase inhibitors human cystatin and chicken cystatin. J biol Chem, 1987, 262:9688~9684
    68 Arais S, et al. Papain-inhibitory activity of acitivity of oryzacystatin, a rice seed cystatine proteinase inhibitory, depend on the central Glu-Val-Val-Ala-Gly region conserved among cystatin super family members. J Bio Chem, 1991, 109(2): 294~298
    69 Al-Juboory K H, Skirvin R M. In Vitro Regeneration of Agrobacterium-transformed sweetpotato (Ipomoea batatas L.). PGRSA Quarterly,1991, 19:82~89
    70 Alt-Moerbe, Neddermann J, Von Lintig P, et al. Temperature-sensitive steps in Ti plasmid vir region induction and correction with cytokinin secretion by Agrobacterium. Mol Gen Genet, 1988, 213:1~8
    71 Andrew N. Binns. Agrobacterium-mediated gene delivery and the biology of host range limitations, Physiologia Plantarum, 1990, 79:135~139
    72 An G. Development of plant promoter expression vectors and their use for analysis of differential activity ofnopaline syntheses promoter in transformed tabacco cells. Plant Physiol, 1986, 81:86~91
    73 Barton K A, Whlteley H R, Yang N S. Bacillus thuringiensis delta—endotoxin expressed in transgenic Nicotiana tobacum provides resistance to Lepidoptera insects. Plant Physiology, 1987, 85:1103~1109
    74 Barrett A J, et al. Nomenclature and class fication of the proteinase inhibitor chicken cystatin. Biochem J, 1982, 236:311~312
    75 Belarmino M M, Abe T, Sasahara T. Efficient plant regeneration from leaf calli of Ipomoea batatas(L.) Lam. and its related species. Japan J Breed, 1992, 42:109-114
    76 Benchekroun A, Michaud D, Nguyen-Quoc B, et al. Synthesis of active oryzacystatin I in transgenic potato plants. Plant Cell Reports, 1995, 14:585~588
    77 Bolter C J, Jongsma M A. Colorado potato beetle (Leptino tarsadecemlineata) adapt to proteinase inhibitors included in potato leaves by methyljasmonate. J Insect Phsiol, 1995, 41(12): 1071~1078
    78 Boulter D, Edwards G A, Gatehouse A M R, et al. Additive protective effects of different plantderived insect resistance genes in transgenie tobacco plants. Crop Prot, 1990,9:351~354
    
    
    79 Broadway R M.Proteinase inhibitors alter complement of mid gut proteases. Achivesof Insect Biochemistry and Physiology. 1996,32(1) : 35-53
    80 Broadway R M, Duffey S S. Plant proteinase inhibitors: mechanism of action and defection the growth and digestive physiology of larval Heliothis zea and Spodoptera exiegua. J Insect Physiol, 1986,32(10) : 827-833
    81 Burgess E P J, Main C A, Stevens P S, et al. Effects of proteinase inhibitor concentration and combinations on the survival, growth and gut enzyme activities of the black field cricket, Teleogryllus commodus. J Insect Physiol. 1994,40(9) : 803-811
    82 Chrispeels M J, Raikhel N V.Lectins, lectingenes and their role in plant defence. The Plant cell.1991,3:1-9
    83 Carelli M L D, Skirvin, Harry R M D E.Transformation and regeneration of Jewel.In: Sweetpotato Technology for the 21st century, Sweetpotato Tech for the 21st century, Hill W A, Bonsi C K and Loretan P A (Eds.), Tuskegee Univ, USA, 1991,52-60
    84 Chee R P, Cantliffe D J. Selective enhancement of Ipomoea batatas. Embryogenic and non-embryogenic callus growth and production of embryos in liquid culture. Plant Cell Tis Org Cult. 1988, 15, 149-159;
    85 Chee R P, Schultheis J R, Cantiffe D J. Plant recovery from sweet potato somatic embryos. Hortscience. 1990,25,795-797
    86 Cipriani G, Michard D, Brunelle F, et al. Expression of soybean proteinase in Sweetpotato. In: Impact on a changing world. International Potato Center Program Report 1997-1998. Lima, Peru: CIP Press, 1999,271-277,
    87 Cipriani G, Fuentes S, Bello V, et al. Transgene expression of rice cyssteine proteinase inhibitors for the development of resistance against Sweetpotato feathery mottle virus. In: Scientist and Farmer. Partners in research for the 21st century Program Report. 1999-2000-Lima, Peru: CIP Press.2001,267-271
    88 Collins W W. 1992. Practical application of biotechnology to Sweetpotato improvement, Sweetpotato Tech for the 21st century, Hill WA, Bonsi CK and Loretan P A (Eds.), Tuskegee Univ, USA, 1991,7-19
    89 Czapl T H, Lang B A. Effect of plant lectins on the larval development of European comborer (Lepidopera Pyralidae) and Southern corn root worm ( Coleoptera Chrysomelidae ). J Econ Etomol, 1990, 83: 2481-2485
    90 Dale E C, Ow D W, Bryant J, et al. Removal of selectable marker genes from transgenic plants: needless sophiscation or social necessity. Trends in Biotechnology, 1992,10(8) : 274-275
    91 Daley M, Knauf V C, Summerfelt K R, et al. Co-transformation with Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Reports, 1998,17: 6-7
    92 DeBlock M. Genotype-independent leaf disc transformation of potato (Solarium tuberoswri) using Agrbacteriwn tumefaciens. Thero Appl Genet, 1988,76: 767-774
    
    
    93 Delbreil B, Guerche P, Jullien M. Agribacterium-mediated transformation of Asparagus officinalis L. Long-term embryogenic callus and regeneration of transgenic plants. Plant Cell Rep, 1993, 12:129-132
    94 Desamero N V, Rhodes B B, Decoteaau D R. Picolinic acid-induced direct somatic embryogenesis in sweetpotato. Plant Cell Tis Org Cult. 1994,37: 103-110
    95 Dhir S K, Oglesby J, Bhagsari A S. Plant regeneration via somatic embryogenesis, and transient gene expression in sweetpotato protoplsts. Plant cell Report, 1998,17: 665-669
    96 Dodds J H, enabides J, Buitron F, et al. Biotechnology applied to sweetpotato improvement.In: Sweetpotato Tech. For the 21 st Century. Hill W A, Bonsi CK and. Loretan P.A (Eds.), Tuskegee Univ, US A, 1992,7-19
    97 Dodds J H, Merzodorf C, Zambrano V, et al. Potential use of Agrobacterium-mediated gene transfer to confer insect resistance in sweetpotato. In: Sweetpotato Pest Management, A global perspective, Jansson R, Raman K V (Eds.), Westview Press, 1990,205-220
    98 Ebinuma H, Sugita K, Matsunaga E, et al. Selection of marder free transgenic plants using the tenyl transferase gene. Proceedings of the National Academy of Scienes of the United States of America, 1997,94(6) : 2117-2121
    99 Edward G A, Hepher A, Clerk S P, et al. Pea lectin correctly processed, stable and active in leaves of transgenic potato plants. Plant Mol Biol, 1991,17: 89-100
    100 Etzler M E. Plant lectins: Molecularand biological aspects. Ann Rev Plant Physiol, 1985,36: 209-234
    101 Espinoza N O, Yang M S, Janynes J M, et al. Regeneration of plants of sweet potato (Impomoea batatas L.) transformed by Agrobacterium rhizogenes containing a synthetic protein gene. Bioeassay, 6:261-267
    102 Felton G W, Broadway R M, Duffey S S, et al. Activation of protease inhibitor activity by plant derived quinines: complication for host plant resistance against noctuid herbivores. J Insect Physiol, 1989,35(12) : 981-990
    103 Ferre J, Escriche B, Bel Y, et al. Biochemistry and genetics of insect resistance to Bacillus thuringiensis insecticidal crystal proteins. FEMS Microbology Letters. 1995, 13(2) : 1-7
    104 Fischhof F D A, Bowdish D S, Perlak F J, et al. Insect tolerant transgenic tomato plants. Bio /Technol. 1987,5: 807-813
    105 Gama M C S, Leite J R, Cordeiro A R, et al.Transgenic sweetpotato plants obtained by Agrobacterium tumefaciens-mediated transformation. Plant Sci Tiss Org Cult, 1996,46:237-244
    106 Gatehouse A M R, Davison G M, Newell C A, et al. Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: growth room trials. Molecular Breeding, 1997,3:49-64
    107 Gleave A P, Mitra D S, Mudge S R, et al. Selectable marker-free transgenic plants withought sexal crossing: transient expression of Cre recombinase and use of a conditional leathal
    
    dominant gene. Plant Molecular Biology. 1999,40(2) : 223-235
    108 Gusukonda R M, Prakash C S, Ressai A P. Shoot regeneration in vitro from diverse genotypes of sweetpotato and multiple shoot production per explant. Hortsci, 1995, 30: 1074-1077
    109 Hadfi K, Batschauer A. Agrobacterium-mediated transformation of white mustard (Sinapis alba L.) and regeneration of transgenic plants. Plant Cell Rep, 1994,13: 130-134
    110 Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza saliva L.,) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994,6: 271-282
    111 Hiwasa T, et al. Phosphorylation of thylakoid proteins and synthetic peptide analogs. FEBS Lett, 1987,211:23-26
    112 Godwin I, Todd G, Ford-Lloyd B, et al. The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to pant species. Plant Cell Report, 1991,9:671-675
    113 Guiltinan M J, Li Z J, Traore A,et al. High efficiency embryogenic and genetic transformation of Cacao. Ingenic-Newsletter, 1997,3:7-8
    114 Hilder V A, Gatehouse A M R, Sheerman S E, et al. A novel mechanism of insect resistance engineered into tobacco. Nature. 1987, 330( 6126) : 160-163
    115 Hilder V A, Boulter D. Genetic engineering of crop transformation insect resistance-acritical review. Crop Prot, 1999,18: 177-191
    116 Hilder V A, Powell K S, Gatehouse A M R, et al. Expression of snowdrop lectin transgenic tobacco plants results in added protection against ahids. Trangenic Research, 1995,4:18-25
    117 Hinks C F, Hupka D.The effects of feeding leaf sap from moats and wheat, with and without soybean trypsin inhibitor, on feeding behavior and digestive physiology of adult males of Melonoplus songuinipes. J Insect Physiol, 1995,41(11) : 1007-1015
    118 Holford P, Hernandez N, Newbury H J. Factors influencing the efficiency of T-DNA transfer during co-cultivation of Antirrhinum maus with Agrobacterium tumeficiens. Plant Cell Rep, 1992,11:196-199
    119 Horsch R B, Fry J E, Hoffmann N L,et al. A simple and general method for transferring genes into plants. Science, 1985,227: 1229-1231
    120 Hosoyama H, et al. Oryzacystatin exogenously introduced into protoplasts and regeneration of transgenic rice. Biosci Biotechnol Biochem,1994, 58(8) : 1500-1505
    121 Ishimoto M, Sato T.Chrispeels M J.etal. Bruchid resistance of transgenic azuki bean expressing seed al-pha amylase inhibitor of common bean. Entomologia Experimentalis et Applicata, 1996,79:309-315
    122 Jefferson R A, Kavanagh T A, Bevan M W. GUS fusion-Pglucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J, 1987,16: 2901-2907
    123 James D J, Passey A J, Barbara D J. Genetic transformation of apple (Mains pumila Mill.) using a disarmed Ti-binary vector. Plant Cell Rep, 1987,7: 658-661
    
    
    124 Johnson R, Narraez J, An G, et al.Expression of proteinase inhibitors Ⅰ and Ⅱ in transgenic tobacco plants. Effects on natural defense against Manduca sexta larvae. Proc Natl Aca Sci USA. 1989,86(24) : 9871-9875
    125 Klan M R F, Tabe L M, Heath L C, et al. Agrobacterium-mediated transformation of subterranean clover ( Trifolian-subterraneum L.). Plant Physiology. 1994, 105(1) : 81-88
    126 Klein T M, Kornstein L, Sanford J C, Fromm M E. Genetic transformation of maize cells by particle bombardment. Plant Physiol. 1989,91:440-444
    127 Kondo H, et al. Cloning and sequence analysis of the genomeic cDNA fragment encoding oryzacystatin. Gene, 1989, 81: 259-265
    128 Kondo H, et al. Two distinct cystatin species increase in rice seeds with different specificities against cystateine proteinases. J Biol Chem, 1990,58(8) : 1500-1505
    129 Kondo H, Ijiri S, et al. Inhibitory effect of oryzacystatins and a trunccation mutant on the replication of purification.cysteine proteinase activity of a trun-cated rruncated form of the protein. FEBS Letter, 1992,299: 48-50
    130 Koziel M, et al. Bio/Technology and Genetic Engineering Review. 1993,11: 171-229
    131 Lilley C, Urwin P, McPherson M, et al. Characterization of intestinally actine proteinases of cystnematodes. Parasitology. 1996, 113:415-424
    132 Liu Q C, Mi K X, Lu D H, et al. Establishment of embryogenetic cell suspension cultures in sweetpotato, Ipomoea batatas (L.) Lam. Acta Agr. Sinica, 1997,23(1) : 22-27
    133 Liu Q C, Zhai H, Wang Y P, Zhang D P. Effecient plant regeneration from embryoger suspension cultures of sweetpotato. In Vitro Cell Dev Biol-Plant, 2001,37:564-567
    134 Masoud S, Johnson L, White F, et al. Expression of a cysteine proteinase inhibit (oryzacystatin-I) in transgenic tobacco plants. Plant Molecular Biology, 1993, 21: 655-663
    135 Mchughen A, Jordan M, Feist G. A preculture period prior to Agrobacterium inoculatii increase production of transgenic plants J. Plant Physiol, 1989,135:245-248
    136 McManus M T, Burgess E P J. Effect of the soybean (Kunitz) trypsin inhibitor on growth and digestive protease of larvae of Spodoptera litura. J Insect Physiol, 1995,41(9) : 721-738
    137 Michael F. Plant Molecular Biology, 1997,35:425-431
    138 Ming-Tsair Chan, Hsin-Hsiung Chang, Shin-Lon, et al. Agrobacterium-medealed production of transgenic rice plants expressing a chimeric a-amylase promoter β-glucuronidase gene. Plant Molecular Biology, 1993,22: 491-506
    139 Motoyasu Otani, Masahiro Mii, Takashi Handa, et al. Transformation of sweetpotato (Ipomoea batatas(L.)Lam) plants by Agrobacterium rhizogenes. Plant Sci, 1994,94: 151-159
    140 Motoyasu Otani, Takiko Shimada, Takashi Kimura, et al. Transgenic plant production from embryogenic callus of sweetpotato (Ipomoea batatas (L.) using Agrobaterium tumefaciens. Plant Biotechnology, 1998, 15(1) : 11-16
    141 Murata T, Okada Y, Fukuoka H,et al. Genetic transformation of sweetpotato.In: Proc 1st Chinese-Japanese Symp Sweetpotato & Potato. Liu Q C.Kokubu T(Eds) .Beijing: Beijing Agri
    
    Univ Press, 1995,369-374
    142 Murata T, Okada Y, Saito A, et al. Transformation by direct gene transfer in sweetpotato (Ipomoea batatas L.(Lam).).In: Proceedings of International Workshop on sweetpotato Production System toward the 21st Century, 1997,159-179
    143 Murdock L L, et al. Effects of E-64, a cysteine proteinase inhibitory, on cowpea weevil growth, development, and fecundity. Environ. Entomol, 1987, 17: 467-469
    144 Murry E E, etal. Analysis of unstable RNA transcripts of insect icidal crystal proteingenes of Bacillus thuringiensis in transgenic plants and electroporated protoplasts. Plant Mol Biol,1991, 16:1035-1050
    145 Nadine C, Micheal K. Advances in insect control: The role of transgenic plants. Londaon: Taylor& Francis Ltd, 1997 Newell C A, Lowe J M, Merryweather A, et al.Transformation of sweetpotato (Ipomoea batatas(L.) Lam.) with Agrobacterium tumefaceiens and regeneration of plants expressing cowpea trypsin inhibitor and snowdrop lectin. Plant Sci, 1995,107:215-227
    146 Norelli J L, Aldwinckie H S.The role of aminoglycoside antibiotics in the regeneration and selection of neomycin phosphotransferase-transgenic apple tissue. J Amer Soc Hort Sci, 1993, 118:311-316
    147 Orr G L, Strickland J A, et al. Inhibition of Dialrotica larval growth by a multicystatin from potato tubers. J Insect Physiol, 1994,40(10) : 893-900
    148 Osborn T C, Alexander D C, Sun S S M, et al. Insecticidal activity and lectin homology of arcelin seed protein. Sci. 1988,240:207-210
    149 Otani M, Shimada T, Kamada H, et al. Fetile transgenic plants of Ipomoea trichocarpa Ell. induced by different strains of Agrobacterium rhizogenes. Plant Sci. 1996,116: 169-175
    150 Otani M, Shimada T. Transgenic Sweet potato (Ipomoea batatas L. Lam.). In: Biotechnology in Agriculture and Forestry. Vol. 47. Transgenic crops Ⅱ (ed. by Bajaj Y P S).Spring-Verlag Berlin Heidelberg, 2001: 183-204
    151 Okada Y,N5shiguchi M, Saito A, et al. Inheritance and stability of the virus-resistant gene in the progeny of transgenic sweet potato. Plant Breeding. 2002, 121:249-253
    152 Pefereon M. Progress and prospects for field use of Bt genes in crops. Trends in Biotechnology, 1997,15 (5) : 173-177
    153 Perlak F J, Fuchus R L, Dean D A, et al. Modification of the coding sequence enhances plant expression of insect control protein genes. Pro Natl Acad Sci USA, 1991, 88: 3324-3328
    154 Perlak F J, Stone T B, Muskopf Y M, et al. Genetically improved potatos: protection from damage by Colorado potato beetles. Plant Mol Bio, 1993,22: 313-321
    155 Peumans W J, Van Damme E J M. Lectins as plant defense proteins. Plant Physiol, 1995,109: 347-352
    156 Perl A, Saad S, Sahar N, et al. Establishmen of long-term embryogenic clusters of seedless Vitis vinifera cultivars-a synergistic effect of auxins and the role of abscisic acid. Plant Science Limerick. 1995. 104(2) : 193-200
    
    
    157 Powell K S, Gatehouse A M R, Hilder V A, et al. Antifeedant effects of plant lectins and enzyme on the adult stage of hericebrown plant-hopper, Nilaparva talugens. Entomol Exp Appl, 1995,75:51-59
    158 Purcel J P.etal. Biotech Biophysics Res Commum, 1993,196: 1406-1413
    159 Prakash CS, Varadarajan, Usha.. Genetic transformation of sweetpotato by particle bombardment. Plant Cell Report, 1992,11:53-57
    160 Register J C Ⅲ, Peterson D J, Bell P J, et al. Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant Mol Biol.1994,25: 951-961
    161 Ryan C A. Protease inhibitors in plant: genes for improving gainst insects and pathogens. Annu. Rev. Phytopathol, 1990,28:425-449
    162 Scott R J, Draper J.Transformation of carrot tissure derived from proembryogenic suspension cells: A useful model system for gene expression studied in plants. Plant Mol Biol, 1987, 8: 265-274
    163 Shade R E, Schroder H E, Pueyot J, et al. Transgenic pea seeds expressing the alpha-amylase inhibitor of the common bean are resistant to bruchid beetles. Biotechnology, 1994,12(8) : 793-796
    164 Shelten A M, Tang J D, Rouseh R T, et al. Field tests on managing resistance to Bt-engineered plants. Nat. Biotechnol, 2000, 18: 339-342
    165 Sihackakr D, Haicour R, Cavalcante A J M, et al. Plant regeneration in sweetpotato (Ipomoea batatas L., Convolvulaceae). Euphytica. 1997, 96: 143-152
    166 Shonele E J, Adams L D, Sammons D W. Insulin-induced rapid decrease of a major protein in fat cell plasma membrane. J Biol Chem, 1984,259: 121-122
    167 Stachel S E, Messens E, Montagu M, et al. Identification of the signal molecules-produced by wounded plant cell that activate T-DNA transfer in Agrvbacterium twnefaciens. Nature, 1985, 318:628-629
    168 Stachel S E, Timmerman Zambryski P C. Vir A and Vir G control the plant-induced activation of the T-DNA transfer porcess of Agrobacterium trmefaciens. Cell, 1986, 46:325
    169 Sugita K, Matsunaga E, Ebinuma H. Effective selection system for generating marker-free transgenic plant independent of sexal crossing. Plants Cell Reports. 1999, 18(11) : 941-947
    170 Sun M, Liu P Y. Transformed hair root and callus induction of Ipomoea batatas. Proc 1st Chinese-Japanese Symp Sweetpotato and Potato, Liu Q C, Kokubu T (Eds.).Beijing: Beijing Agri Univ Press, 1995,386
    171 Suseelan KN, Anjali B, Mathews H. Agrobacterium titmefaciens-induced tumor formatation on some tropical dicot and monocot plants. Current Science. 1987, 56, 17: 888-889
    172 Tatsuro Murata, Yoshihiro Okada, Hisao Fukuoka, et al. Genetic Transformation of sweetpotato (Ipomoea Batatas (L.)Lam.). In: Liu QC, Kokubu T (eds) Proc 1st Chinese-Japanese Symp ON sweetpotato and potato. Liu Q C, Kokubu T (Eds.). Beijing: Beijing Agricultural
    
    University Press, 1995, 369-374
    173 Terra W R, Ferreira C. Insect digestive enzymes: properties, compartimentalization and function. Comp Biochem Physiol, 1994, 109(1) : 1-62
    174 Uehara Y, Komaki K, Nishiguchi M. Gene Transfer into sweetpotato protoplast by electroporation formation of stably transfromed calli. Kyushu Agricultral Research, 1991, 54:21
    175 Ukoskit K, Thompson PG, Watson CE, et al. Identifying a randomly amplified polymorphic DNA (RAPD) marker linked to a gene for rootknot nematode resistance in sweet potato. J Amer Soc Hort Sci, 1997,122(6) : 818-812
    176 Urwin P E, Lilley C J, Mcpherson M J, et al. Resistance to both cyst and root-knot nematodes conferred by transgenic Arabidopis expressing a modified plant cystation. Plant J, 1997, 12(2) : 455-461
    177 Urwin P E, Mephorson M J, Atkinson H J. Enhanced transgenic plant resistance to nematodes by dual protenase inhibitor constructs.Planta, 1998,204(4) :472-479
    178 Vaeck M, Revnaerts A, Hofte H, et al. Transgenic plants protected from Insect attack. Nature, 1987,328: 33-37
    179 Vain P, Worland B, Clarke M C, et al. Expression of an engineered cysteine portenase inhibitor for nematode resistance in transgenic rice plant. Int Rice Res Notes, 1998,23: 266-271
    180 Wakita Y, Otani M, Mori M, et al. A tobacco microsomal ω-3 fatty acid desaturase gene increases the linolenic acid content in transgenic sweet potato ( Ipomoea batatas ). Plant Cell Reports, 2001, 20: 244-249
    181 Weide R, Koornneer, Zabel P. A simple, nondestructive spraying assay for the detection of a Kanamycin resistance gene in transgenic tomato plants. Theoretical and Applied genetics, 1989,78: 169-172
    182 Weber H, Ziechmann C, Graessmann A. In Vitro DNA methylation inhibits gene expression in transgenic tobacco. EMBO J, 1990,9: 4409-4415
    183 Yamaguchi T. Hormonal regulation of organ formation in cultured tissue derived from root tuber of sweet potato. Bull Univ Osaka Bref Sev B. 1978, 30: 54-88
    184 Yoder J I, Goldsbrough A P. Transformation systems for generating marker free transgenic plants. Bio-technology, 1994, 12(3) : 263-267
    185 Xue Q H. Transicent expression of β-glucuronidase(GUS) gene in sweetpotato ( Ipomoea batatas(L.)Lam.) portoplast electroporated. In: Proc 1st Chinese-Japanese Symp Sweetpotato and Potato, Liu QC, Kokubu T (Eds.).Beijing: Beijing Agri Univ Press, 1995,386
    186 Zhou J M, Wei Z M, Liu S G, et al.Transfomation of Orychophragmus violaceits using Agrobacterium tumefaciens and regeneration of transgenic plants. Developmental and Reproductive Biology. 1995, 1(4) : 40-49