常温及火灾下钢筋混凝土板的受拉薄膜效应计算模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋混凝土板在遭遇火灾、爆炸和冲击等极端荷载作用下,通常会处于大挠度状态。由于受拉薄膜效应的存在,使得钢筋混凝土板在发生较大挠度时仍能保持稳定,不发生坍塌。因此,受拉薄膜效应对维持结构的整体性起到了重要作用,进而保证了受灾结构内人员逃生和重要物资的抢救具有较为充足的时间。
     薄膜效应分为受压薄膜效应和受拉薄膜效应两种。其中,受压薄膜效应通常对应钢筋混凝土板的小挠度状态,而受拉薄膜效应则对应钢筋混凝土板发生较大挠度的情况。在已有的研究中,受压薄膜效应得到了广泛的关注,而受拉薄膜效应并没有得到足够的重视。基于上述原因,本文以钢筋混凝土板受拉薄膜效应为研究对象,从理论和试验两个角度进行了常温和火灾作用下考虑受拉薄膜效应的钢筋混凝土板大挠度下承载力的研究,主要研究内容如下:
     (1)由于经典屈服线理论无法考虑受拉薄膜效应对钢筋混凝土板大挠度下承载力的影响,本文基于经典屈服线理论的基本假定及其板块平衡法和机动法计算原理,认为受拉薄膜效应是由塑性铰线截面处钢筋合力的竖向分量或钢筋伸长做功所引起,提出了钢筋混凝土单向板和双向板在常温下的大挠度承载力计算模型,并利用已有的国内外缩尺混凝土板的常温静力加载试验数据,与国内外已有的受拉薄膜效应计算模型进行对比。对比结果表明:本文提出的模型在计算钢筋混凝土板大挠度下承载力时具有较好的精度。
     (2)为进一步验证本文提出的受拉薄膜效应计算模型的合理性,本文开展了10块足尺钢筋混凝土板在大挠度下的常温静力加载试验,包括:简支、固支、和一边简支一边固支等三种边界条件的6块单向板,和四边简支矩形和四边简支方形两种条件的4块双向板。根据试验现象验证了受拉薄膜效应是由塑性铰线截面上钢筋合力的竖向分量或者钢筋伸长做功引起的这一假设的合理性。根据试验数据的分析,本文对提出的钢筋混凝土受拉薄膜效应计算模型中的挠度特征值计算公式进行了修正,并验证了本文提出模型的合理性和有效性。利用本文提出模型的计算公式开展参数分析,对受拉薄膜效应的主要影响因素进行了探讨。
     (3)本文归纳并总结了国内外不同工况的足尺钢筋混凝土板的火灾试验,包括:简支双向板、固支双向板、简支单向板以及多跨连续板。通过对上述试验现象的理解,归纳了火灾下钢筋混凝土板的破坏模式,并证实了钢筋混凝土板在火灾作用下发生大挠度时受拉薄膜效应的存在及其产生的原因。进一步基于本文提出的常温下考虑受拉薄膜效应的钢筋混凝土板的承载力计算模型,考虑了火灾时的高温效应,提出了火灾下考虑受拉薄膜效应的钢筋混凝土板的承载力计算模型。并利用已归纳的试验数据,验证了本文模型在预测火灾下钢筋混凝土板的大挠度下承载力的准确性。
In general, reinforced concrete (RC) slabs undergo large deflections when they aresubjected to extreme loads, e.g. fire, blast and impact. Due to tensile membrane action,RC slabs can still keep steady even under quite large deflections. Therefore, tensilemembrane action plays an important role in maintaining the integrity of structures. Inaddition, it provides highly probability that the persons and important properties in theattacked buildings can be rescued and saved with adequate time.
     Membrane action involves compressive membrane action corresponding to lowdeflections, and tensile membrane action to larger deflections. During the past years,compressive membrane action was widely studied, while less attention was paid ontensile membrane action. Based on the above consideration, tensile membrane action ofRC slabs subjected to large deflections is taken as the research objective of this thesis.Considering the influence of tensile membrane action, the load-carrying capacity of RCslabs, at ambient and elevated temperature, is studied from both theoretical andexperimental aspects. The main contents are summarized as follows:
     1) The influence of tensile membrane action on the load-carrying capacity of RCslabs is not incorporated in the conventional yield line theory. In this thesis, the tensilemembrane action is assumed to be provided by the vertical component of the steelforces at the section of yield lines or the plastic energy dissipation due to the extensionof reinforcements along yield lines after the formation of mechanism of plastic hingeline. Then, a new model is proposed to estimate the load-carrying capacity consideringthe influence of tensile membrane action. The new model is validated and comparedwith other similar models proposed by others using the small-scale experimental resultshome and abroad. It is illustrated that the new model has adequate accuracy to estimatethe load-carrying capacity of RC slabs subjected to large deflections.
     2) In order to examine the performance of the new model, a serial full-scaleconcrete slabs tests were carried out at ambient temperature. All the slabs were tested tolarge deflections, and six one-way concrete slabs, two rectangular and two square slabswere contained. The one-way concrete slabs had three different edge conditions, i.e. twoedges simply supported, two edges clamped, one edge simply supported and one edgeclamped. The edges of all the two-way concrete slabs were all simply supported. According to the after-test observations, the assumptions used in the model arereasonable. That is to say that tensile membrane action is do provided by the verticalcomponent of the steel forces at the section of yield lines or the plastic energydissipation due to the extension of reinforcements along yield lines. Through studyingthe test data, the proposed model is proved to be effect. Additionally, the formula usedin the proposed model, to calculate the deflections for the characteristic points, ismodified. Using the proposed model, main factors having influences on the tensilemembrane action are examined.
     3) Several fire tests of full-scale concrete slabs are summarized, including two-wayslabs with four edges simply supported and four edges clamped respectively, one-wayslabs with two opposite edges simply supported, and multi-bay continuous concreteslabs. Through interpreting the test observations, failure modes of the test slabs aresummarized. Besides, tensile membrane action of RC slabs is proved to occur in fire,and its mechanism is explained. Incorporating the high-temperature effects, a newcalculation model is further presented to calculate the load-carrying capacity of concreteslabs in fire. Through studying the fire test results, the new presented model is proved toexactly predict the load-carrying capacity of RC slabs.
引文
[1]李国强,韩林海,楼国彪,蒋首超.钢结构及钢-混凝土组合结构抗火设计[M].北京:中国建筑工业出版社,2006.
    [2]董毓利.混凝土结构的火安全设计[M].北京:科学出版社.2001.
    [3]东南大学,同济大学,天津大学.混凝土结构(中册):混凝土结构与砌体结构设计[M].北京:中国建筑工业出版社,2008.
    [4] Lennon, Moore D. The natural fire safety concept—full-sacle tests atCardington[J]. Fire Safety Journal,2003,38(7):623-643.
    [5] Wald F, Silva L, Moore D B, Lennon T, Chladna M, Santiago A, Benes M,Borges L. Experimental behaviour of a steel structure under natural fire[J]. FireSafety Journal,2006,41(7):509-522.
    [6]孙文彬.钢筋混凝土板的爆炸荷载试验研究[J].辽宁工程技术大学学报(自然科学版),2009,28(2):217-220.
    [7]何建,肖玉凤,陈振勇,唐平.空爆载荷作用下固支矩形钢板的塑性极限变形[J].哈尔滨工业大学学报,2007,39(2):310-313.
    [8] Marlon Luis Bazan. Response of reinforced concrete elements and structuresfollowing loss of load bearing elements[D]. Northeastern University, Bostion,U.S,2008.
    [9] Dat P X, Hai T K. Membrane actions of RC slabs in mitigating progressivecollapse of building structures[J]. Engineering structures,2011,[In press]
    [10] Yasser A, Sherif E, Fahim S. Progressive collapse resistance of steel-concretecomposite floors[J]. Journal of structural engineering,2010,136(10):1187-1196.
    [11]于航.钢管混凝土节点抗震与框架抗连续性倒塌性能研究[D].哈尔滨工业大学博士学位论文,2010.
    [12]万福磊.建筑结构连续性倒塌数值模拟方法研究[D].中国建筑科学研究院博士学位论文,2011.
    [13] Desayi P, Kulkarni A B. Membrane action, deflections and cracking of two-wayreinforced concrete slabs[J]. Materials and structures,1977,10(59):303-312.
    [14] Braestrup M W. A discussion to “Membrane action, deflections and cracking oftwo-way reinforced concrete slabs”[J]. Materials and structures,1978,11(63):205-206.
    [15] Johansen K W. Yield-line formulae for slabs [M]. Cement and ConcreteAssociation, Taylor&Francis,1962.
    [16] Kennedy G, Goodchild C. Practical yield line design[M]. Berkshire: BritishCement Association,2003.
    [17] Park R. The ultimate strength and long term behaviour of uniformly loaded two-way concrete slabs with partial lateral restraint at all edges[J]. Magazine ofConcrete Research,1964,16(48):139-152.
    [18] Park R. The lateral stiffness and strength required to ensure membrane action atthe ultimate load of a reinforced concrete slab and beam floor[J]. Magazine ofConcrete Research,1965,17(50):29-38.
    [19] Morley C T. Yield line theory for reinforced concrete slabs at moderately largedeflections[J]. Magazine of Concrete Research,1967,19(66):211-221.
    [20]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析[M].北京:清华大学出版社,1991.
    [21] Sawczuk A, Winnicki L. Plastic behavior of simply supported reinforced concreteplates at moderately large deflections[J]. Int. J. solids Structures,1965,1(1):97-111.
    [22] Kemp K O. Yield of a square reinforced concrete slab on simple supports,allowing for membrane forces[J]. The structural engineer,1967,45(7):235-240.
    [23] Hayes B. Allowing for membrane in the plastic analysis of rectangular reinforcedconcrete slabs[J]. Magazine of Concrete Research,1968,20(65):205-211.
    [24] Janas M. Large plastic deformations of reinforced concrete slabs[J]. Int. J. solidsstructures,1968,4(1):61-74.
    [25] Famiyesin O., Hossain K, Chia Y, Slade P. Numerical and analytical predictionsof the limit load of rectangular two way slabs[J]. Computers&Structures,2001,79(1):43-52.
    [26] Bailey C G. Membrane action of unrestrained lightly reinforced concrete slabs atlarge displacements[J]. Engineering structures,2001,23(5):470-483.
    [27] Bailey C G. Efficient arrangement of reinforcement for membrane behavior ofcomposite floor slabs in fire conditions[J]. Journal of Constructional SteelResearch,2003,59(7):931-949
    [28] Bailey C G. Membrane action of slab/beam composite floor systems in fire[J].Engineering structures,2004,26(12):1691-1703.
    [29] Usmani A S, Cameron N J K. Limit capacity of laterally restrained concrete floorslabs in fire[J]. Cement&Concrete Composites,2004,26(2):127-140.
    [30] Cameron N J K, Usmani A S. New design method to determine the membranecapacity of laterally restrained composite floor slabs in fire. Part1: Theory andmethod[J]. The Structural Engineer,2005,83(19),8-33.
    [31] Omer E, Izzuddin B A, Elghazouli A Y. Failure of lightly reinforced concretefloor slabs with planar edge restraints under fire[J]. Journal of structuralengineering,2009,135(9):1068-1080.
    [32] Cashell K A, Elghazouli A Y, Izzuddin B A. Ultimate behavior of idealizedcomposite floor elements at ambient and elevated temperature[J]. Fire technology,2010,46(1):67-89.
    [33] Omer E, Izzuddin B A, Elghazouli A Y. Failure of unrestrained lightly reinforcedconcrete slabs under fire, Part I: Analytical models[J]. Engineering Structures,2010,32(4):2631-2646.
    [34] Omer E, Izzuddin B A, Elghazouli A Y. Failure of unrestrained lightly reinforcedconcrete slabs under fire, Part II: Verification and application[J]. EngineeringStructures,2010,32(4):2647-2657.
    [35]钱七虎,黄小平,郭志昆.考虑面力作用的钢筋砼板承载力分析[C].工程力学增刊,第三届全国结构工程学术会议集,1994,736-739.
    [36]董毓利,范维澄,王清安,杨邦荣.火灾温度下钢筋混凝土板的非线性分析[J].火灾科学,1997,6(2):34-38.
    [37]董毓利,王清安,范维澄.火灾中均布荷载作用下钢筋混凝土方板的极限分析[J].自然灾害学报,1997,6(4):18-22.
    [38] Dong Y L, Fang Y Y. Determination of tensile membrane effects by segmentequilibrium[J]. Magazine of Concrete Research,2010,62(1),17-23.
    [39] Dong Y L. Tensile membrane effects of concrete slabs in fire[J]. Magazine ofConcrete Research,2010,62(7),497-505.
    [40]董毓利.用变形和分解原理求混凝土板的受拉薄膜效应[J].力学学报,2010,42(6):1180-1187.
    [41] Li G, Guo S, Zhou H. Modeling of membrane action in floor slabs subjected tofire[J]. Engineering Structures,2007,29(6):880-887.
    [42]李国强,周昊圣,郭士雄.火灾下钢结构建筑楼板的薄膜效应机理及理论模型[J].建筑结构学报,2007,28(5):40-47.
    [43]李国强,郭士雄,周昊圣.火灾下钢结构建筑楼板的薄膜效应模型验证及实用方法[J].建筑结构学报,2007,28(5):48-53.
    [44]王振清,苏娟,王永军,梁文彦.火灾下钢筋混凝土楼板的薄膜效应分析[J].哈尔滨工程大学学报,2009,30(8):878-882.
    [45]张娜思,李国强.火灾下组合楼板薄膜效应分析的改进方法[J].土木工程学报,2009,42(3):29-35.
    [46]王刚,王清湘,刘士润.钢筋混凝土板的压力膜效应承载力计算方法[J].吉林大学学报(工学版),2010,40(3):699-704.
    [47]殷有泉.非线性有限元基础[M].北京:北京大学出版社,2007.
    [48]凌道盛,徐兴.非线性有限元及程序[M].浙江大学出版社,2004.
    [49] Zienkiewicz O C, Taylor R L.有限元方法(第5版),第2卷,固体力学,庄茁,岑松,译[M].北京:清华大学出版社,2006.
    [50] Bathe K J. ADINA-A Finite Element Program for Automatic DynamicIncremental Nonlinear Analysis[R]. Report AE81-1, ADINA Engineering,1981.
    [51] Huang Z, Platten A. Nonlinear Finite Element Analysis of Planar ReinforcedMembers Subjected to Fires[J]. ACI Structural Journal,1997,94(3):272-282.
    [52] Huang Z, Burgess I W, Plank R J. Nonlinear Analysis of Reinforced ConcreteSlabs Subjected to Fire[J]. ACI Structural Journal,1999,96(1):127-135.
    [53] Huang Z, Burgess I W, Plank R J. The influence of tensile membrane action in concreteslabs on the behavior of composite steel-framed buildings in fire[J]. Structures-AStructural Engineering Odyssey, Proceedings of Structures Congress,2001.
    [54] Huang Z, Burgess I W, Plank Rr J. Modeling membrane action of concrete slabsin composite buildings in fire. I: Theoretical development[J]. Journal of structuralengineering,2003,129(8):1093-1102.
    [55] Huang Z, Burgess I W, Plank R J. Modeling membrane action of concrete slabs incomposite buildings in fire. II: Validations[J]. Journal of structural engineering,2003,129(8):1103-1112.
    [56] Lim L. Membrane action in fire exposed concrete floor systems[D]. University ofCanterbury, Christchurch, New Zealand,2003.
    [57] Lim L, Buchanan A, Moss P, Franssen J. Numerical modelling of two-way reinforcedconcrete slabs in fire[J]. Engineering structures,2004,26(8):1081-1091.
    [58] Lim L, Buchanan A, Moss P, Franssen J. Computer Modeling of RestrainedReinforced Concrete Slabs in Fire Conditions[J]. Journal of StructuralEngineering,2004,130(12):1964-1971.
    [59] Gillie M, Usmani A, Rotter M. Bending and membrane action in concrete slabs[J].Fire and materials,2004,28(2-4):139-157.
    [60] Izzuddin B A, Tao X Y, Elghazouli A Y. Realistic modeling of composite andreinforced concrete floor slabs under extreme loading. I: Analytical method[J].Journal of structural engineering,2004,130(12):1972-1984.
    [61] Izzuddin B A, Tao X Y, Elghazouli A Y. Realistic modeling of composite andreinforced concrete floor slabs under extreme loading. II: Verification andapplication[J]. Journal of structural engineering,2004,130(12):1985-1996.
    [62] Izzuddin B A, Elghazouli A Y. Failure of lightly reinforced concrete membersunder fire. I: Analytical modeling[J]. Journal of structural engineering,2004,130(1):3-17.
    [63] Izzuddin B A, Elghazouli A Y. Failure of lightly reinforced concrete membersunder fire. II: Parametric studies and design considerations[J]. Journal ofstructural engineering,2004,130(1):18-31.
    [64] Anderheggen E, Fontana M, Tesar C. Numerical Modeling of composite floorslabs in fires[J]. Computing in Civil Engineering,2005.
    [65] Wang G. Performance of reinforced concrete flat slabs exposed to fire[D]. Athesis for the degree of master of engineering, University of Canterbury,Christchurch, New Zealand,2006.
    [66] Zhang Y X, Bradford M A. Nonlinear analysis of moderately thick reinforcedconcrete slabs at elevated temperatures using a rectangular layered plate elementwith Timoshenko beam functions[J]. Engineering Structures,2007,29(10):2751-2761.
    [67] Yu X, Huang Z. An embedded FE model for modeling reinforced concrete slabsin fire[J]. Engineering Structures,2008,30(11):3228-3238.
    [68] Moss P J, Dhakal R P, Wang G, Buchanan A H. The fire behavior of muti-bay, two-way reinforced concrete slabs[J]. Engineering Structures,2008,30(12):3566-3573.
    [69] Yu X, Huang Z, Burgess I, Plank R. Nonlinear analysis of orthotropic compositeslabs in fire[J]. Engineering Structures,2008,30(1):67-80.
    [70]范志良,宋启根.四边支承板大变形受力机理的数值研究[J].工程力学,1994,11(2):45-49.
    [71]张先进,李永春,吕曼曼.考虑薄膜效应钢筋混凝土矩形板的极限承载力[J].武汉理工大学学报,2007,29(6):58-61.
    [72]李永春.钢筋混凝土矩形板薄膜效应的有限元分析[D].华中科技大学硕士学位论文,2006.
    [73]蒋琳.钢筋混凝土空心板的薄膜效应研究[D].中南大学硕士学位论文,2007.
    [74]苏娟.火灾作用下钢筋混凝土结构非线性分析[D].哈尔滨工程大学博士学位论文,2008.
    [75]陈适才,任爱珠,王静峰,陆新征.钢筋混凝土楼板火灾反应数值计算模型[J].工程力学,2008,25(3):107-112.
    [76]易伟建.冷拔低碳钢丝混凝土双向板的试验研究[J].工程力学,1988,5(3):35-44.
    [77]袁必果,施建华.集中荷载钢筋混凝土简支板受弯承载力试验研究[J].东南大学学报,1991,21(4):16-24.
    [78]童申家,粟海涛,李力,张兴虎.复杂边界支承的钢筋混凝土板的试验研究[J].工业建筑,2003,33(10):25-28.
    [79]童申家,童岳生,粟海涛,李力.复杂边界支承的钢筋混凝土矩形板的极限设计[J].建筑结构,2004,34(6):25-27.
    [80]沈丽萍,马广韬,马晓娟.钢筋混凝土双向楼板的试验研究[J].沈阳工业大学学报,2006,28(4):471-473.
    [81]姜磊.钢筋混凝土双向板挠度的试验研究与分析控制[D].西安建筑科技大学博士学位论文,2011.
    [82] Christiansen K P, Frederiksen V T. Experimental investigation of rectangularconcrete slabs with horizontal restraints[J]. Materials and structures,1983,16(93):179-192.
    [83] Vecchio F J, Tang K. Membrane action in reinforced concrete slabs[J]. CanadaJournal of civil engineering,1990,17(2):686-697.
    [84] Bailey C G, White D S, Moore D B. The tensile membrane action of unrestrainedcomposite slabs simulated under fire conditions[J]. Engineering structures,2000,22(12):1583-1595.
    [85] Foster S J, Bailey C G, Burgess I W, Plank R J. Experimental behavior of concretefloor slabs at large displacements[J]. Engineering structures,2004,26(9):1231-1247.
    [86] Bailey C G, Toh W S. Small-scale concrete slab tests at ambient and elevatedtemperatures[J]. Engineering structures,2007,29(10):2775-2791.
    [87] Bailey C G, Toh W S. Behaviour of concrete floor slabs at ambient and elevatedtemperatures[J]. Fire safety journal,2007,42(7):425-436.
    [88] Hisham M A, Husain M, Sarmad S. Abdul-Qader AL-Badri. Experimental Testson Orthotropically RC Rectangular Slabs Having Various Restrained Edges andSubjected to Uniform Load[J]. Eng.&Tech. Journal,2009,27(5):913-929.
    [89] Cashell K A, Elghazouli A Y, Izzuddin B A. Failure assessment of lightlyreinforced floor slabs. I: Experimental investigation[J]. Journal of structuralengineering,2011,137(9):977-988.
    [90] Cashell K A, Elghazouli A Y, Izzuddin B A. Failure assessment of lightlyreinforced floor slabs. II: Analytical studies[J]. Journal of structural engineering,2011,137(9):989-1001.
    [91] Cooke G. Behaviour of precast concrete floor slabs exposed to standardizedfires[J]. Fire safety journal,2001,36(5):459-475.
    [92] Lim L, Wade C. Experimental fire tests of two-way concrete slabs[R]. Fireengineering research report02/12, September2002, Branz limited, Porirua city,New Zealand.
    [93] Ellobody E, Bailey C G. Modeling of unbonded post-tensioned concrete slabsunder fire conditions[J]. Fire Safety Journal,2009,44(2):159-167.
    [94] Bailey C G, Ellobody E. Fire tests on unbonded post-tensioned one-way concreteslabs[J]. Magazine of concrete research,2009,61(1):67-76.
    [95] Bailey C G, Ellobody E. Fire tests on bonded post-tensioned concrete slabs[J].Engineering Structures,2009,61(1):67-76.
    [96]李国强,张娜思.组合楼板受火薄膜效应试验研究[J].土木工程学报,2010,43(3):24-31.
    [97]高立堂.无粘结预应力混凝土板火灾行为的试验研究及热弹塑性有限元分析[D].西安建筑科技大学博士学位论文,2003.
    [98]陈礼刚.钢筋混凝土板受火性能的试验研究[D].西安建筑科技大学博士学位论文,2004.
    [99]王滨,董毓利.四边简支钢筋混凝土双向板火灾试验研究[J].建筑结构学报,2009,30(06):23-33.
    [100]王滨,董毓利.钢筋混凝土双向板火灾试验研究[J].土木工程学报,2010,57(4):53-62.
    [101]韩金生,董毓利,程文瀼等.火灾下钢-混组合楼板截面温度场的试验研究[J].建筑结构,2006(08):82-86.
    [102]韩金生,程文瀼,徐赵东,董毓利等.压型钢板-混凝土组合楼板火灾行为试验分析[J].工业建筑,2006,36(03):87-90.
    [103]郑文忠,侯晓萌,许名鑫.两跨无粘结预应力混凝土连续板抗火性能试验与分析[J].建筑结构学报,2007,28(5):1-13.
    [104]侯晓萌,郑文忠.两跨预应力混凝土连续梁抗火性能试验与分析[J].哈尔滨工业大学学报,2009,41(4):12-17.
    [105]侯晓萌,郑文忠.火灾后预应力混凝土连续板力学性能试验与分析[J].湖南大学学报(自然科学版),2010,37(2):6-13.
    [106]朱崇绩.足尺钢筋混凝土双向板抗火性能研究[D].哈尔滨工业大学博士学位论文,2012.
    [107] Dong Y, Zhu C. Limit Load Carrying Capacity of Two-Way Slabs with TwoEdges Clamped and Two Edges Simply Supported in Fire[J]. Journal of StructuralEngineering,2011,137(10):1182-1192.
    [108] Park R, Gamble W L. Reinforced Concrete Slabs[M]. New York: John Wiley&Sons,1980.
    [109] Nilson A H, Darwin D, Dolan C W. Design of concrete structures(13thEdition)[M]. New York: McGraw-Hill,2004.
    [110]陈至达.有理力学[M].北京:中国矿业大学出版社,1988.
    [111]陈至达.有限变形力学基础[M].北京:中国矿业大学出版社,2000.
    [112] Park R. Ultimate strength of rectangular concrete slabs under shor-term uniformloading with edges restrained against lateral movement[J]. Proceeding of theInstitution of civil engineers,1964,28(2):125-150.
    [113] Wood R H. Plastic and elastic design of slabs and plates[M]. London: Thamesand Hudson,1961.
    [114] Bailey C G, Moore D B. The structural behaviour of steel frames with compositefloors slabs subject to fire: Part1: Theory[J]. The structural Engineer,78(11):19-27.
    [115] Bailey C G., Moore D B. The structural behavior of steel frames with compositefloors slabs subject to fire: part2: Design[J]. The Structural Engineer,2000,78(11),28-33.
    [116]张娜思.钢结构楼盖实用抗火设计方法研究[D].同济大学硕士学位论文,2008.
    [117]周昊圣.火灾下钢结构楼板的薄膜作用[D].同济大学硕士学位论文,2004.
    [118] Taylor R, Maher D R H, Hayes B. Effect of the arrangement of reinforcement onthe behavior of reinforced concrete slabs[J]. Magazine of Concrete Research,1966,18(55):85-94.
    [119] Ghoneim M G, MacGregor J G. Tests of reinforced concrete plates under combined in-plane and lateral loads[J]. ACI Structural Journal,1994,91(1):19-30.
    [120] Ghoneim M G, MacGregor J G. Tests of reinforced concrete plates under combinedin-plane and lateral loads[J]. ACI Structural Journal,1994,91(2):188-197.
    [121]沈蒲生.楼盖结构设计原理[M].北京:科学出版社,2003.
    [122]黄炎.弹性薄板理论[M].北京:国防科技大学出版社,1992.
    [123]丁大钧.薄板按弹性和塑性理论计算[M].南京:东南大学出版社,1991.
    [124]李晓东,董毓利,陈礼刚.钢筋混凝土简支板火灾行为的试验研究[J].建筑技术,2004,35(4):252-253.
    [125]陈礼刚,高立堂,李晓东等.两邻跨受火RC三跨连续板抗火性能试验研究[J].西安建筑科技大学学报(自然科学版),2006,38(1):100-104.
    [126]陈礼刚,董建莉,董毓利.钢筋混凝土板受火后的变形性能分析[J].青岛建筑工程学院学报,2005,26(03):1-4.
    [127]陈礼刚,董毓利,李晓东. RC三跨连续板受火后的破坏形态分析[J].哈尔滨工业大学学报,2004,36(10):1358-1360.
    [128]陈礼刚,李晓东,董毓利.钢筋混凝土三跨连续板边跨受火性能试验研究[J].工业建筑,2004,34(01):66-68.
    [129]陈礼刚,董毓利,李晓东.钢筋混凝土三跨连续板中跨受火试验研究[J].建筑结构,2004(04):39-41.
    [130]高立堂,董毓利,袁爱民.无粘结预应力混凝土连续板边中两跨受火试验[J].哈尔滨工业大学学报,2009,41(08):179-182.
    [131]高立堂,李晓东,陈礼刚等.平面应力状态下混凝土的热弹塑性积分方案[J].重庆建筑大学学报,2008(03):41-44.
    [132]高立堂,陈礼刚,李晓东等.无粘结预应力混凝土板火灾行为的非线性分析[J].应用力学学报,2007,24(03):490-493.
    [133]高立堂,董毓利,袁爱民.无粘结预应力混凝土连续板边跨受火试验研究[J].建筑结构学报,2004,25(02):118-123.
    [134]刘永军.火灾下建筑构件内温度场数值模拟基础[M].北京:科学出版社,2006.
    [135]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2003.
    [136]朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋的本构关系[J].四川建筑科学研究,1990,8(1):37-43.
    [137]钮宏,陆洲导,陈磊.高温下钢筋与混凝土本构关系的试验研究[J].同济大学学报,1990,35(3):287-297.
    [138]李国强,陈凯,蒋首超等.高温下Q345钢的材料性能试验研究[J].建筑结构,2001,31(1):53-55.
    [139]时旭东,过镇海.适用于结构高温分析的砼和钢筋应力-应变关系[J].工程力学,1997,14(2):28-35.
    [140]过镇海,李卫.混凝土在不同应力-温度途径下的变形试验和本构关系[J].土木工程学报,1993,40(5):58-69.
    [141]李卫,过镇海.高温下混凝土的强度和变形性能试验研究[J].建筑结构学报,1993,14(1):8-16.
    [142]过镇海.常温和高温下混凝土材料和构件[M].北京:清华大学出版社,2006.
    [143]吴波.火灾后钢筋混凝土结构的力学性能[M].北京:科学出版社,2003.
    [144]吴天启.高温后混凝土静置性能的试验研究及已有建筑物的防火安全评估[D].大连理工大学博士学位论文,2002.
    [145] BSEN1992-1-2, Eurocode2, Design of concrete structures. Part1.2. Generalrules. Structural fire design[S]. London: British Standards Institution,2004.
    [146] BSEN1994-1-2, Eurocode4, Design of composite steel and concrete structures.Part1.2. General rules. Structural fire design[S]. London: British StandardsInstitution,2006.
    [147] Lie T T. A procedure to calculate fire resistance of structural members[J]. Fire andMaterials,1984,8(1):40-48.