焦炉气自热转化炉内流动和反应过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以焦炉气自热转化技术为背景,以自热转化炉为主要研究对象,采用实验和数值模拟相结合的方法对自热转化炉的流场结构和反应特性进行了研究,并运用Aspen Plus对自热转化系统进行了模拟计算。主要研究内容如下:
     (1)运用实验和数值模拟相结合的方法系统研究了自热转化炉内的流动特性。自热转化炉内部空间可分为两部分:燃烧空间和催化剂床层。燃烧空间的流动特性通过速度分布、湍流强度和回流比进行表征。结果表明,燃烧空间上部的速度分布和湍流强度不受催化剂床层高度和空隙率的影响,但湍流强度随着喷嘴进口流率的增加而增大;燃烧空间下部接近催化剂床层表面处的轴向速度随着催化剂床层高度、空隙率和喷嘴进口流率的增加而增大;催化剂床层表面处湍流强度随着催化剂床层高度和喷嘴进口流率的增加而增大;燃烧空间回流比的大小与喷嘴进口流率无关。
     催化剂床层的流动特性通过非均匀度因子和渗透深度表征:催化剂床层非均匀度因子随着空隙率的减小而降低;渗透深度随着催化剂床层高度的增加而增加。自热转化炉的喷嘴进口流率不影响催化剂床层中流体的均布特性。
     (2)采用示踪法研究了自热转化炉的停留时间分布,并考察了催化剂床层高度和喷嘴进口流率对炉内停留时间分布的影响。结果表明,随着催化剂床层高度的增加,停留时间分布密度函数变窄,平均停留时间和无因次方差均减小;喷嘴进口流率增大,平均停留时间减小,无因次方差增大。基于对自热转化炉内部流动特性的认识,采用CSTR、轴向混合模型和平推流相串联的方法建立了自热转化炉停留时间分布的数学模型,并运用拉普拉斯变换和阻尼最小二乘法估算得到相关参数值。
     (3)研究了敞开空间焦炉气自由射流火焰的特性。结果表明,火焰长度随焦炉气的流量和弗劳德数的增大而变长,在浮力控制区,火焰长度和弗劳德数(Frf)之间满足线性关系:L=137.07Frf-B。火焰长度随着雷诺数(Re)的增大而增大,但当Re大于8×104~9×104后,火焰长度保持不变,火焰弗劳德数Frf与Re呈线性关系。在实验条件下,当焦炉气的射流速度大于20m/s,火焰出现脱火现象,脱火高度和射流速度呈比例增长关系;当焦炉气的射流速度大于100m/s时,火焰完全熄灭。
     (4)通过热模实验平台研究了自热转化炉燃烧空间进料流量变化对出口反应气体组成的影响。研究结果表明,保持氧气流量不变时,随着焦炉气流量的增大,出口气体组成中H2、CO和CH4的含量先增加后略有减小,中间存在一最大值;甲烷转化率则相应下降;CO2的含量随焦炉气的增大而减小。保持焦炉气流量不变时,出口气体组成中H2、CO和CO2的含量随着氧气流量的增加先增加后稳定不变;CH4含量随氧气流量的增大而减小,而甲烷转化率相应增大。
     (5)采用数值模拟的方法对自热转化炉内的反应和流动进行了研究,考察了不同操作压力和旋流数对流场的影响,以及不同的水蒸气/焦炉气(kg/Nm3)和氧气/焦炉气(Nm3/Nm3)下,甲烷转化率和有效气产率的变化。结果表明,自热转化炉内轴向速度的衰减比常规双通道直射流快,在靠近轴线的区域出现回流区;自热转化炉内切向速度在径向上先增大后减小,速度最大值出现在燃烧空间回流区的中心位置。燃烧空间内温度分布梯度较大,而催化剂床层内温度分布均匀;相应地,燃烧空间内浓度梯度大于催化剂床层内梯度。炉内压力和旋流数的增大促使炉内组分分布均匀。对甲烷转化率和有效气产率的研究表明,水蒸气/焦炉气和氧气/焦炉气最优值分别为0.1-0.2(kg/Nm3)和0.15~0.2(Nm3/Nm3)。
     (6)采用流程模拟软件Aspen Plus对自热转化炉工艺进行模拟计算,考察了操作压力、进料组成、水蒸气/焦炉气(kg/Nm3)和氧气/焦炉气州m3/Nm3)对反应结果的影响。结果表明,随着操作压力的上升,甲烷转化率和有效气产率均有所下降。焦炉气中二氧化碳含量的升高对甲烷转化率没有影响,但使有效气产率升高。水蒸气/焦炉气对甲烷转化率和有效气产率的影响不明显;甲烷转化率随氧气/焦炉气的增加而增加,但有效气产率随氧气/焦炉气的增加而下降。
This article investigated autothermal reformer based on the back ground of Coke Oven Gas autothermal reforming technology. Flow field and reaction characteristics of autothermal reformer were studied by experiment and numerical simulation. Moreover, the process simulation was investigated using Aspen Plus. The detail contents are as follow:
     (1) The flow characteristics of autothermal reformer were investigated by experiments and numerical simulation. From the analysis results of flow field, space in the autothermal reformer can be divided into two parts:combustion chamber and catalyst bed. The flow in combustion chamber can be characterized by velocity distribution, turbulence intensity and reflux ratio. Results showed that the velocity distribution and turbulence intensity in chamber upper part were not influenced by catalyst bed height and porosity, but turbulent intensity increased with inlet flow rate. The axial velocity of chamber bottom part was increased with catalyst bed height, porosity and inlet flow rate. The turbulence intensity of chamber bottom part was increased with catalyst bed height and inlet flow rate. The reflux ratio in chamber was not influenced by inlet flow rate.
     The flow in catalyst bed can be characterized by maldistribution factor and penetration depth. The maldistribution factor was decreased with catalyst bed porosity, while penetration depth was increased with catalyst bed height. The uniform distribution characteristic of autothermal reformer was not influenced by inlet flow rate.
     (2) Resident time distribution of autothermal reformer was studied by impulse response. The influences of catalyst bed height and inlet flow rate on RTD were analyzed. The results showed that the mean residence time, variance residence time decreased as well as distribution functions of RTD narrowing with the catalyst bed height increasing. The mean residence time decreasing and dimensionless variance residence time increasing with inlet flow rate increasing. The RTD model was formed by combination with CSTR, axial dispersion model and PFR based on the flow characteristic of autothermal reformer. Parameters in model were obtained by Laplace transforming and Levenberg-Marquardt.
     (3) The characteristic of co-axial jet free diffusion flame of Coke-Oven Gas (COG) was investigated by experiments. The results showed that the flame length was increased with COG flow rate and Froude number (Frf). In the zone of momentum control, the relationship of flame length and Frf is linear:L=137.07Frf-B. The flame length was increased with Re. when the Re is larger than 8×104~9×104, the flame length was constant. The relationship of Frf and Re was linear. When the jet velocity of COG is 20 m/s, flame will be blown off. The height of blow off had a proportional increasing to jet velocity. Flame will be extinct when the velocity of COG larger than 100m/s.
     (4) The influences of feed on syngas composition were studied. Results showed that when flow rate of oxygen was constant, the fractions of H2, CO, CH4 in syngas were increased at first and then decreased with COG flow rate increasing. While methane conversion and CO2 fraction are decreased with COG flow rate increasing. When COG flow rate is constant, CH4 concentrations of outlet was decreased with oxygen flow rate increasing, while CO, CO2 and H2 concentrations of outlet were increasing at first and then constant with oxygen flow rate.
     (5) The reactions and flow in autothermal reformer were investigated with the numerical simulation. The structure and characteristic of flow field of hot model were analyzed. The influences of operation pressure and swirl number of nozzle on flow field, and the influences of steam/fuel and oxygen/fuel on methane conversion and H2+CO yield were studied. Results showed that the attenuation of swirl velocity is slow than axial velocity. There was back flow zone near the axis area. Along the radial position, the swirl velocity increase at first and then decreased. The peak value of swirl velocity is at central position of back flow zone in chamber. Temperature and concentration gradient of chamber is larger than that of catalyst bed. Operating pressure and large swirl number is good for the species mixing. From the analysis of conversion and effective gas (H2+CO) yield, it can obtain the optimal value of Steam/COG and Oxygen/COG is 0.1~0.2 (kg/Nm3) and 0.15~0.2 (Nm3/Nm3), respectively.
     (6) Autothermal process simulation was studied with Aspen Plus. The influences of operating pressure, feed composition, Steam/COG and Oxygen/COG on syngas composition were investigated. Results showed that methane conversion and effective gas yield are decreased with the operating pressure. There is no any effect of CO2 fraction in feed on methane conversion, but effective gas yield is increased with CO2 fraction in feed. The Steam/ COG could not affect methane conversion and effective gas. Methane conversion is increased with Oxygen/COG, while effective gas yield is decreased with increasing of Oxygen/COG.
引文
[1]邓彤,王洪兴.焦炉煤气的合理利用及价格确定之探讨[J].煤化工,2010,6(151):14-18.
    [2]王辅臣.焦炉气非催化部分氧化与催化部分氧化制合成气工艺比较[J].煤化工2006,34(2):1-3.
    [3]Yue B, Wang X, Ai X, et al. Catalytic Reforming of Model Tar Compounds from Hot Coke Oven Gas with Low Steam/Carbon Ratio over Ni/Mgo-Al2O3 Catalysts[J]. Fuel Processing Technology,2010,91 (9):1098-1104.
    [4]Joseck F, Wang M, Wu Y. Potential Energy and Greenhouse Gas Emission Effects of Hydrogen Production from Coke Oven Gas in U.S. Steel Mills[J]. International Journal of Hydrogen Energy,2008,33 (4):1445-1454.
    [5]Li Y, Xiao R, Jin B. Thermodynamic Equilibrium Calculations for the Reforming of Coke Oven Gas with Gasification Gas[J]. Chemical Engineering & Technology,2007,30 (1): 91-98.
    [6]Guo J, Hou Z, Gao J, et al. Production of Syngas Via Partial Oxidation and Co2 Reforming of Coke Oven Gas over a Ni Catalyst[J]. Energy & Fuels,2008,22 (3): 1444-1448.
    [7]Modesto M, Nebra S A. Exergoeconomic Analysis of the Power Generation System Using Blast Furnace and Coke Oven Gas in a Brazilian Steel Mill[J]. Applied Thermal Engineering,2009,29 (11-12):2127-2136.
    [8]Bermudez J M, Fidalgo B, Arenillas A, et al. Dry Reforming of Coke Oven Gases over Activated Carbon to Produce Syngas for Methanol Synthesis[J]. Fuel,2010,89 (10): 2897-2902.
    [9]"Onsan Z I. Catalytic Processes for Clean Hydrogen Production from Hydrocarbons [J]. Turk J Chem,2007,31:531-550.
    [10]Onozaki M, Watanabe K, Hashimoto T, et al. Hydrogen Production by the Partial Oxidation and Steam Reforming of Tar from Hot Coke Oven Gas[J]. Fuel,2006,85 (2): 143-149.
    [11]Chun Y N, Kim S C. Production of Hydrogen-Rich Gas from Methane by Thermal Plasma Reform[J]. Journal of the Air and Waste Management Association,2007,57: 1447-1451.
    [12]Bobrova L, Zolotarsky I, Sadykov V, et al. Hydrogen-Rich Gas Production from Gasoline in a Short Contact Time Catalytic Reactor [J]. International Journal of Hydrogen Energy,2007,32:3698-3704.
    [13]De Smet C R H, De Croon M H J M, Berger R J, et al. Design of Adiabatic Fixed-Bed Reactors for the Partial Oxidation of Methane to Synthesis Gas. Application to Production of Methanol and Hydrogen-for-Fuel-Cells[J]. Chemical Engineering Science, 2001,56 (16):4849-4861.
    [14]Reporter C C. Methanol Production from Coke Oven Gas[R]. Focus on Catalysts, Hebei: Northwest Research Institute of Chemical Industry 2005:13.
    [15]Chen L, Zhang X-W, Huang L, et al. Partial Oxidation of Methane with Air for Methanol Production in a Post-Plasma Catalytic System[J]. Chemical Engineering and Processing:Process Intensification,2009,48 (8):1333-1340.
    [16]Changchun Y, Shikong S. Progress in Studies of Natural Gas Conversion in China[J]. Pet. Sci.,2008,5:67-72.
    [17]Ma L, Trimm D L, Jiang C. The Design and Testing of an Autothermal Reactor for the Conversion of Light Hydrocarbons to Hydrogen I. The Kinetics of the Catalytic Oxidation of Light Hydrocarbons [J]. Applied Catalysis A:General,1996,138:275-283.
    [18]Dhamrat R S, Ellzey J L. Numerical and Experimental Study of the Conversion of Methane to Hydrogen in a Porous Media Reactor[J]. Combustion and Flame,2006,144: 698-709.
    [19]Wei-Hsin Chen M-R L, Jau-Jang Lu, Yu Chao, Tzong-Shyng Leu. Thermodynamic Analysis of Hydrogen Production from Methane Via Autothermal Reforming and Partial Oxidation Followed by Water Gas Shift Reaction [J]. International Journal of Hydrogen Energy,2010,35:11787-11797.
    [20]Cheng H, Lu X, Hu D, et al. Hydrogen Production by Catalytic Partial Oxidation of Coke Oven Gas in Baco0.7fe0.2nb0.1o3-[Delta] Membranes with Surface Modification [J]. International Journal of Hydrogen Energy,2011,36 (1):528-538.
    [21]Yang Z, Zhang Y, Ding W, et al. Hydrogen Production from Coke Oven Gas over Lini/T-Al2O3 Catalyst Modified by Rare Earth Metal Oxide in a Membrane Reactor[J]. Journal of Natural Gas Chemistry,2009,18 (4):407-414.
    [22]Song X, Guo Z. Technologies for Direct Production of Flexible H2/Co Synthesis Gas[J]. Energy Conversion and Management,2006,47:560-569.
    [23]Pefia M A, Gdmez J P, Fierro J L G. New Catalytic Routes for Syngas and Hydrogen Production[J]. Applied Catalysis A:General,1996,144:7-57.
    [24]Raju A S K, Park C S, Norbeck J M. Synthesis Gas Production Using Steam Hydrogasification and Steam Reforming[J]. Fuel Processing Technology,2009,90 (2): 330-336.
    [25]Levent M, J. Gunn D, Ali El-Bousiffi M. Production of Hydrogen-Rich Gases from Steam Reforming of Methane in an Automatic Catalytic Microreactor[J]. International Journal of Hydrogen Energy,2003,28 (9):945-959.
    [26]Bharadwaj S S, Schmidt L D. Catalytic Partial Oxidation of Natural Gas to Syngas[J]. Fuel Processing Technology,1995,42:109-127.
    [27]刘镜远,车维新.合成气工艺技术与设计手册.2002:273-297.
    [28]Prettre M, Eichner C, Perrin M. The Catalytic Oxidation of Methane to Carbon Monoxide and Hydrogen[J]. Transactions of the Faraday Society,1946,42:335b-339.
    [29]王辅臣,龚欣,王亦飞等.气流床天然气部分氧化制合成气工艺分析[J].大氮肥,2003,26(1):65-71.
    [30]De Groote A M, Froment G F. Simulation of the Catalytic Partial Oxidation of Methane to Synthesis Gas[J]. Applied Catalysis A:General,1996,138 (2):245-264.
    [31]Ashcroft A T, Cheetham A K, Foord J S, et al. Selective Oxidation of Methane to Synthesis Gas Using Transition Metal Catalysts[J]. Nature,1990,344 (6264):319-321.
    [32]Shashi Kumar S K, Jitendra K. Prajapati. Hydrogen Production by Partial Oxidation of Methane:Modeling and Simulation[J]. International Journal of Hydrogen Energy,2009, 34:6655-6668.
    [33]Xu J, Wei W, Tian A, et al. Temperature Profile in a Two-Stage Fixed Bed Reactor for Catalytic Partial Oxidation of Methane to Syngas[J]. Catalysis Today,2010,149 (1-2): 191-195.
    [34]Heitnes K, Lindberg S, Rokstad O A, et al. Catalytic Partial Oxidation of Methane to Synthesis Gas[J]. Catalysis Today,1995,24:211-216.
    [35]Horn R, Williams K A, Degenstein N J, et al. Methane Catalytic Partial Oxidation on Auto thermal Rh and Pt Foam Catalysts:Oxidation and Reforming Zones, Transport Effects, and Approach to Thermodynamic Equilibrium [J]. Journal of Catalysis,2007, 249:380-393.
    [36]Ji Y, Li W, Xu H, et al. Catalytic Partial Oxidation of Methane to Synthesis Gas over Ni/Γ-Al2o3 Catalyst in a Fluidized-Bed[J]. Applied Catalysis A:General,2001,213: 25-31.
    [37]Lu H, Tong J, Cong Y, et al. Partial Oxidation of Methane in Ba0.5sr0.5CO0.8fe0.2o3-△ Membrane Reactor at High Pressures[J]. Catalysis Today,2005,104:154-159.
    [38]Gao X X, Huang C J, Zhang N W, et al. Partial Oxidation of Methane to Synthesis Gas over Co/Ca/Al2o3 Catalysts[J]. Catalysis Today,2007 (1-8):
    [39]Ferreira-Aparicio P, Benito M J, Sanz J L. New Trends in Reforming Technologies: From Hydrogen Industrial Plants to Multifuel Microreformers[J]. Catalysis Reviews: Science and Engineering,2005,47 (4):491-588.
    [40]Wilhelm D J, Simbeck D R, Karp A D, et al. Syngas Production for Gas-to-Liquids Applications:Technologies, Issues and Outlook[J]. Fuel Processing Technology,2001, 71 (1-3):139-148.
    [41]Aasberg-Petersen K, Bak Hansen J H, Christensen T S, et al. Technologies for Large-Scale Gas Conversion[J]. Applied Catalysis A:General,2001,221 (1-2): 379-387.
    [42]Zhou X, Chen C, Wang F. Modeling of Non-Catalytic Partial Oxidation of Natural Gas under Conditions Found in Industrial Reformers[J].Chemical Engineering and Processing:Process Intensification,2010,49 (1):59-64.
    [43]姜国新.合成气油改气技术方案选择[J].化工科技,2002,10(4):1-3.
    [44]Hadi Amirshaghaghi A Z, Hadi Ebrahimi, Mahshid Zarkesh. Numerical Simulation of Methane Partial Oxidation in the Burner and Combustion Chamber of Autothermal Reformer[J]. Applied Mathematical Modelling,2010,34:2312-2322.
    [45]Nezhad M Z, Rowshanzamir S, Eikani M H. Autothermal Reforming of Methane to Synthesis Gas:Modeling and Simulation[J]. International Journal of Hydrogen Energy, 2009,34:1292-1300.
    [46]Glockler B, Gritsch A, Morillo A, et al. Autothermal Reactor Concepts for Endothermic Fixed-Bed Reations[J]. Chemical Engineering Research and Design,2004,82 (A2): 148-159.
    [47]T.S. Christensen M, J.-H. Bak Hansen. Process Demonstration of Autothermal Reforming at Low Steam-to-Carbon Ratios for Production of Synthesis Gas[C]. AICHE Annual Meeting,2001.
    [48]Christensen T S, Primdahl I I. Improve Syngas Production Using Autothermal Reforming[J]. Hydrocarbon Processing,1994,73 (3):39-46.
    [49]Souza M M V M, Schmal M. Autothermal Reforming of Methane over Pt/Zro2/Al2O3 Catalysts[J]. Applied Catalysis A:General,2005,281:19-24.
    [50]Aasberg-Petersen K, Christensen T S, Nielsen C S, et al. Recent Developments in Autothermal Reforming and Pre-Reforming for Synthesis Gas Production in Gtl Applications[J]. Fuel Processing Technology,2003,83:253-261.
    [51]Kyoungmo Koo J Y, Changha Lee, Hyunku Joo. Autothermal Reforming of Methane to Syngas with Palladium Catalysts and an Electric Metal Monolith Heater[J]. Korean J. Chem. Eng.,2008,25 (5):1054-1059.
    [52]Joelmir A.C. Dias J M A. Autothermal Reforming of Methane over Ni/T-Al2O3 Promoted with Pd the Effect of the Pd Source in Activity, Temperature Profile of Reactor and in Ignition[J]. Applied Catalysis A:General,2008,334:243-250.
    [53]Xinfa Dong X C, Yibing Song, Weiming Lin. Effect of Transition Metals (Cu, Co and Fe) on the Autothermal Reforming of Methane over Ni/Ce0.2zr0.1al0.7oδcatalyst[J]. Journal of Natural Gas Chemistry,2007,16:31-36.
    [54]Ruiz J a C, Passos F B, Bueno J M C, et al. Syngas Production by Autothermal Reforming of Methane on Supported Platinum Catalysts [J]. Applied Catalysis A: General,2008,334:259-267.
    [55]王辅臣,于广锁,龚欣等.射流携带床气化炉内宏观混合过程研究[J].化工学报,1997,48(2):193-200.
    [56]Halabi M H, Croon M H J M D, Schaaf J V D, et al. Modeling and Analysis of Autothermal Reforming of Methane to Hydrogen in a Fixed Bed Reformer [J]. Chemical Engineering Journal,2008,137:568-578.
    [57]Kandakure M T, Patkar V C, Patwardhan A W. Characteristics of Turbulent Confined Jets[J]. Chemical Engineering and Processing:Process Intensification,2008,47 (8): 1234-1245.
    [58]岑可法,樊建人.燃烧流体力学[M] 水利电力出版社,1991:52-57.
    [59]Thring M W, Newby M P. Combustion Length of Enclosed Turbulent Jet Flames[C]. Fourth Symposium on Combustion,1953.
    [60]Craya A, Curtet R. On the Spreading of a Confined Jet[J]. Comptes Rendus de l'Academie des Sciences,1955,241 (1):621-622.
    [61]Barchilon M, Curtet R. Some Details of the Structure of an Asymmetric Confined Jet with Backflow[J]. Journal of Basic Engineering,1964:777-787.
    [62]于遵宏,王辅臣.煤炭气化技术[M] 北京:化学工业出版社,2010:108-112.
    [63]Chua L P, Lua A C. Measurements of a Confined Jet[J]. Physics of Fluids,1998,10: 3137-3144.
    [64]Ahmed M R, Sharma S D. Effect of Velocity Ratio on the Turbulent Mixing of Confined, Co-Axial Jets[J]. Experimental Thermal and Fluid Science,2000,22 (1-2):19-33.
    [65]P.L. Woodfield K N, K.Suzuki. Numerical Computation on Recirculation Flow Structures in Confined Co-Axial Laminar Jets[J]. Science Links Japan,2000,14:95.
    [66]Kandakure M T, Gaikar V G, Patwardhan A W. Hydrodynamic Aspects of Ejectors [J]. Chemical Engineering Science,2005,60 (22):6391-6402.
    [67]戴干策,陈敏恒.化工流体力学[M]北京:化学工业出版社,2005:168-173.
    [68]Park J C, Raghavan K, Gibbs S J. Axial Development and Radial Non-Uniformity of Flow in Packed Columns[J]. Journal of Chromatography A,2002,945:65-81.
    [69]Edwards D P, Krishnamurthy K R, Potthoff R W. Development of an Improved Method to Quantify Maldistribution and Its Effect on Structured Packing Colum Performance [J]. IChem E,1999,77:656-663.
    [70]Darakchiev R, Dodev C. Gas Flow Distribution in Packed Columns[J]. Chemical Engineering and Processing,2002,41 (5):385-393.
    [71]Darakchiev R, Petrova T, Darakchiev S. Gas Distribution in Columns with Packing Raschig Super-Ring[J]. Chemical Engineering and Processing,2005,44 (8):827-833.
    [72]Petrova T, Semkov K, Dodev C. Mathematical Modeling of Gas Distribution in Packed Columns[J]. Chemical Engineering and Processing,2003,42:931-937.
    [73]Nadeau P, Berk D, J.Munz R. Measurement of Residence Time Distribution by Laser Absorption Spectroscopy[J]. Chemical Engineering Science,1996,11 (11):2607-2612.
    [74]王辅臣,龚欣,于广锁等.射流携带床气化炉内宏观混合过程研究[J].化工学报,1997,48(2):200-208.
    [75]Montastruc L, Brienne J P, Nikov I. Modeling of Residence Time Distribution: Application to a Three-Phase Inverse Fluidized Bed Based on a Mellin Transform[J]. Chemical Engineering Journal,2009,148 (1):139-144.
    [76]Plugatyr A, Svishchev I M. Residence Time Distribution Measurements and Flow Modeling in a Supercritical Water Oxidation Reactor:Application of Transfer Function Concept[J]. The Journal of Supercritical Fluids,2008,44 (1):31-39.
    [77]Guo Q, Liang Q, Ni J, et al. Markov Chain Model of Residence Time Distribution in a New Type Entrained-Flow Gasifier[J]. Chemical Engineering and Processing:Process Intensification,2008,47 (12):2061-2065.
    [78]周立行.湍流气粒两相流动和燃烧的理论与数值模拟[M] 北京:科学出版社,1994.
    [79]王福军.计算流体动力学分析[M]北京:清华大学出版社,2004:113-126.
    [80]代正华,王辅臣,刘海峰等.天然气部分氧化炉的数值模拟[J].化学工程,2005,3(33):13-17.
    [81]吴永霞,代正华,李伟峰.焦炉气催化部分氧化的数值模拟[J].化学工程,2008,36(7):28-33.
    [82]张濂,许志美,袁向前.化学反应工程原理[M] 上海:华东理工大学,2000:38-47.
    [83]岑可法,倪明江,骆仲泱.循环流化床锅炉理论设计与运行[M] 北京:中国电力出版社,1998.
    [84]Hautman D J, F.L.Dryer, K.P.Schug, et al. A Multiple-Step Overall Kinetic Mechanism for the Oxidation of Hydrocarbons[J]. Combustion Science and Technology,1981,25: 219-235.
    [85]Yetter R A, F.L.Dryer, Rabitz H. A Comprehensive Reaction Mechanism for Carbon Monoxide/Hydrogen/Oxygen Kinetics[J]. Combustion Science and Technology,1991, 79:97-128.
    [86]Hughes K J, T.Turanyi, Clague A R, et al. Development and Testing of a Comprehensive Chemical Mechanism for the Oxidation of Methane [J]. International of chemical kinetics,2001,33 (9):513-538.
    [87]Simmie J M. Detailed Chemical Kinetic Models for the Combustion of Hydrocarbon Fuels[J]. Progress in Energy and Combustion Science,2003,29 (6):599-634.
    [88]Berger R J, Marin G B. Investigation of Gas-Phase Reactions and Ignition Delay Occurring at Conditions Typical for Partial Oxidation of Methane to Synthesis Gas[J]. Industrial & Engineering Chemistry Research,1999,38 (7):2582-2592.
    [89]Petrova M V, Williams F A. A Small Detailed Chemical-Kinetic Mechanism for Hydrocarbon Combustion[J]. Combustion and Flame,2006,144:526-544.
    [90]Kee R J, Rupley F M, Miller J A, et al. Chemkin Collecion Release.2000.
    [91]Kee R J, Rupley F M, Meeks E, et al. Chemkin-Iii:A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics[R]. Laboratories S.N.,1996.
    [92]Kee R J, Dixon-Lewis G, Warnatz J, et al. A Fortran Computer Code Package for the Evaluation of Gas-Phase Multi-Component Transport Properties[R]. Sandia National Laboratories,1986.
    [93]Smith G P, Golden D M, Frenklach M, et al. Gri-Mech:An Optimized Detailed Chemical Reaction Mechanism for Methane Combustion[R]. Gas Research Institute, 2000.
    [94]Xu J, Froment G F. Methane Steam Reforming,Methanation and Water-Gas Shift:I. Intrinsic Kinetics[J]. AICHE Journal,1989,35 (1):88-96.
    [95]Jin W, Gu X, Li S, et al. Experimental and Simulation Study on a Catalyst Packed Tubular Dense Membrane Reactor for Partial Oxidation of Methane to Syngas[J]. Chemical Engineering Science,2000,55 (14):2617-2625.
    [96]Kirillov V A, Bobrin A S, Kuzin N A, et al. Compact Radial Reactor with a Structured Porous Metal Catalyst for the Conversion of Natural Gas to Synthesis Gas:Experiment and Modeling[J]. Industrial & Engineering Chemistry Research,2004,43 (16): 4721-4731.
    [97]Avci A K, Trimm D L, Ilsen nsan Z. Heterogeneous Reactor Modeling for Simulation of Catalytic Oxidation and Steam Reforming of Methane[J]. Chemical Engineering Science,2001,56 (2):641-649.
    [98]Hou K, Hughes R. The Kinetics of Methane Steam Reforming over a Ni/α-Al2o Catalyst[J]. Chemical Engineering Journal,2001,82 (1-3):311-328.
    [99]姚平经.过程系统分析与综合[M] 辽宁:大连理工大学出版社,2005.
    [100]王众託.系统工程引论[M]北京:电子工业出版社,1991.
    [101]朱开宏.化工流程模拟[M] 北京:中国石化出版社,1993.
    [102]张瑞生,王弘轼,宋宏宇.过程系统工程概论[M] 北京:科学出版社,2001.
    [103]Sotudeh-Gharebaagh R, Legros R, Chaouki J, et al. Simulation of Circulating Fluidized Bed Reactors Using Aspen Plus[J]. Fuel,1998,77 (4):327-337.
    [104]Bao J, Gao B, Wu X, et al. Simulation of Industrial Catalytic-Distillation Process for Production of Methyl Tert-Butyl Ether by Developing User's Model on Aspen Plus Platform[J]. Chemical Engineering Journal,2002,90 (3):253-266.
    [105]Gonzalesa R B, Lawb V J, Prindleb J C. Analysis of the Hybrid Copper Oxide-Copper Sulfate Cycle for the Thermochemical Splitting of Water for Hydrogen Production[J]. International Journal of Hydrogen Energy,2009,34:4179-4188.
    [106]Qiao C, Xiao Y, Xu X, et al. Comparative Analysis of Hydrogen Production Systems from Biomass Based on Different Absorbent Regeneration Processes[J]. International Journal of Hydrogen Energy,2007,32:80-85.
    [107]Kumar A, Demirel Y, Jones D D, et al. Optimization and Economic Evaluation of Industrial Gas Production and Combined Heat and Power Generation from Gasification of Corn Stover and Distillers Grains[J]. Bioresource Technology,2010,101:3696-3701.
    [108]Khoshnoodi M, Lim Y S. Simulation of Partial Oxidation of Natural Gas to Synthesis Gas Using Aspen Plus[J]. Fuel Processing Technology,1997,50:275-289.
    [109]Yuehong Z, Hao W, Zhihong X. Conceptual Design and Simulation Study of a Co-Gasification Technology [J]. Energy Conversion and Management,2006,47: 1416-1428.
    [110]Dave N, Foulds G A. Comparative Assessment of Catalytic Partial Oxidation and Steam Reforming for the Production of Methanol from Natural Gas[J]. Ind. Eng. Chem. Res.,1995,34:1037-1043.
    [111]Kolios G. Frauhammer J, Eigenberger G. Autothermal Fixed-Bed Reactor Concepts[J]. Chemical Engineering Science,2000,55 (24):5945-5967.
    [112]Glockler B, Dieter H, Eigenberger G, et al. Efficient Reheating of a Reverse-Flow Reformer--an Experimental Study[J]. Chemical Engineering Science,62 (18-20): 5638-5643.
    [113]朱炳辰.化学反应工程[M]北京:化学工业出版社,2001.
    [114]Singh G. Entrainment and Mixing Studies for a Variable Density Confined Jet[J]. Numerical Heat Transfer, Part A:Applications:An International Journal of Computation and Methodology,1999,35 (2):205-224.
    [115]Shih T-H, Liou W W, Shabbir A, et al. A New K-E Eddy Viscosity Model for High Reynolds Number Turbulent Flows[J]. Computers & Fluids,1995,24 (3):227-238.
    [116]Rahimi M, Parvareh A. Experimental and Cfd Investigation on Mixing by a Jet in a Semi-Industrial Stirred Tank[J]. Chemical Engineering Journal,2005,115 (1-2):85-92.
    [117]于遵宏,沈才大,王辅臣.水煤浆气化炉气化过程的三区模型[J].燃料化学学报,1993,21(1):90-96.
    [118]Kouri R J, Sohlo J. Liquid and Gas Flow Patterns in Random Packings[J]. The Chemical Engineering Journal and the Biochemical Engineering Journal,1996,61 (2): 95-105.
    [119]许建良,代正华.气流床气化炉内颗粒停留时间分布[J].化工学报,2008,1(59):53-58.
    [120]周晓阳.数学实验与matlab[M]武汉:华中科技大学出版社,2002.
    [121]Levenspiel O, Smith W K. Notes on the Diffusion-Type Model for Longitudinal Mixing in Flow [J]. Chemical Engineering Journal,1956,6:227-233.
    [122]Zhang T W, Wang T F, Wang J F. Application of Residence Time Distribution for Measuring the Fluid Velocity and Dispersion Coefficient[j]. Chemical Engineering & Technology,2007,30 (1):27-32.
    [123]J.M.比埃尔,N.A.切给尔.燃烧空气动力学[M] 北京:科学出版社,1979.
    [124]Hawthorne W R, Weddell D S, Hottel H C. Mixing and Combustion in Turbulent Gas Jets[J]. Symposium on Combustion and Flame, and Explosion Phenomena,1949,3 (1): 266-288.
    [125]Dahm W J A, Dimotakis P E. Non-Premixed Tubulent Jet Flames[C].22nd Aerospace Sciences Meeting,1984.
    [126]严传俊,范玮.燃烧学[M]西北工业大学出版社,2005.
    [127]马卫红,孟立庄,耿波.基于数字图像处理的火焰长度计算方法[M] 光学仪器,2007.
    [128]Delichatsios M A. Transition from Momentum to Buoyancy-Controlled Turbulent Jet Diffusion Flames and Flame Height Relationships[J]. Combustion and Flame,1993,92 (4):349-364.
    [129]王方.火焰学[M] 中国科学技术出版社,1993.
    [130]Stephen R T燃烧学导论:概念与应用[M]北京:清华大学出版社,2009.
    [131]Schefer R W, Houf W G, Bourne B, et al. Spatial and Radiative Properties of an Open-Flame Hydrogen Plume[J]. International Journal of Hydrogen Energy,2006,31 (10):1332-1340.
    [132]Langman A S, Nathan G J, Mi J, et al. The Influence of Geometric Nozzle Profile on the Global Properties of a Turbulent Diffusion Flame [J]. Proceedings of the Combustion Institute,2007,31 (1):1599-1607.
    [133]Gautam T. Lift-Off Heights and Visible Lengths of Vertical Turbulent Jet Diffusion Flames in Still Air[J]. Combustion Science and Technology,1984,41 (1):17-29.
    [134]Zhou X, Chen C, Wang F. Multi-Dimensional Modeling of Non-Catalytic Partial Oxidation of Natural Gas in a High Pressure Reformer[J]. International Journal of Hydrogen Energy,2010,35 (4):1620-1629.
    [135]Goralski C T, Schmidt L D. Modeling Heterogeneous and Homogeneous Reactions in the High-Temperature Catalytic Combustion of Methane[J]. Chemical Engineering Science,1999,54 (24):5791-5807.
    [136]Ji P, Feng W, Chen B. Production of Ultrapure Hydrogen from Biomass Gasification with Air[J]. Chemical Engineering Science,2009,64 (3):582-592.
    [137]Watanabe H, Otaka M. Numerical Simulation of Coal Gasification in Entrained Flow Coal Gasifier[J]. Fuel,2006,85 (12-13):1935-1943.
    [138]Ranga Dinesh K K J, Kirkpatrick M P, Jenkins K W. Investigation of the Influence of Swirl on a Confined Coannular Swirl Jet[J]. Computers & Fluids,2010,39 (5):756-767.
    [139]Ding O L, Chan S H. Autothermal Reforming of Methane Gas--Modelling and Experimental Validation[J]. International Journal of Hydrogen Energy,2008,33 (2): 633-643.
    [140]王辅臣.气流床气化过程研究[D].上海:华东理工大学,1995.
    [141]朱炳辰.化学反应过程[M] 北京:化学工业出版社,2001.
    [142]Sommerfeld M, Qiu H H. Detailed Measurements in a Swirling Particulate Two Phase Flow by a Phase-Doppler Anemometer [J]. International journal Heat Fluid Flow,1991, 12(1):20-28.
    [143]Sommerfeld M, Qiu H H. Characterisation of Particle-Laden Confined Swirling Flows by Phase-Doppler Anemometry and Numerical Calculation[J]. International Journal Multiphase Flow,1993,19 (6):1093-1320.
    [144]J.Zelkowski,高晋生校译.煤的燃烧理论与技术[M] 上海:华东化工学院,1989.
    [145]韩昭沧.燃料及燃烧[M] 北京:冶金工业出版社,1994.
    [146]Freni S, Calogero G, Cavallaro S. Hydrogen Production from Methane through Catalytic Partial Oxidation Reactions[J]. Journal of Power Sources,2000,87 (1-2): 28-38.
    [147]Chan S H, Hoang D L, Ding O L. Transient Performance of an Autothermal Reformer-a 2-D Modeling Approach[J]. International Journal of Heat and Mass Transfer, 2005,48 (19-20):4205-4214.