两类无机储氢材料的制备、表征及其储氢性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,在高容量储氢材料的研究开发中,氨硼烷(AB)化合物的浸渍纳米填载技术已成为广大材料工作者的研究热点。与此同时,具有18电子结构的Mg基过渡金属氢化物也因其独特的结构备受人们的关注。本文综述了高容量储氢材料、介孔介质负载氨硼烷储氢材料以及具有18电子结构的Mg基过渡金属氢化物的研究进展。在此基础上,开展了介孔材料MCM-41及A-MCM-41负载AB的研究、介孔NiO制备及其负载AB的研究和镁基过渡金属氢化物储氢材料的制备及其表征研究。主要工作内容包括:
     (1)采用浸渍法,以四氢呋喃为溶剂,按照AB:MCM-41=1:2,1:1,2:1的比例制备负载材料AB/MCM-41,选用XRD、SAXRD、FTIR、氮气等温吸附、SEM、TEM等分析手段对负载材料进行表征。结果表明,AB:MCM-41=1:2的负载材料中的AB基本嵌入MCM-41中,呈现为了近程有序、远程无序的无定形相态;使AB:MCM-41=1:2负载材料在TG/DSC和TPD/MS的储氢性能测试中,免去了四方相向无定形态的转变,热解放氢温度降低了10°C,放氢过程中无氨气,但有硼嗪产生。
     (2)采用浸渍法,以含有4%Al_2O_3和96%SiO_2的A-MCM-41为主体,四氢呋喃为溶剂,按照AB:A-MCM-41=1:2,1:1,2:1的比例负载客体AB。XRD、SAXRD、FTIR、氮气等温吸附、SEM、TEM等分析手段用于表征负载材料AB/A-MCM-41。结果表明,AB:MCM-41=1:2的负载材料中的AB完全嵌入A-MCM-41中,呈现为了近程有序、远程无序的无定形相态;使AB:A-MCM-41=1:2负载材料在TG/DSC和TPD/MS储氢测试中,免去了四方相向无定形态的转变,热解放氢温度降低近10°C,放氢过程中无氨气和硼嗪产生。
     (3)以水热法合成NiO(1):将蒸馏水:无水乙醇=1:1(体积比)的乙醇溶液75ml,六水氯化镍10mmol,尿素100mmol和十二烷基硫酸钠0.5g加入反应釜中,磁力搅拌混合后至110°C反应15h,再经抽滤、水洗、醇洗,80°C烘干12h,最后在电炉中以1°C/min的升温速率焙烧至300°C保温3h,制得黑色NiO(1)。产物与JCPDS No.65-6920相一致,为直径分布在50-70nm的实体近球形颗粒。将客体AB以AB:NiO(1)=1:1,1:2,1:4比例加载到NiO(1)中,以XRD、FTIR、SEM等表征负载材料AB/NiO(1),并以TG/DSC和TPD/MS对负载材料AB:NiO(1)=1:4的储氢性能进行测试。结果表明,AB:NiO(1)=1:4负载材料的热解放氢温度与原料AB相差仅3.6°C,但放氢过程中无氨气和硼嗪产生。
     (4)以均匀沉淀模板法合成NiO(2):按照六水氯化镍:十二烷基硫酸钠:尿素:蒸馏水为20:40:600:1200的摩尔比混合,在40°C水域中搅拌0.5-1h,随后置入80°C烘箱均匀沉淀20h,再经抽滤、水洗、醇洗,60°C烘干12h,最后在电炉中以1°C/min的升温速率焙烧至300°C并保温3h,制得NiO(2)粉末与JCPDS No.65-2091相一致,为由薄片卷曲而成的球型颗粒。将客体AB以AB:NiO(2)=1:1,1:2,1:4比例加载到NiO(2)中,以XRD、FTIR、SEM等表征负载材料AB/NiO(2),并以TG/DSC和TPD/MS对负载材料AB:NiO(2)=1:4的储氢性能进行测试。结果表明,AB:NiO(2)=1:4负载材料的热解放氢温度与原料AB相差10.2°C,放氢过程中无氨气和硼嗪产生。
     (5)以回流非模板法合成NiO(3):按照六水氯化镍:六次甲基四胺:蒸馏水为20:200:350000的摩尔比混合,在140°C加热回流2.5h,再经抽滤、水洗、醇洗,60-70°C烘干12h,最后在电炉中以1°C/min的升温速率焙烧至300°C并保温3h,得到NiO(3)粉末与JCPDS No.89-7130相一致,为由薄片交织而成的网状体。以AB:NiO(3)=1:1,1:2,1:4比例负载AB,以XRD、FTIR、SEM等表征负载材料AB/NiO(3),并以TG/DSC和TPD/MS对负载材料AB:NiO(3)=1:4的储氢性能进行测试。结果表明,AB:NiO(3)=1:4负载材料的热解放氢温度与原料AB相差2.2°C,放氢过程中无氨气和硼嗪产生。
     (6)采用反应球磨法制备镁基过渡金属氢化物。以纳米Fe:微米MgH_2=1:3摩尔比混合并球磨55h,制得与JCPDS No.38-843相一致的Mg_2FeH_6相,产物中含有未反应的Fe和MgH_2。相类似,以纳米Co:微米MgH_2=2:5摩尔比混合并球磨12h,完全反应制得与JCPDS No.78-215相一致的纳米晶Mg_2COH_5相,经HRTEM的FFT转换分析,Mg_2CoH_5的(101)晶面间距为0.366nm。
Recently, hydrogen storage materials of ammonia borane compound with highgravimetric hydrogen capacity have become the research focus by nano-loadingtechnology. In the meantime, Mg-based transition metal hydrides with18electronicstructure have also attracted much attention because of their uniquestructure. Thisarticle reviews the research progress of high-capacity hydrogen storage materials, themesoporous medium loading of ammonia borane hydrogen storage materials, as wellas Mg-based transition metal hydrides with18electronic structure. On this basis, thepaper expands the research of the loading of AB in mesoporous material MCM-41and A-MCM-41, the preparation of mesoporous NiO and its loading of AB, and thepreparation and characterization of magnesium-based transition metal hydrides. Themain contents include:
     (1)AB/MCM-41samples were synthesized by an impregnation method intetrahydrofuran (THF) at room temperature. The ratios of AB: MCM-41are fixed at1:2,1:1, and2:1. The as-prepared samples have been characterized by XRD,SAXRD, FTIR, BET, SEM, and TEM. The results show that most AB was loadedinto the MCM-41with short-range ordered and long-range disorderd phase. TheTG/DSC and TPD/MS investigations show that the AB: MCM-41=1:2sampledecreased the dehydrogenation temperature of AB for10°C without NH3releasingbut with borazine.
     (2)AB: A-MCM-41samples were synthesized by an impregnation method intetrahydrofuran (THF) at room temperature. The ratios of AB: A-MCM-41are fixedat1:2,1:1, and2:1. The as-prepared samples have been characterized by XRD,SAXRD, FTIR, BET, SEM, and TEM. The results show that AB was loaded into theA-MCM-41with short-range ordered and long-range disorderd phase. The TG/DSCand TPD/MS investigations show that the AB: A-MCM-41=1:2sample decreasedthe dehydrogenation temperature of AB for10°C without any borazine or NH3releasing.
     (3)NiO(1) was synthesized by a hydrothermal method at the conditions andprocesses of distilled water: ethanol=1:1(volume ratio) with ethanol solution75ml,six nickel chloride10mmol, urea100mmol, and sodium dodecyl sulfate0.5g addedto the reactionkettle, stirred the mixture and heated to110°C for15h, then filtered,washed with water and alcohol, drying at80°C for12h, and finally calcined in thefurnace to300°C with a heating rate of1°C/min for3h. The as-prepared blackNiO(1) is nearly spherical particles with the diameter of50-70nm. AB was loadedinto NiO(1) with the AB:NiO(1) ratio of1:1,1:2, and1:4. The as-prepared sampleshave been characterized by XRD, FTIR, SEM, TG/DSC and TPD/MS. The resultsshow that the sample with the ratio of AB:NiO(1)=1:4suppressed the releasing ofborazine and NH3, and decreased the dehydrogenation temperature for3.6°C.
     (4)NiO(2) was synthesized by a homogeneous precipitation-template methodin the following conditions: the molar ratio of nickel chloride: sodium dodecylsulfate: urea: distilled water is20:40:600:1200, the mixture stirred in water bath for40°C for0.5-1h, placed in an oven for drying at80°C for20h, filtered, washed withwater and alcohol, dried at80°C for12h, and finally calcined in the furnace to300°C with a heating rate of1°C/min for3h. The obtained NiO(2) powder is consistentwith the JCPDS No.65-2091. NiO(2) is flasks which are consisting of sphericalparticles. AB was loaded into NiO(2) with the AB:NiO(2) ratios of1:1,1:2, and1:4.The as-prepared samples have been characterized by XRD, FTIR, SEM, TG/DSCand TPD/MS. The results show that the AB:NiO(2)=1:4sample suppressed thereleasing of borazine and NH3, and decreased the dehydrogenation temperature for10.2°C.
     (5)NiO(3) was synthesized by a reflux method in the conditions of the molarratio of nickel chloride: hexamethylenetetramine: distilled water is20:200:350000.The mixture was refluxed at140°C for2.5h, filtered, washed with water and alcohol,dried at80°C for20h, and finally calcined in the furnace to300°C with a heatingrate of1°C/min for3h. The obtained NiO(3) powder powder is consistent with theJCPDS No.89-7130. NiO(3) is consisting of flasks. AB was loaded into NiO(3) withthe AB:NiO(3) ratio of1:1,1:2, and1:4. The as-prepared samples have beencharacterized by XRD, FTIR, SEM, TG/DSC and TPD/MS. The results indicate that the sample with the ratio of AB:NiO(3)=1:4suppressed the releasing of borazine andNH3, and decreased the dehydrogenation temperature for3.2°C.
     (6)Mg-based transition metal hydrides were synthesized by ball-millingmethod. The molar ratio of nano-Fe: micro-MgH_2is1:3. The mixture was milled for55h. The obtained Mg_2FeH_6phase is consistent with the JCPDS No.38-843. Theproduct contains unreacted Fe and MgH_2. Similarly, the molar ratio of nano-Co:micro-MgH_2is2:5. The obtained Mg_2CoH_5phase is consistent with the JCPDS No.78-215. The conversion analysis by HRTEM and FFT shows that the crystal planespacing of Mg_2CoH_5(101) is0.366nm.
引文
[1]陈军,朱敏.高容量储氢材料的研究进展.中国材料进展,2009,28(5):2-10
    [2]吴国涛,陈维东,熊智涛.设计新型高容量储氢材料.自然杂志,2011,33(1):27-34
    [3]孙大林.车载储氢技术的发展与挑战.自然杂志,2011,33(1):13-18
    [4]李星国.储氢材料研究现状和发展动态.无机材料学报,2008,23:1000
    [5] Schlabach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature,2001,414:353-358
    [6] Targets for onboard hydrogen storage systems for light-duty vehicles, U S DOE.http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage_explanation.Pdf
    [7] Gutowska A, Li L, Shin Y. Nano scaffold mediates hydrogen release and the reactiveity ofammonia borane. Angew Chem Int Ed,2005,44:3578-3582
    [8] Peng B, Chen J. Ammonia borane as an efficient and lightweight hydrogen storage medium.Energy Environ Sci,2008,1:479-483
    [9] Wang P, Kang X D. Hydrogen-rich boron-containing materials for hydrogen storage. DaltonTrans,2008,5400-5413
    [10] Xiong Z T, Yong C K, Wu G T, et al. High-capacity hydrogen storage in lithium and sodiumamidoboranes. Nat. Mater.,2008,7:138-141
    [11] Xiong Z T, Chua Y S, Wu G T, et al. Interaction of lithium hydride and ammonia borane inTHF. Chem. Commun.,2008,43:5595-5597
    [12] Li L, Yao X, Sun C H, et al. Lithium-catalyzed dehydrogenation of ammonia borane withinmesoporous carbon frame work f or chemical hydrogen storage. Adv. Funct. Mater.,2009,19:265-271
    [13] Diyabalanage H V K, Nakagaw A T, Shrestha R P, et al. Potassium (I) amidotrihydroborate:structure and hydrogen release. J. Am. Chem. Soc.,2010,132:11836-11837
    [14] Li L L, Peng B, Tao Z L, et al. A quantum-chemical study on understanding thedehydrogenation mechanisms of metal (Na, K, or Mg) cation substitution in lithium amidenanoclusters. Adv. Funct. Mater.,2010,20:1894-1902
    [15] Xia G L, Yu X B, Guo Y H, et al. Amminelithium amidoborane Li(NH3)NH2BH3: a newcoordination compound with favorable dehydrogenation characteristics. Chem. Eur. J.2010,16:3763-3769
    [16] Chu A Y S, Wu G T, Xiong Z T, et al. Synthesis, structure and dehydrogenation ofmagnesium amidoborane monoam moniate. Chem. Commun.,2010,46:5752-5754
    [17] Chen P, Xiong Z T, Luo J Z, et al. Interaction of hydrogen with metal nitrides and imides.Nature,2002,420:302-304
    [18] Luo W F.(LiNH2-MgH2): a viable hydrogen storage system. J. Alloys Compd.,2004,381:284-287
    [19] Xiong Z T, Wu G T, Hu J J, et al. Ternary imides for hydrogen storage. Adv. Mater.,2004,16:1522-1525
    [20] Xiong Z T, Hu J J, Wu G T, et al. Thermodynamic and kinetic investigations of thehydrogen storage in the Li-Mg-N-H system. J. Alloys Compd.,2005,398:235-239
    [21] Pinkerton F E, Meisner G P, Meuer M S, et al. Hydrogen desorption exceeding ten weightpercent from the new quaternary hydride Li3BN2H8. J. Phys. Chem. B,2005,109:6-8
    [22] Leng H Y, Ichikawa T, Hino S, et al. Mechanism of hydrogenation reaction in the Li-Mg-N-H system. J Phys Chem B,2005,109,10744-10748
    [23] Leng H Y, Ichikawa T, Fujii H. Hydrogen storage properties of Li-Mg-N-H systems withdifferent ratios of LiH/Mg (NH2)2. J. Phys. Chem. B,2006,110:12964-12968
    [24] Sudik A, Yang J, Halliday D, et al. Kinetic improvement in the Mg(NH2)2-LiH storagesystem by product seeding. J. Phys. Chem. C,2007,111:6568-6573
    [25] Hu J J, Liu Y F, Wu G T, et al. Structural and compositional changes during hydrogenation/dehydrogenation of the Li-Mg-N-H system. J. Phys. Chem. C,2007,111:18439-18443
    [26] Xiong Z T, Wu G T, Hu J J, et al. Reversible hydrogen storage by a Li-Al-N-H complex.Adv. Funct. Mater.,2007,17:1137-1142
    [27] Liu Y F, Z hong K, Gao M X, et al. Hydrogen storage in a LiNH2-MgH2(1:1) system. Chem.Mater.,2008,20,3521-3527
    [28] Xie L, Zheng J, Liu Y, et al. Synthesis of Li2NH hollow nano spheres with superiorhydrogen storage kinetics by plasma metal reaction. Chem. Mater.,2008,20:282-286
    [29] Ma L P, Dai H B, Liang Y, et al. Catalytically enhanced hydrogen storage proper ties of Mg(NH2)2+2LiH materials by graphite-supported Ru nano particles. J. Phys. Chem. C,2008,112:18280-18285
    [30] Wang J H, Liu T, Wu G T, et al. Potassium-modified Mg(NH2)2-2LiH system for hydrogenstorage. Angew. Chem. Int. Ed.,2009,48:5828-5832
    [31] Liu Y F, Zhong K, Luo K, et al. Size-dependent kinetic enhancement in hydrogen absorptionand desorption of the Li-Mg-N-H system. J. Am. Chem. Soc.,2009,131:1862-1870
    [32] Chen P, Xiong Z, Luo J, et al. Interaction of hydrogen with metal nitrides and imides.Nature,2002,420:302-304
    [33] Hu Y H, Ruckenstein E. Ultrafast reaction between LiH and NH3during H2storage in Li3N.J. Phys. Chem. A,2003,107(46):9737-9739
    [34] Chen P, Xiong Z, Luo J, et al. Interaction between lithium amide and lithium hydride. J.Phys. Chem. B,2003,107(39):10967-10970
    [35] Luo W F.(LiNH2-MgH2): available hydrogen storage system. J. Alloys Compd.,2004,381:284-287
    [36] Xiong Z T, Wu G T, Hu J J, et al. Ternaryimides for hydrogen storage. Adv. Mater.,2004,16:1522-1525
    [37] Xiong Z T, Hu J J, Wu G T, et al. Thermodynamic and kinetic investigations of thehydrogen storage in the Li-Mg-N-H system. J. Alloys Compd.,2005,398:235-239
    [38] Pinkerton F E, Meisner G P, Meyer M S, et al. Hydrogen desorption exceeding ten weightpercent from the new quaternary hydride Li3BN2H8. J. Phys. Chem. B,2005,109:6-8
    [39] Leng H Y, Ichikawa T, Fujii H. Hydrogen storage properties of Li-Mg-N-H systems withdifferent ratios of LiH/Mg(NH2)2. J. Phys. Chem. B,2006,110:12964-12968
    [40]Xiong Z T, Wu G T, Hu J J, et al. Reversible hydrogen storage by a Li-Al-N-H complex.Adv. Funct. Mater.,2007,17:1137-1142
    [41] Sudik A, Yang J, Halliday D, et al. Kinetic improvement in the Mg(NH2)2-LiH storagesystem by product seeding. J. Phys. Chem. C,2007,111:6568-6573
    [42]Ma L P, Dai H P, Liang Y, et al. Catalytically enhanced hydrogen storage properties of Mg(NH2)2+2LiH materials by graphite-supported runanoparticles. J. Phys. Chem. C,2008,112:18280-18285
    [43]Liu Y F, Zhong K, Gao M X, et al. Hydrogen storage in a LiNH2-MgH2(1:1) system. Chem.Mater.,2008,20:3521-3527
    [44]Xie L, Zheng J, Liu Y, et al. Synthesis of Li2NH hollow nanospheres with superior hydrogenstorage kinetics by plasma metal reaction. Chem. Mater.,2008,20:282-286
    [45]Liu Y F, Zhong K, Luo K, et al. Size-dependent kinetic enhancement in hydrogen absorptionand desorption of the Li-Mg-N-H system. J. Am. Chem. Soc.,2009,131:1862-1870
    [46]Wang J H, Liu T, Wu G T, et al. Potassium-modified Mg(NH2)2-2LiH system for hydrogenstorage. Angew. Chem. Int. Ed.,2009,48:5828-5832
    [47] Vajo J J, Skeith S L, Mertens F. Reversible storage of hydrogen in destabilized LiBH4. J.Phys. Chem. B,2005,109:3719-3722
    [48] Züttela, Wenger P, Rentsch S, et al. LiBH4a new hydrogen storage material. J. PowerSources,2003,118:1-7
    [49]Nakam O Y, Li H W, Kiku C K, et al. Thermodynamical stabilities of metal-borohydrides. J.Alloys Compd.,2007,446:296-300
    [50]Zhang Y, Zhang W S, Wang A Q, et al. LiBH4nanoparticles supported by disorderedmesoporous carbon: Hydrogen storage performances and destabilization mechanisms. Int. J.Hydrogen Energy,2007,32:3976-3980
    [51]Yang J, Sudik A, Wolverton C. Destabilizing LiBH4with a metal (M=Mg, Al, Ti, V, C r, orSc) or metal hydride (MH2=MgH2, TiH2, or CaH2). J. Phys. Chem. C,2007,111:19134-19140
    [52]Shi Q, Yu X B, Feidenh A R, et al. Destabilized LiBH4-NaAlH4mixtures doped withtitanium based catalysts. J. Phys. Chem. C,2008,112:18244-18248
    [53]陈君儿,熊智涛,吴国涛等.配位氢化物储氢材料Mg(BH4)2的研究进展.材料科学与工程学报,2011,29(4):639-646
    [54] Fang Z Z, Wang P, Rufford T E, et al. Kinetic-and thermodynamic-based improvements oflithium borohydride incorporated into activated carbon. Acta Mater.,2008,56:6257-6263
    [55] Li H W, Kiku C K, Nakam O Y, et al. Dehydriding and rehydriding processes ofwell-crystallized Mg(BH4)2accompanying with formation of intermediate compounds. ActaMater.,2008,56:1342-1347
    [56] Newhouse R J, Stavilla V, Hwang S J, et al. Reversibility and improved hydrogen release ofmagnesium borohydride. J. Phys. Chem. C,2010,114:5224-5232
    [57] Fang Z Z, Kang X D, Wang P, et al. Unexpected dehydrogenation behavior of LiBH4/Mg(BH4)2mixture associated with the in situ formation of dual-cation borohydride. J. AlloysCompd.,2010,491: L1-L4
    [58] Urgnani J, Torres F J, Palumbo M, et al. Hydrogen release f rom solid state NaBH4. Int. J.Hydrogen Energy,2008,33(12):3111-3115
    [59] Bogdanov I, Schwlc K D. Ti-doped alkali metal aluminium hydrides as potential novelreversible hydrogen storage materials. J. Alloys Compd.,1997,253-254:1-9
    [60] Orimo S, Nakamor I Y, Eliseo J R, et al. Complex hydride for hydrogen storage. Chem. Rev.,2007,107:4111-4132
    [61] Sun D L, Kiyobayash I T, Takeshita H T, et al. X-ray diffraction studies of titanium andzirconium doped NaAlH4elucidation of doping in duced structural changes and theirrelationship to enhanced hydrogen storage properties. J. Alloys Compd.,2002,337: L8-L11
    [62] Fichtner M, Fuhr O, Kircher O. Magnesium alanate-a material for reversible hydrogenstorage. J. Alloys Compd.,2003,356:418-422
    [63] Bogdanovic I, Felderhoff M, Pommerin A, et al. Advanced hydrogen-storage materialsbased on Sc-, Ce-,and Pr-doped NaAlH4. Adv. Mater.,2006,18:1198-1201
    [64] Sun T, Zhou H, Wang H, et al. The effect of doping rare-earth chloride dopant on thedehydrogenation properties of NaAlH4and it s catalytic mechanism. Int. J. HydrogenEnergy,2008,33:2260-2267
    [65] Fan X L, Xiao X Z, Chen L X, et al. Active species of CeAl4in the CeCl3-doped sodiumaluminium hydride and its enhancement on reversible hydrogen storage performance. Chem.Commun.,2009,6857-6859
    [66] Singh S, Eijts W H, Huot J, et al. The TiCl3catalyst in NaAlH4for hydrogen storage inducesgrain refinement and impacts on hydrogen vacancy formation. Acta Mater.,2007,55:5549-5557
    [67] Sakaki K, Nakam U Y, Akiba E, et al. Reversible vacancy format ion and recovery duringdehydrogenation-hydrogenation cycling of Ti-doped NaAlH4. J. Phys. Chem. C,2010,114:6869-6873
    [68] Brinks H W, Hauback B C, Srinivasan S S, et al. Synchrotron X-ray studies of Al1-yTiyformat ion and re-hydriding inhibit ion in Ti-enhanced NaAlH4. J. Phys. Chem. B,2005,109:15780-15785
    [69] Fang F, Z Hang J, Zhu J, et al. Nature and role of Ti species in the hydrogenation of a NaH/Al mixture. J. Phys. Chem. C,2007,111:3476-3479
    [70] Kang X D, Wang P, Cheng H M. Advantage of TiF3over TICl3as a do pant precursor toimprove the thermodynamic property of Na3AlH6. Scripta Mater.,2007,56:361-364
    [71] Liu Y F, Wang F H, Cao Y H, et al. Mechanisms for the enhanced hydrogen desorptionperformance of the TiF4-catalysted Na2LiAlH6used for hydrogen storage. Energy Environ.Sci.,2010,3:645-653
    [72] Yin L C, Wang P, Kang X D, et al. Functional anion concept: effect of fluorine anion onhydrogen storage of sodium alanate. Phys. Chem. Chem. Phys.,2007,9:1499-1502
    [73] Baldé C P, Hereijgers B P C, Bitter J H, et al. Facilitated hydrogen storage in NaAlH4supported on carbon nanofibers. Angew Chem. Int. Ed.,2006,118:3581-3583
    [74] Zheng S Y, Fang F, Zhou G Y, et al. Hydrogen storage properties of space-confined NaAlH4nanoparticles in ordered mesoporous silica. Chem. Mater.,2008,20:3954-3958
    [75] Gao J B, Lhel M P, Verkuijlenm H W, et al.Confinement of NaAIH4in nanoporous carbon:impact on H2release, reversibility, and thermodynamics. J. Phys. Chem. C,2010,114,4675-4682
    [76] Tang X, Opalka S M, Laube B L, et al. Hydrogne storage properties of Na-Li-Mg-Al-Hcomplex hydrides. J. Alloys Compd.,2007,446-447:228-231
    [77] Wang F H, Liu Y F, Gao M X, et al. Formation reactions an d the thermodynamics andkinetics of dehydrogenation reaction of mixed alanate Na2LiAlH6. J Phys Chem C,2009,113,7978-7984
    [78] Shore S, Parru R. The crystalline compound ammonia-borane, H3NBH3. J. Am. Chem. Soc.,1955,77(22):6084-6085
    [79]黄仁忠,杨文静,刘柳等.氨硼烷基化学储氢材料.沈阳师范大学学报(自然科学版),2011,29(3):395-398
    [80] Stephens F, Pons V, Baker R. Ammonia-borane: the hydrogen source par excellence?Dalton Trans.,2007(25):2613-2626
    [81] Shore S G, Parry R W. Chemical Evidence for the Structure of the “Diammoniate ofDiborane”Ⅱ. The Preparation of Ammonia-Borane. J. Am. Chem. Soc.,1958,80(1):8-12
    [82] Ramachandran P V, Gagare P D. Preparation of Ammonia Borane in High Yield and Purity,Met hanolysis, and Regeneration. Inorg. Chem.,2007,46(19):7810-7817
    [83] Shore S G, Bddeker K W. Large scale synthesis of H2B(NH3)2BH4and H3NBH3. Inorg.Chem.,1964,3(6):914-915
    [84] Adams R M, Beres J, Dodds A, et al. Dimethy l sulfide-borane as a borane carrier. Inorg.Chem.,1971,10(9):2072-2074
    [85] Mayer E. Symmetrical cleavage of diborane by ammonia in solution. Inorg. Chem.,1972,11(4):866-869
    [86] Mayer E. Conversion of dihydridodiammineboron (Ⅲ) borohydride to ammonia-boranewithout hydrogen evolution. Inorg. Chem.,1973,12(8):1954-1955
    [87]邹少爽,陶占良,陈军.氨基络合物制备氨硼烷及放氢性能研究.化学学报,2011,69(18):2117-2122
    [88] Hoon C F, Reynhardt E C. Molecular dynamics and structures of amine bor ane of the typeR3N BH3: I. X-ray investigation of the H3N-BH3at295K and110K. J. Phys. C: SolidState Phys.,1983,16(32):6129-6137
    [89] Hess N J, Bowden M E, Parvanov V, et al. Spetroscopic studies of the phase transition inammonia borane: Raman spectroscopy of single crystal NH3BH3as a function oftemperature from88to330K. J. Chem. Phys.,2008,128(3):034508
    [90] Yang J B, Lamsal J, Cai Q, et al, Structural evolution of ammonia borane for hydrogenstorage. Appl. Phys. Lett.,2008,92(9):091916
    [91] Wolf G, Miltenburg J C, Wolf U. Thermochemical investigation on borazane(BH3-NH3) inthe temperature range from10to289K. Thermochim. Acta,1998,317:111-114
    [92] Hess N J, Schenter G K, Hartman M R, et al. Neutron powder diffraction and molecularsimulation study of the structural evolution of ammonia borane from15to340K. J. Phys.Chem. A,2009,113:5723-5727
    [93]杨金波, Yelon W B, James W J.新型储氢材料的中子衍射研究.中国材料进展,2009,28(12):15-25
    [94] Bowden M E, Gainsford G J, Robinson W T. Room temperature structure of ammoniaborane. Aust. J. Chem.,2007,60:149-153
    [95] Miranda C, Ceder G. A binitio investigation of ammoniaborane complexes for hydrogenstorage. J. Chem. Phys.2007,126(18):184703-184706
    [96] Parvanov V M, Schenter G K, Hess N J, et al. Materials for hydrogen storage: structure andhynamics of borane ammonia complex. Dalton Trans.,2008,4514-4517
    [97] Morrison C A, Siddick M M, Dihydrogen bonds in solid BH3NH3. Angew. Chem. Int. Ed.2004,43:4780-4783
    [98] West D, Limpijumnong S, Zhang S B. Band structures and native defects of ammoniaborane. Phys. Rev. B.,2009,80:064109
    [99]刘超仁,胡青苗,王平.氨硼烷低温和室温结构的第一性原理计算.材料研究学报,2011,25(1):13-18
    [100] Si T V, Geanangel R A, Wendlandt W W. The thermal-dissociation of NH3BH3.Thermochim. Acta,1987,113:379-382
    [101] Wolf G, Baumann J, Baitalow F, et al. Calorimetric process monitoring of thermaldecomposition of B-N-H compounds. Thermochim. Acta,2000,343(1/2):19-25
    [102] Miranda C R, Ceder G. Abinitio investigation of ammonia-borane complexes for hydrogenstorage. J. Chem. Phys.,126(18):184703
    [103] Baumann J, Baitalow F, Wolf G. Thermal decomposition of polymeric aminoborane(H2BNH2)x under hydrogen release. Thermochim Acta,2005,430(1/2):9-14
    [104] Wolf G, Miltenburgjc V, Wolf U. Thermochemical investigationson borazane (BH3-NH3)in the temperature range from10to289K. Thermochim. Acta,1998,317(2):111-116
    [105] Hu M G, Passcjemj M V, Geanangel R A. New synthetic approaches to ammonia-boraneand its deuterated derivatives. J. Inorg. Nucl. Chem.,1977,39(12):2147-2150]
    [106] Xiong Z, Yong C, Wu G, et al.High-capacity hydrogen storage in lithium and sodiumamidoboranes. Nature Materials,2008,7:138-142
    [107] Spielmann J, Harder S. Hydrogen elimination in bulky calcium amidoborane complex. J.Am. Chem.Soc.,2009,131:5064-5067
    [108] Yang X, Hall M. The catalytic dehydrogenation of ammonia borane involving anunexpected hydrogen hydrogen transfer to ligated carbine and subsequent carbon-hydrogenactivation. J. Am. Chem. Soc.,2008,130:1798~1801
    [109] Ramzan M, Silvearv F, Blomqvist A, et al. Structural and energetic analysis of thehydrogen storage material LiNH2BH3and NaNH2BH3from a binitio calculations. Phys. Rev.B.2009,79:132102-132105
    [110] Wu H, Zhou W, Yildirim T. Alkali and alkaline-earth metal amidoboranes: structure, crystalchemistry, and hydrogen storage properties. J. Am. Chem. Soc.,2008,130:14834-14838
    [111] A.Feaver, S.Sepehri, P.Shamberger, et al. Coherent carbon cryogel-ammonia boranenanocomposites for H2storage. J. Phys. Chem. B,2007,111:7469-7473
    [112] Keaton R J, Blacquiere J M, Baker R T. Base metal catalyzed dehydrogenation ofammonia-borane for chemical hydrogen storage. J. Am. Chem. Soc.,2007,129:1844-1847
    [113]孙立贤,宋莉芳,姜春红等.新型储氢材料及其热力学与动力学问题.中国科学:化学,2010,40(9):1243-1252
    [114] Feaver A, Sepehri S, Shamberger P, et al. Coherent carbon cryogel-ammonia boranenanocomposites for H2storage. J. Phys. Chem. B,2007,111:7469-7473
    [115] Bluhm M E, Bradley M G, Butterick R, et al. Amineborane-based chemical hydrogenstorage: enhanced ammonia borane dehydrogenation in ionic liquids. J. Am. Chem. Soc.,2006,128:7748-7752
    [116] Stephens F H, Baker R T, Matus M, et al. Acid initiation of ammonia-boranedehydrogenation for hydrogen storage. Angew. Chem. Int. Ed.,2007,46:746-749
    [117] Himmelberger D W, Yoon C W, Bluhm M E. Basepromoted ammonia boranehydrogen-release. J. Am. Chem. Soc.,2009,131(39):14101-14103
    [118] Chandra M, Xu Q. Room temperature hydrogen generation from aqueous ammonia-boraneusing noble metal nanoclusters as highly active catalysts. J. Power Sources,2007,168(1):135-142
    [119] Xu Q, Chandra M. Catalytic activities of non-noble metals for hydrogen generation fromaqueous ammo nia-borane at room temperature. J. Power Sources,2006,163(1):364-370.
    [120] Cheng F Y, Ma H, Li Y M, et al. Ni-x Pt x (x=0-0.12) Hollow Spheres as Catalysts forHydrogen Generation from Ammonia Borane. Inorg. Chem.,2007,46(3):788-794
    [121] Wang L Q, Abhi K, Tom A, et al. Hyperpolarized129Xe NMR investigation of ammoniaborane inmesoporous silica. J. Phys. Chem. C,2009,113:6485-6490
    [122] Hyunjeong K, Abhi K, Tom A, et al. Determination of structure and phase transition oflight element nanocomposites in mesoporous silica: case study of NH3BH3in MCM-41. J.Am. Chem. Soc.,2009,131:13749-13755
    [123] Annalisa P, Oriele P, Pasquale R,et al. Absence of the structural phase transition inammonia borane dispersed in mesoporous silica: evidence of novel thermodynamicproperties. J. Phys. Chem. C,2009,113(24):10319-10321
    [124] Anna G, Liyu L, Yongsoon S, et al. Nanoscaffold mediates hydrogen release and thereactivity of ammonia borane. Angew. Chem. Int. Ed.,2005,44:3578-3582
    [125] Li Z Y, Zhu G S, Lu G Q, et al. Ammonia borane confined by a metal organic frameworkfor chemical hydrogen storage: enhancing kinetics and eliminating ammonia. J. Am. Chem.Soc.,2010,132:1490–1491
    [126] Li L, Yao X D, Sun C H, et al. Lithium-catalyzed dehydrogenation of ammonia boranewithin mesoporous carbon framework for chemical hydrogen storage. Adv. Funct. Mater.,2009,19:265–271
    [127] Li L, Zhu Z H, Lu G Q, et al. Catalytic ammonia decomposition over CMK-3supportedRu catalysts: Effects of surface treatments of supports. Carbon,2007,45:11-15
    [128] Custelcean R, Jackson J E. Dihydrogen bonding: Structures, energetics, and dynamics.Chem. Rev.,2001,101:1963-1966
    [129] Custelcean R, Jackson J E. Topochemical control of covalent bond formation bydihydrogen bonding. J. Am. Chem. Soc.,1998,120:12935-12938
    [130] Xiong Z T, Yong C K, Wu G T et al. High-capacity hydrogen storage in lithium andsodium amidoboranes. Nat. Mater.,2008,7:138-142
    [131]王艳,陶占良,陈军.具有18电子结构的镁基过渡金属氢化物.化学进展,2010,22(1):234-240
    [132] Wang Y, Cheng F Y, Li C S, et al. Preparation and characterization of nanocrystallineMg2FeH6. J. Alloys Compd.,2010,508:554-558
    [133] Varin R A, Li S, Wronski Z et al. The effect of sequential and continuous high-energyimpact mode on the mechano-chemical synthesis of nanostructured complex hydrideMg2FeH6. J. Alloys Compd.,2005,390:282-296
    [134] Didisheim J J, Zolliker P, Yvon K et al. Dimagnesium iron(II) hydride, Mg2FeH6,containing octahedral FeH6-anions. Inorg. Chem.,1984,23:1953-1957
    [135] Selvam P, Yvon K. Synthesis of Mg2FeH6, Mg2CoH5and Mg2NiH4by high-pressuresintering of the elements. Inorg. Chem.,1991,16:615-617
    [136] Yvon K. Encyclopedia of Materials:Sci. Technol. Oxford: Elsevier Ltd,2004
    [137] Cerny R, Bonhomme F, Yvon K et al. Hexamagnesium dicobalt undecadeuterideMg-6Co2D11: containing [CoD4]5-and [CoD5]4complex anions conforming to the18-electron rule. J.Alloys. Compd.,1992,187:233-241
    [138] Huot J. Direct synthesis of Mg2FeH6by mechanical alloying. J. Alloys Compd.,1998,280:306-309
    [139] Shang C, Bououdina M, Guo Z. Direct mechanical synthesis and characterisation ofMgFe(Cu)H. J. Alloys Compd.,2003,356-357:626-629
    [140] Castro F, Gennari F. Effect of the nature of the starting materials on the formation ofMg2FeH6. J. Alloys Compd.,2004,375:292-296
    [141] Wang Y, Cheng F, Li C et al. Preparation and characterization of nanocrystalline Mg2FeH6.J.Alloys Compd.,2010,508:554-558
    [142] Deledda S, Hauback B C. The formation mechanism and structural characterization of themixed transition-metal complex hydride Mg2(FeH6)0.5(CoH5)0.5obtained by reactive milling.Nanotechnology,2009,20:204010-204012
    [143] Polanski M, P ociński T, Kunce I et al. Dynamic synthesis of ternary Mg2FeH6. Int. J.Hydro. Energy,2010,35:1257-1266
    [144] Puszkiel J A, Larochette P A, Gennari F C. Thermodynamic and kinetic studies ofMg–Fe–H after mechanical milling followed by sintering. J. Alloys Compd.,2008,463:134-142
    [145] Varin R A, Li S, Wronski Z et al. The effect of sequential and continuous high-energyimpact mode on the mechano-chemical synthesis of nanostructured complex hydrideMg2FeH6. J. Alloys Compd.,2005,390:282-296
    [146] Li Q, Liu J, Chou K C et al. Synthesis and dehydrogenation behavior of Mg–Fe–H systemprepared under an external magnetic field. J. Alloys Compd.,2008,466:146-152
    [147] Young R A. The Rietveld Method. Oxford: Oxford University Press,1993
    [148] Zhang X, Yang R, Qu J et al. The synthesis and hydrogen storage properties of purenanostructured Mg2FeH6. Nanotechnology,2010,21:095706-095709
    [149] Gennari F. Synthesis of Mg2FeH6by reactive mechanical alloying: formation anddecomposition properties. J.Alloys Compd.,2002,339:261-267.
    [150] Li S. Controlled mechano-chemical synthesis of nanostructured ternary complex hydrideMg2FeH6under low-energy impact mode with and without pre-milling. J. Alloys Compd.,2004,384:231-248
    [151] Sai Raman S S, Davidson D J, Bobet J L et al. Investigations on the synthesis structuraland microstructural characterizations of Mg-based K2PtCl6type (Mg2FeH6) hydrogenstorage material prepared by mechanical alloying. J. Alloys Compd.,2002,333:282-290
    [152] Ivanov E, Konstanchuk I, Stepanov A et al. Magnesium mechanical alloys for hydrogenstorage. J. Less Common Metals,1987,131:25-29
    [153] Herrich M, Ismail N, Lyubina J et al. Synthesis and decomposition of Mg2FeH6preparedby reactive milling. Mater. Sci. Eng. B,2004,108:28-32
    [154] Puszkiel J, Arneodolarochette P, Gennari F. Thermodynamic–kinetic characterization of thesynthesized Mg2FeH6–MgH2hydrides mixture. Int. J. Hydrogen Energy,2008,33:3555-3560
    [155] Puszkiel J, Arneodolarochette P, Gennari F. Hydrogen storage properties of MgxFe (x:2,3and15) compounds produced by reactive ball milling. J. Power Sources,2009,186:185-193
    [156] Didisheim J J, Zolliker P, Yvon K et al. Dimagnesium iron(II) hydride, Mg2FeH6,containing octahedral FeH64-anions. J. Inorg. Chem,1984,23:1953-1957
    [157]阎杰.一种新的三元金属氢化物Mg2CoH5的制备及性质研究.无机化学,1987,3:77-86
    [158] Ivanov E Y, Konstanchuk I G, Stepanov A A et al. The ternary systemmagnesium-cobalt-hydrogen. J. Inorg. Chem.,1989,28:613-615
    [159] Huot J, Hayakawa H, Akiba E. Preparation of the hydrides Mg2FeH6and Mg2CoH5bymechanical alloying followed by sintering. J.Alloys Compd.,1997,248:164-167
    [160] Fernandez I, Meyer G, Gennari F. Reversible hydrogen storage in Mg2CoH5prepared by acombined milling-sintering procedure. J.Alloys Compd.,2007,446-447:106-109
    [161] Chen J, Takeshita H T, Chartouni D et al. Synthesis and characterization of nanocrystallineMg2CoH5obtained by mechanical alloying. J. Mater. Sci.,2001,36:5829-5834
    [162] Gennari F, Castro F. Formation, composition and stability of Mg–Co compounds. J. AlloysCompd.,2005,396:182-192
    [163] Fernandez I, Meyer G, Gennari F. Hydriding/dehydriding behavior of Mg2CoH5producedby reactive mechanical milling. J. Alloys Compd.,2008,464:111-117
    [164] Shao H. Synthesis and hydrogen storage behavior of Mg2CoH5system at nanometer scale.J. Solid State Chem.,2004,177:3626-3632
    [165]徐如人,庞文琴,丁吉红等.分子筛与多孔材料化学,北京:科学出版社,2004