汾西炼焦煤尾煤催化热解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在研究汾西矿业公司炼焦煤尾煤基础性质的基础上,采用固定床反应器主要进行了贺西矿尾煤的催化热解试验。首先选取14种不同的金属氧化物作为催化剂,进行尾煤的催化热解,在此技术上筛选出六种活性较高的氧化物使用浸渍法制成了负载型金属氧化物催化剂,包括NiXOY、AgXOY、CrXOY、CoXOY、CuXOY和FeXOY/γ-Al2O3。重点探讨了氧化物的负载量、浸渍时间和焙烧温度等因素对催化剂性质的影响。结果表明,负载型催化剂对尾煤催化热解的气体产量以及气相中的氢气含量有明显影响,特别是NiXOY/γ-Al2O3的催化效果最好,氢气产量提高达60%以上。进一步采用分步浸渍法制成了双金属氧化物负载型催化剂,其催化热解制氢效果更为明显,其中MgO-NiO/γ-Al2O3可使氢气产量提高68%,CaO-NiO/γ-Al2O3勺催化效果次之,此外研究发现,双金属氧化物负载型催化剂的外形结构,还对催化剂的催化性能有一定的影响。与此同时,还对尾煤热解焦进行了性质分析和燃烧性能测定。本研究将为炼焦煤尾煤的综合利用,提供一条可供选择的途径。
Catalytic pyrolysis of Fenxi coking coal tailings was carried out with a fixed-bed reactor on the basis of investigating basic characeristics of the coal tailings.14kinds of metal oxides were selected as catalysts to pyrolyze coal tailings to study pyrolytic properties.6types of high activity metal oxides supported catalysts were prepared with a incipient wetness impregnation method, like NixOY、AgxOY、CrXOY、CoXOY、CuXOY and FeXOY. NiXOY/Y-Al2O3. It deals with the effects of loading of active matter, calcination temperature, and impregnation time upon catalytic activity of the catalysts. It gives good performance of metal oxide/γ-Al2O3in catalytic pyrolysis of cocking coal tailings to produce gases, especially to produce hydrogen. Here, catalysts of NiXOY/γ-Al2O3shows best activity in pyrolysis of coal tailing to produce hydrogen. Hydrogen yield increases by60%. Then, double layer metal oxide supported catalysts were further prepared by impregnating active matter on γ-Al2O3in step. Two catalysts like MgO-NiO/γ-Al2O3and CaO-NiO/γ-Al2O3were prepared. Catalytic activity of the catalysts takes much improvement in this way. Hydrogen yield increases about68%in pyrolysis of coal tailings, and CaO-NiO/γ-Al2O3also gives good performance in the pyrolysis. Furthermore, it finds that structure of the catalyst also takes effects upon catalytic activity in pyrolysis of coal tailing. In the mean time, proximate, ultimate and calorifc value of pyrolytic char were carried out in the experiment to understand char characteristics and utilizatio. Overally, results of this paper is possible to find a way for efficient utilization of coking coal tailings in Fenxi Coal Industry Company.
引文
[1]匡亚莉.选煤工艺设计与管理(第一版)[M].徐州:中国矿业大学出版社,2006.
    [2]徐晖,訾东升.利用炼焦煤资源在矿区发展循环经济[J].山西焦煤科技,2012,(1):33-40.
    [3]BP世界能源统计2007,国外石油动态,2007,14,1-2.
    [4]中国2011 年国民经济和社会发展统计公报.中国统计信息网http://www.tjcn.org/plus/view.php?aid=23540.
    [5]曹代勇,黄岑丽,袁文峰等.山西炼焦煤资源与开发利用现状分析[J].中国煤炭地质,2008,2(11):1-4
    [6]黄文辉,扬起,唐修义等.中国炼焦煤资源分布特点与深部资源潜力分析[J].中国煤炭地质,2010,22(5):1-6
    [7]山西省煤炭工业“十一五”发展规划编制组,山西西省煤炭工业“十二五”发展规划
    [8]中明新.中国炼焦煤的资源与利用[M].北京:化学工业出版社,2007.
    [9]于桂莲.浮选尾煤的处理和利用[J].选煤技术,1989,(4):15-19.
    [10]蔡明华.煤泥的合理利用[J].选煤技术,1994,(5):32-35.
    [11]张全国.选煤废物(煤泥)的燃用特性研究[J].环境工程,1995,13(1):35-39.
    [12]Shannon P, Booth R W. Mine reject disposal-tailings dams. In:Proceedings of Environmental Controls for Coal Mining, NSW, Australia.1980,11(10):153-171.
    [13]B H布尔米斯特洛夫.浮选尾煤生产釉面砖[J].煤炭加工与综合利用,1986,(04):61-64.
    [14]柴一言,谌伦建,祝朝晖等.利用煤泥的新途径——煤泥型煤的生产及试烧[J].节能,1996,(3):22-24.
    [15]刘大超,张覃,叶飞等.煤泥制备蜂窝型煤的试验研究[J].中国煤炭,2010,36(7):95-96.
    [16]赵璐琪.利用煤泥制备生物质型煤的研究[J].中国煤炭,2010,36(7):92-94.
    [17]李伟初,王继明.回收浮选尾煤中粗煤泥的实践[J].煤质技术,2004,09(05):28-29.
    [18]李云升.钱家营矿选煤厂浮选尾煤处理工艺的改造[J].煤炭加工与综合利用,2009,(01):17-18.
    [19]段海霞.汾西矿业集团选煤厂从浮选尾煤中再回收精煤的实践[J].选煤技术,2010,12(06): 44-49.
    [20]付晓恒,何为军,王新文等.一种新的浮选尾煤高附加值综合利用技术[J].中国矿业大学学报,2005,34(6):740-743.
    [2]]刘继霞,常胜等.浮选尾煤中高附加值粗颗粒的回收研究[J].煤炭加工与综合利用,2009,(01):4-6.
    [22]牛向阳.西曲矿选煤厂浮选尾煤回收系统的改造[J].山西焦煤科技,2007,02(02)32-33.
    [23]高亚平,陈法杰,卢安民等.高频筛回收浮选尾煤的工艺探讨与实践[J].选煤技术,2008,8(04):43-44.
    [24]Tiwari K K, Basu S K, Bit K C, Banerjee S, Mishra K K. High-concentration coal-water slurry from Indian coals using newly developed additives. Fuel Processing Technology,2004,85 (1):31-42.
    [25]Radloff B, Kirsten M, Anderson R. Wallerawang colliery rehabilitation:the coal tailings briquetting process[J]. Minerals Engineering,2004,17(2):153-157.
    [26]Karen N F, Vida N S, Jim S B. Combustion of spent mushroom compost and coal tailing pellets in a fluidised-bed[J]. Renewable Energy,2009,34 (2):860-868.
    [27]Finney K N, Chang K R, Vida N S, etc. The reuse of spent mushroom compost and coal tailings for energy recovery:Comparison of thermal treatment technologies[J]. Bioresource Technology,2009,100 (1):310-315.
    [28]Jaimez E, etc. Thermal activation of coal tailings[J]. Thermochimica Acta,1992,206 (10):243-249.
    [29]Lu G Q. Akineticmodel for coal reject pyrolysis at low heating rates. Fuel Processing Technology,1991,28(1):35-48.
    [30]冉.景煜,牛奔,张力等.煤矸石热解特性及热解机理热重法研究[J].煤炭学报,2010,31(5):641-644.
    [31]宋旭艳等.煤矸石活化过程中结构特性和力学性能的研究[J].硅酸盐学报,2004,32(3):358-363.
    [32]周明,王耸,叶诚毅等.煤泥在德士古加压气化技术中利用的研究[J].大氮肥,2010,33(1):40-41.
    [33]詹传鑫.尾煤热解制备氢气的研究[J].选煤技术,2007,(3):7-9.
    [34]郭崇涛.煤华学(第一版)[M].北京:化学工业出版社,1992.
    [35]Liu F R, Li W, Chen H K, Li B Q. Uneven distribution of sulfurs and their transformation during coal pyrolysis[J]. Fuel,2007(86):360-366.
    [36]Fu Z X, Guo Z H, Yuan Z F, Wang Z. Swelling and shrinkage behavior of raw and processed coals during pyrolysis[J]. Fuel,2007, (86):418-425.
    [37]Ibarra V J, Moliner R. Coal characterization using pyrolysis-FTIR[J]. Journal of Analytical and APPlied Pyrolysis,1991,20(2):171-184.
    [38]Lemaignen L, ZhuoY, Reed G P, eta. Factors governing reactivity in low temperature coal gasifieation Part-II An attempt to correlate conversions within organic and mineral constituents [J]. Fuel,2002,81(3):315-326.
    [39]Slaghuis H J, Ferreira C L, Judd R M. Volatile material in coal:Effectof inherent mineral matter[J]. Fuel,1991,70(3):473-477.
    [40]宋绍勇.煤热解动学及其机理的实验研究[D].太原:太原理工大学,2002.
    [41]范晓雷.神府煤热解及气化动力学研究[D].上海:华东理工大学,2006.
    [42]Skodras G, Grammelis P. Basinas P. Pyrolysis and combustion behaviour of coal-MBM blends[J]. Bioresource Technology,2007,98 (1):1-8.
    [43]Yu J L, Tian F J, Chow C M, McKenzie L J, Li C Z. Effect of iron on the gasification of Victorian brown coal with steam:enhancement of hydrogen production[J]. Fuel, 2006,85(2):127-133.
    [44]公旭中,郭占成,王志.Fe203对高变质程度脱灰煤热解反应性与半焦结构的影响[J].化工学报,2009,60(9);2321-2326.
    [45]Simons A G, Ham O D, Moniz A G. Catalytic cracking of aromatic hydrocarbon[J]. DOE/MC/2, US Department of Energy, Morgantown Energy Technology Center, Morgantown WV,1986,1385-2021.
    [46]Delgado J, Aznar P M, Corell J. Calcined Dolomite, Magnesite, and Calcite for Cleaning Hot Gas from a Fluidized Bed Biomass Gasifier With Steam:Life and Usefulness, 1nd Eng Chem Res,1996,35(10):3637-3643.
    [47]Kopsel R, Zabawski H. Catalytic effects of ash components in low rank coal gasification[J]. Fuel,1990,69(5):275-281.
    [48]Xu W C, Tomita A. The Effects of Temperature and Residence Time on the Secondary Reactions of Volatiles from coal pyrolysis[J]. Fuel Processing Technology,1989,21(1): 25-37.
    [49]杨景标.金属催化剂对褐煤热解气体产物析出影响的实验研究[J].工程热物理学报,2009,30(1):161-164.
    [50]朱廷钰,刘丽鹏,王洋等.氧化钙催化煤温和气化研究[J].燃料化学学报,2008,28(1):35-39.
    [51]Velegol D, Gautam M, Shamsi A. Catalytic cracking of a coal tar in a fluid bed reactor[J]. Powder Technology,1997,93(2):93-100.
    [52]Ma S P, Hill J O, Heng S. J of Therm Anal.1989,35:977-985
    [53]Takarada T, Onoyama Y, Takayama K, Sakashita T. Hydropyrolys-is of coal in a pressurized powder-particle fluidized bed using several catalysts[J]. Catalysis Today, 1997,39(1-2):127-136.
    [54]Chareonpanich M, Tippanakarin B, Jumras L. Production of aromatic hydrocarbons from Mae-Moh lignite [J]. Fuel Processing Technology,2002,79 (1):171-179.
    [55]Jolly R, Charosset H, Boudou J P. Catalytic effect of ZnCl2 during coal pyrolysis[J]. Fuel Processing Technology,1988,20(1):51-60.
    [56]邹献武,姚建中,杨学民等.喷动-载流床中Co/ZSM-5分子筛催化剂对煤热解的催化作用[J].过程工程学报,2007,7(6):1107-1103.
    [57]Bai H X, Shen X Z, Liu X H, etc. Synthesis of porous CaO microsphere and its application in catalyzing transesterification reaction for biodiesel[J]. Transactions of Nonferrous Metals Society of China,2009,19(3):674-677.
    [58]Rane H V, Chaudhari T S, Choudhary R V. Influence of alkali metal doping on surface properties and catalytic activity/selectivity of CaO catalysts in oxidative coupling of methane[J]. Natural gas chemistry,2008,17(4):313-320.
    [59]Lee J K, Jo H H, Kim S K. Effect of CaO addition on ignition behavior in molten AZ31 and AZ91D Magnesium alloys[J]. Rare Metals,2006,25(6):155-159.
    [60]李振山,蔡宁生,黄煜煜等.CaO循环吸收CO2的实验研究[J].燃料科学与技术2005,1](4):379-383.
    [61]下世昌,姚强,徐旭常.甲醇蒸汽在CaO颗粒脱硫反应中的作用机理实验研究 [J].环境工程,2004,22(6):35-38.
    [62]杜尧国,徐自力,康春莉等.光催化剂纳米二氧化钛的改性研究(第一版)[M].吉林:吉林大学出版社,2007.
    [63]Ananpattarachai J, Kajitvichyanukul P, Seraphin S. Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants[J]. Journal of Hazardous Materials,2009,168(1) 253-261.
    [64]Chen F, Zou W W, Qu W W, etc. Photocatalytic performance of a visible light TiO2 photocatalyst prepared by a surface chemical modification process[J]. Catalysis Communications,2009,10(11):1510-1513.
    [65]Wang C, Zhang X H, Liu H, Li X Z, etc. Reaction kinetics of photocatalytic degradation of sulfosalicylic acid using TiO2 microspheres[J]. Joural of Hazardous Materials,2009,163(2-3):1101-1106.
    [66]Chin S, Park E, Kim M, Jurng J. Photocatalytic degradation of methylene blue with TiO nanoparticles prepared by a thermal decomposition process[J]. Powder Technology,2010,201(1):171-176.
    [67]Hung W C, Fu S H, Tseng J J, Chu H, Ko T H. Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped TiO2 prepared by the solgel method[J]. Chemosphere,2007,66(11):2142-2151.
    [68]胡凯,牛海丽,郭玉金.添加剂在固相法制备三氧化二铬中作用的研究[J].山东化工,2004,33:4-9.
    [69]Ohyama S, Kishida H. Physical mixture of CuO and Cr2O3 as an active catalyst component for low-temperature methanol synthesis via methyl formate[J]. Applied Catalysis A:General,1998,172(2):241-247.
    [70]Pakhomov A N, Kashkin N V, Nemykina I E, etc. Dehydrogenation of C3-C4 paraffins on Cr2O3/Al2O3 catalysts in fluidized and fixed bed reactors[J]. Chemical Engineering Journal,2009,154(1-3):185-188.
    [71]Nagaraja M B, Padmasri H A, Seetharamulu P, etc. A highly active Cu-MgO-Cr2O3 catalyst for simultaneous synthesis of furfuryl alcohol and cyclohexanone by a novel coupling route-Combination of furfural hydrogenation and cyclohexanol dehydrogenation [J]. Journal of Molecular Catalysis A:Chemical,2007,278(1-2):29-37.
    [72]Xu R, Wang X, Wang D S, etc. Surface structure effects in nanocrystal MnO2 and Ag/MnO2 catalytic oxidation of CO[J]. Jpurnal of Catalysis,2006,237(2):426-430.
    [73]Marcos F R, Quesada A etc. Some clues about the interphase reaction between ZnO and MnO2 oxides[J]. Solid State Chemistry,2009,182(5):1211-1216.
    [74]Wang C, Na Y Z, Liu S G, etc. Preparation of Iron Carbide Catalysts and Their Activity for CO Hydrogenation[J]. Chinese Journal of Catalysis,2005. (7):539-540.
    [75]Boudjemaa A, Boumaza S, Trari M, etc. Physical and photo-electrochemical characterizations of a-Fe2O3 Application for hydrogen production[J]. International Journal of Hydrogen Energy,2009,34(10):4268-4274.
    [76]Yao G H, Wang F, Wang X B, Gui K G. Magnetic field effects on selective catalytic reduction of NO by NH3 over Fe2O3 catalyst in a magnetically fluidized bed[J]. Energy,2010,35(9):2295-2300.
    [77]Chupin C, Veen A C V, Konduru M, etc. Identity and location of active species for NO reduction by CH4 over Co-ZSM-5[J]. Catalysis,2006,241(1):103-114.
    [78]Samanta S, Laha S C, Mal N K, Bhaumik A. Co(Ⅲ)-containing mesoporous silica as an efficient catalyst inselective dihydroxylation of cyclohexene[J]. Molecular Catalysis A:Chemica,2004,222(1-2):235-241.
    [79]Choudhary V R, Mamman A S. Oxidative conversion of methane to syngas over NiO/MgO solid solution supported on low surface area catalyst carrier[J]. Fuel Processing Technology,1999,60(3):203-211.
    [80]Ruckenstein E, Hu Y H. Methane partial oxidation over NiO/MgO solid solution catalysts [J]. Applied Catalysis A:General,1999,183(1):85-92.
    [81]Kim D B, Chun H J, Lee Y K, etc. Preparation of Pt/NiO-C electrocatalyst and heat-treatment effect on its electrocatalytic performance for methanol oxidation[J]. International Journal of Hydrogenenergy,2010,35(1):313-320.
    [82]Cao J L, Shao G S, Wang Y, etc. CuO catalysts supported on attapulgite clay for low-temperature CO oxidation[J]. Catalysis Communications,2008,9(15) 2555-2559.
    [83]Chi Y w, Chuang S C S. The effect of oxygen concentration on the reduction of NO with propylene over CuO/-A1203[J]. Catalysis Today,2000,62(11):303-318
    [84]Turky M A E, Radwan R E N, El-Shobaky A G. Surface and catalytic properties of CuO doped with MgO and Ag2O[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,181(1-3):57-68.
    [85]Pala S R G, Wei T, Sushchikh M M. CO oxidation by Ti-and Al-doped ZnO Oxygen activation by adsorption on the dopant[J]. Journal of Catalysis,2009,266(1): 50-58.
    [86]Ao X Q, Wang H, Wei Y G. Comparative study on the reaction of methane over a ZnO bed in the absence and presence of CO2[J]. Journal of Natural Gas Chemistry, 2008,17(1):81-86.
    [87]Wang X T, Zhong S H, Xiao X F. Photo-catalysis of ethane and carbon dioxide to produce hydrocarbon oxygenates over ZnO-TiO2/SiO2 catalyst[J]. Journal of Molecular Catalysis A:Chemical,2005,229 (1-2):87-93.
    [88]Shobaky G Hala, Mohmamad M, Shobaky A G. Physicochemical surface and catalytic properties of CuO-ZnO/Al2O3 system[J]. Applied Catalysis A:General, 1999,180(1-2):335-344.
    [89]Gabr M R, Gir M M G, El-Awad A M. Role of CdO/Cd2+ content on the electrical conductivity and catalytic behaviour of Co1.0-x-Cd-Fe2.0 oxide/spinel system (0.0    [90]马志刚,方梦祥,张锋,骆仲泱,岑可法,无烟煤的燃尽特性分析,热力发电,2008,37(1),13-16
    [91]王尚弟,孙俊全.催化剂工程导论[M].北京:化学工业出版社,2007.
    [92]陈铜,李文钊,张晋芬等.钴基催化剂上乙烷氧化脱氢的催化作用[J].化学学报,2004,62(18):1760-1764.
    [93]王辉,赵秀阁,肖文德等.NO在负载型金属氧化物催化剂上的氧化反应机理团[J].华东理工大学学报,2001,27(01):6-10.
    [94]过中儒,史鸿鑫H2PdCl4和金属离子在A1203上吸附的研究[J].催化学报,1990,11(03):188-194.