干旱区七种绿化树种光合生理特性与生态作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了全面了解各绿化树种的生理生态特性,增加干旱区的园林绿化树种与其生态功能的多样性,更好的为园林绿化树种的选择提供理论依据。本研究采用LI-6400便携式光合作用系统对梓树、紫丁香、紫叶桃、紫叶李、火炬树、紫叶矮樱与香花槐的光合生理、生态特性进行了研究,通过对七个树种的净光合速率、蒸腾速率、胞间CO2浓度、气孔导度、光饱和点等生理指标在种间和月份间的差异进行比较,结果表明:
     在四个不同月份中,地温与地表湿度日变化表明,5月与6月的变化趋势较为一致,7月与8月的变化趋势较为一致,地表湿度变化表现为早晨与傍晚较高,中午较低。紫叶桃、香花槐、紫丁香光合速率日变化类型基本为双峰型;梓树、紫叶矮樱、火炬树、紫叶李光合速率日变化类型基本为单峰型。从光合速率的日变化来看,七种绿化树种的光合速率均是第一峰值>第二峰值,并且第一峰值及其谷值随不同月份变化而变化。5月的第一峰值比6月、7月、8月明显提前,而且低谷持续时间较长。第一峰值与最高峰值多部分出现在10:00,少部分出现在12:00与14:00。蒸腾速率的日变化基本与光合速率日变化同步,七种园林树木的蒸腾速率峰值多数在12:00-16:00出现,蒸腾速率高的树种应注意水分管理。5月,除了紫叶李的净光合速率与气孔导度的变化呈相反的趋势,其余6个树种净光合速率与气孔导度的变化一致。6月、7月和8月,七种树木的净光合速率与气孔导度的变化趋势一致;结合胞间CO2浓度的变化,表明光合速率降低不是气孔导度降低引起,而是由非气孔因子限制的。6月,除紫叶李外,其余树种光合速率是由非气孔因子限制的;7月,引起紫丁香与香花槐的光合速率下降的重要原因是中午气孔关闭;紫叶矮樱、紫叶桃、紫叶李、火炬树、梓树光合速率是由非气孔因子限制的。8月,引起火炬树、香花槐、紫叶李光合速率下降的重要原因是中午气孔关闭;而紫叶桃、紫叶矮樱、紫丁香、香花槐是由非气孔因子限制的。
     在不同月份(5月、6月、7月、8月),紫叶桃、香花槐、紫丁香光合作用有明显的“午休”现象,其余树种不是特别明显。
     7月,紫叶矮樱、紫丁香的光饱和点较高,光补偿点较低,对光环境的适应性较强,香花槐属于较为喜阳的植物,梓树对光的适应性较弱,紫叶桃有较低的光饱和点与较高的光补偿点,紫叶李能充分地利用弱光进行光合作用;8月,紫叶桃、紫丁香对光环境的适应性较强,梓树与火炬树属于较为喜阳植物,紫叶矮樱属于耐阴植物,紫叶李的光饱和点较低,光补偿点较高,说明紫叶李对光的适应性较弱。可见,在相同月份,不同绿化树种光饱和点与光补偿点不同;同一绿化树种在不同月份表现也不同。
     七种树木在不同月份大碳释氧量存在差异,固碳释氧效应较好的园林树种有火炬树、香花槐、梓树,而固碳释氧量最低的为紫叶李。
     七种树木在不同月份的降温增湿效应有差异,紫叶李、紫丁香、紫叶桃的降温增湿能力较差;紫叶矮樱、火炬树与香花槐的降温增湿能力较强。乔木树种的降温增湿效应较强,生长优势较为明显。
     七种园林树木的叶绿素含量存在差异,结果表明,七种园林树木叶绿素含量与光合速率不成正比。无论是灌木还是乔木,个体之间滞尘能力存在较大的差异。在本实验中,火炬树、紫叶桃、紫叶李的滞尘能力较强。因此在灰尘污染比较严重的地区可以选择滞尘能力较强的以上树种。其中,火炬树的滞尘能力较强。
In order to understand on some eco-physiological indexes of seven greening tree species and increase the greening tree species diversity and ecological functions diversity,provide the theory basis of the selection of greening tree species.The research adopted Li-6400 portable photosynthesis and studied photosynthetic characteristics of Pn,Gs,Ci,light response characteristics of Catalpa ovata G.Don,Syringa oblata Lindl.,Prunus persica cv.atropurpurea,Prunus cerasifera Ehrhart f.atropurpurea Jacq,Rhus typhina L.,Prunus×cistena Pissardii and Robinia pseudoacacia cv.Idaho,analyzing the difference and relation among the greening tree species in different months.The results showed as follows:
     During four months,variation trends of geothermal gradient and surface moisture were similar in May and June,similar in July and August.The changes of surface moisture were fairly higher in the morning and in the late afternoon and relatively lower at noon.the diurnal variation of net photosynthetic rate (Pn) existed in Prunus persica cv.atropurpurea,Robinia pseudoacacia cv.Idaho and Syringa oblata Lindl.took on the two-peaked curve,while Catalpa ovata G.Don、Prunus×cistena'Pissardii、Rhus typhina L.、Prunus cerasifera Ehrhart f.atropurpurea Jacq took on single-peaked curve.In terms of daily changes of photosynthetic rate in all greening tree species were the first peak force> the second peak force.first peak force and the lowest value variation with changes of different months,first peak force in May occurred earlier than in June,July and August and lasted for longer time.First peak force and daily peak of most greening tree species appear at 10:00,some appear at 12:00 and 14:00.Transpiration rate grew basically in step with photosynthesis rate,the transpiration rate of most greening tree species appeared at 12:00~16:00.We should pay attention to the higher transpiration rate on water management.
     Except for Prunus cerasifera Ehrhart f.alropurpurea Jacq,the net photosynthetic rate was not in accordance with stomatal conductance.In June,July and August,the net photosynthetic rate of seven greening tree species was in accordance with stomatal conductance,integrating with the changes of intercellular CO2 intensity,the result showed that the lowering net photosynthetic rate was not restricted by the lowering stomatal conductivity,but by non-stomatal parameter of restrictions.In June,except for Prunus cerasifera Ehrhart f.atropurpurea Jacq,the net photosynthetic rate of other greening tree species were restricted by non-stomatal parameter. In July,the result showed that stomatal closure is one of the important factors leading up to the lowering net photosynthetic rate of Syringa oblata Lindl.,Robinia pseudoacacia cv. Idaho and.Prunus×cistena'Pissardii.The net photosynthetic rate of Prunus persica cv.atropurpurea,Prunus cerasifera Ehrhart f.atropurpurea Jacq,Rhus typhina L. and Catalpa ovata G.Don were restricted by non-stomatal parameter.ln August,the result showed that the stomatal closure of Rhus typhina L.,Robinia pseudoacacia cv.Idaho and Prunus cerasifera Ehrhart f.atropurpurea Jacq was one of the important factors leading up to the lowering net photosynthetic rate.The lowering net photosynthetic rate of Prunus persica cv.atropurpurea,Prunus×cistena'Pissardii,Syringa oblata Lindl. and Robinia pseudoacacia cv.Idaho we re restricted by non-stomatal parameter.
     In different months (in May,June,July,August),the diurnal variation of net photosynthetic rate (Pn) of Prunus persica cv.atropurpurea,Robinia pseudoacacia cv.Idaho and Syringa oblata Lindl. took on the midday-depression.The rest trees were not remarkable.
     In July,the light compensation point (LCP) of Prunus×costema'Pissardii and Syringa oblata Lindl. were higher,while the light saturation point (LSP) were lower,which adapted very well in lighting environment.Robinia pseudoacacia cv.Idaho was a kind of photophilous plants.The Catalpa ovata G.Don was not adapted verry well in lighting environment.The light saturation point (LSP) of Prunus persica cv.atropurpurea was lower,while light saturation point (LSP) was higher.Prunus cerasifera Ehrhart f.atropurpurea Jacq could make full use of weak light to photosynthesize.In August,Syringa oblata Lindl. was adapted very well in lighting environment,Catalpa ovata G.Don and Rhus typhina L. were both the kind of photophilous plantsPrunus×cistena'Pissardii was a kind of shade-tolerant plants.The light compensation point (LCP) of Prunus cerasifera Ehrhart f.atropurpurea Jacq was higher,while the light saturation point (LSP) was lower,the results showed that it's adaptive responses was weak.it could be seen that different greening tree species took on different light compensation point (LCP) and light saturation point (LSP) in same months,the same greening tree species would be presented differently because of different months.
     The months of oxygen releaseing and carbon fixing of seven greening tree species had differences,through measuring the capacity of carbon fixing and oxygen releasing,it could be seen that Rhus typhina L.,Robinia pseudoacacia cv.Idaho and Catalpa ovata G.Don had higher carbon fixing and oxygen releasing.The Prunus cerasifera Ehrhart f.atropurpurea Jacq had lowest carbon fixing and oxygen releasing.
     The temperature decreasing and humidity increasing of seven different greening tree species had differences,the temperature decreasing and humidity increasing capacity of Prunus cerasifera Ehrhart f.atropurpurea Jacq,Syringa oblata Lindl. and Prunus cerasifera Ehrhart f.atropurpurea Jacq had lowest capacity,while the temperature decreasing and humidity increasing capacity of Prunus×cistena'Pissardii,Rhus typhina L. and Robinia pseudoacacia cv.Idaho were higher than other greening tree species.Therefore,the function of temperature decreasing and humidity increasing ability in arbor trees is the strongest and growth dominance were obvious.
     The content of chlorophyll of different greening tree species had differences,The result showed that the content of chlorophyll was out of step with the net photosynthesis rate.No matter arbor trees or shrub,the different greening tree species had different capability of detaining dust. We should choose the tree species that had strong capacity of detaining dust in seriously polluted area,such as Rhus typhina L. and Prunus persica cv.atropurpurea and Prunus cerasifera Ehrhart f.atropurpurea Jacq.The capability of detaining dust of Rhus typhina L. was the strongest.
引文
[1]田玉荣.园林树木在城市生态建设中的作用[J].现代农业科技,2010(22):204-206.
    [2]蒋卫国.城市湿地与城市热岛效应关系探讨[J].上海环境科学,2007,26(4):151-155.
    [3]李丽光,梁志兵,王宏博,等.不同天气条件下沈阳城市热岛特征[J].大气科学学报,2011,34(1):66-72.
    [4]王艳霞,董建文,王衍祯,等.城市绿地与城市热岛效应关系探讨[J].亚热带植物科学,2005,34(4):55-59.
    [5]张玲,徐宗学,阮本清.北京城市热岛效应对气温和降水量的影响[J].自然资源学报,2006,21(5):746-755.
    [6]吴人韦,夏敏.城市绿化的生态化[J].城市环境与城市生态,1999,12(6):32-35.
    [7]王欢,马小凡,郭平,等.城市绿化的结构和生态环境功能[J].环境科学,2005,26(4):206-208.
    [8]江洪,刘典伟,张万萍,等.城市森林公园与山水园林城市建设[J].世界科技研究与发展,2000,22(51):78-79.
    [9]赵远光,赵穗琳.城镇绿化的效益[J].湖南林业科技,1998,25(3):79-82.
    [10]许大全.气孔的不均匀关闭与光合作用的非气孔限制[J].植物生理学通讯,1995,31(4):246-252.
    [11]柯世省,金则新,李钧敏.浙江天台山茶树光合日变化及光响应[J].应用与环境生物学报,2002,8(2):159-164.
    [12]冷平生,杨晓红,胡悦,等.5种园林树木的光合蒸腾特性的研究[J].北京农学院学报,2000,15(4):13-18.
    [13]姜恕.植物生理生态学的发展动态与任务,中国生态学发展战略研究(第一集)[M].北京:中国经济出版社.1992,45.
    [14]冯建灿,张玉洁.喜树光合速率日变化及其影响因子的研究[J].林业科学,2002,38(4):34-39.
    [15]王翼龙,张硕新,雷瑞德,等.秦岭火地塘林区锐齿栋光合、蒸腾特性[J].西北林学院学报,2003,18(4):9-12.
    [16]姚砚武,周连第,李淑英,等.美国红栌光合作用季节性变化的研究[J].北京农业科学,2000,18(3):32-34.
    [17]林金科.茶树光合作用的年变化[J].福建农业大学学报,1999,28(1):38-42.
    [18]骆琴娅,漆龙霖,方晰,等.山茶属植物5个物种光合作用的研究[J].林业科学研究,1993,6(3):311-316.
    [19]苏雪痕.园林植物耐阴性及其配置[J].北京林业大学学报,1981,(6):63-71.
    [20]彭方仁,杨小虎,黄宝龙,等.密植板栗树净光合作用生理生态的初步研究[J].南京林业大学学报,1998,22(3):6-10.
    [21]徐大陆.植物造景与城市生态系统[J].中国园林,1991,7(2):35-39.
    [22]裴保华,董仕先,祝铁军.I-69杨和毛白杨光合性能的研究[J].林业科学,1992,28(40):297-301.
    [23]曾小平,赵平,彭少麟,等.三种松树的生理生态学特性研究[J].应用生态学报,1999,10(3):275-278.
    [24]王忠.植物生理学[M].北京:中国农业出版社,2000:68-69.
    [25]Assmann S M. Signal transduction in guard cells[J]. Annual Review of Cell Biology,1993,9:45-75.
    [26]Parvathi K, Raghavendra A S. Bioenergetic processes in guard cells related to stomatal function[J]. Physiologia Plantarum,1995,93(1):146-154.
    [27]向明惠,余叔文.以保卫细胞原生质为实验系统的气孔生理研究进展[J].植物生理学报,1991,27(1): 1-6.
    [28]王学臣,任海云,娄成后.干旱胁迫下植物根与地上部间的信息传递[J].植物生理学通讯,1992,28(6):397-402.
    [29]Schroeder J I, Fang J J. Inward-rectifying K+ channels in guard cells provide a mechanism for low affinity K+ uptake[J]. Proceedings of the National Academy of Sciences of the United States of America,1991,88(24):11583-11587.
    [30]黄荣峰,王学臣.气孔运动机理研究[J].应用与环境生物学报,1996,2(3):50-56.
    [31]Dayanandan P, Kanfman P R. Stomatal movements associated with potassium fluxes[J]. American Journal of Botany,1975,62:221-231.
    [32]姜小文,张秋明,易千军,等.季柚的光合特性研究[J].湖南农业大学学报,2003,29(5):397-401.
    [33]苏文华,张光飞.滇重楼光合作用与环境因子的关系[J].云南大学学报,2003,25(6):545-548.
    [34]贾虎森,李德全,韩亚琴.高等植物光合作用的光抑制研究进展[J].植物学通报,2000,17(3):218-224.
    [35]李新国,许大全,孟庆伟.银杏叶片光合作用对强光的响应[J].植物生理学报,1998,24(4):354-360.
    [36]孙晶,李向民,张晶.光强对盾叶薯蓣生长发育及皂素含量的影响[J].西北植物学报,2011,31(3):536-542.
    [37]贾峰,徐文,刘卫群,等.温度与光照强度对烤烟番茄红素β-环化酶基因表达的影响[J].植物生理学报,2011,47(2):189-192.
    [38]曾小平,赵平,彭少肠,等.5种木本豆科植物的光合特性研究[J].植物生态学报,1997,21(6):539-544.
    [39]陈辉,阮宏华,胡海波,等.鹅掌揪光合性能的测定与分析[J].南京林业大学学报,2003,27(1):72-74.
    [40]Radin J W. Reconciling water use efficiencies of cotton in field and laboratory[J]. Crop Science, 1992,32(1):13-18.
    [41]刘东焕,赵世伟,高荣孚,等.植物光合作用对高温的反应[J].植物研究,2002,22(2):205-212.
    [42]项文化,田大伦,闫文德,等.白栎光合特性对二氧化碳浓度增加和温度升高的响应[J].浙江林学院学报,2004,21(3):247-253.
    [43]田大伦,罗勇,项文化,等.樟树幼树光合特性及其对CO2浓度和温度升高的响应[J].林业科学,2004,40(5):88-92.
    [44]张光飞,苏文华,施荣林,等.珍稀蕨类植物扇蕨光合速率与环境因子的关系[J].武汉植物学研究,2004,22(2):125-128.
    [45]曾光辉,郭延平,刘辉,等.果树光合作用的环境调控[J].北方园艺,2004(3):32-33.
    [46]冯玉龙,王文章,敖红.长白落叶松无性系选择生理指标的研究[J].林业科学,2000,36(1):80-85.
    [47]韦彩妙,林植芳,孔国辉.提高CO2浓度对两种亚热带树苗光合作用的影响[J].植物学报,1996,38(2):123-130.
    [48]孙谷畴,赵平,彭少麟,等.在高CO2浓度下四种亚热带幼树光合作用对水分胁迫的应[J].生态学报,2000,21(5):738-746.
    [49]何平.温室效应与植物光合作用大气CO2浓度升高对植物光合机理影响的分析[J].中南林学院学报,2001,21(1):1-4.
    [50]Eamus D. The interaction of rising CO2 and temperatures with water use efficiency[J]. Plant, Cell and Environment,1991,14(8):843-852.
    [51]Morison J I L. Sensitivity of stomata and water use efficiency to high CO2[J]. Plant, Cell and Environment,1985,8(6):467-474.
    [52]Polley H W, Johnson H B, Marino B D. et al. Increase in C3 plant water use efficiency and biomass over glacial to present CO2 concentrations[J]. Nature,1993,361:61-64.
    [53]Beerling D J, Woodward F L. Leaf stable carbon isotope composition records increased water use efficiency of C3 plants in response to atmospheric CO2 enrichment[J]. Functional Ecology,1995 (9): 394-401.
    [54]Ziska L H, Bunce J A. The influnce of increasing growth temperature and CO2 concentration on the ratio of respiration to photosynthesis in soybeanseedlings[J]. Global Change Biology,1998,4 (6): 637-643.
    [55]Rogers H H, Thomas J F, Bingham G E. Response of agronomic and forest species to elevated atmospheric carbon dioxide[J]. Science,1983,220:428-429.
    [56]Wang J R, Hawkins C D B, Tony L. Photosynthesis, water and nitrogen use effciencies of four paper birch (Betula papyrifera) populations grown under different soil moisture and nutrient regimes[J]. Forest Ecology and Management,1998,112:233-244.
    [57]李少昆.作物光合作用研究方法[J].石河子大学学报,2000,4(4):321-330.
    [58]方志伟,马万山,李培武,等.光合作用中光、温、湿和CO2检测装置介绍[J].植物生理学通讯,1990,15(2):40-44.
    [59]Delieu T, Walker D A. An improved method for the measurement of photosynthetic oxygen ev olition by isolated chloroplasts[J]. New Phytologist,1972,71:201-251.
    [60]陈自新.城市园林植物生态学研究动向及发展趋势[J].北京园林,1995(2):1-6.
    [61]苏雪痕.建筑内外植物的造景作用[J].中国园林,1989,5(1):36-38.
    [62]徐大陆.植物造景与城市生态系统[J].中国园林,1991,7(2):35-39.
    [63]姜小文,张秋明,易千军,等.季柚的光合特性研究[J].湖南农业大学学报,2003,29(5):397-401.
    [64]陈有民.园林树木学[M].北京:林业出版社,1990:69-70.
    [65]陈自新.城市园林植物生态学研究动向及发展趋势[J].中国园林,1991,7(2):42-45.
    [66]唐秋子.阴生观叶植物的室内试验初探[J].中国科学院华南植物所集刊,1986(3):56-60.
    [67]敖慧修.广州室内观叶植物的光合作用特征[J].中国科学院华南植物研究所集刊,1986(3):50-55.
    [68]陈绍云,周国宁.光照强度对山茶花形态、解剖特征及生长发育的影响[J].浙江农业科学1992(3):144-146.
    [69]罗宁.室内观叶植物景观设计—基础、原理与方法[D].北京:北京林业大学园林学院,1992.
    [70]张智顺,张庆费,夏檑,等.遮阴对几种绿化植物光合特性和生长的影响[J].东北林业大学学报,2010,38(3):47-49.
    [71]代波.金叶榆、家榆光合特性及抗寒性的比较研究[D].保定:河北农业大学硕士论文.2009:7-8.
    [72]Smith H. Light quality, photoperception and plant strategy[J]. Annual Review of Plant Physiology, 1982,33:481-518.
    [73]赵萱,李海梅.11种地被植物固碳释氧与降温增湿效益研究[J].江西农业学报,2009,21(1):44-47.
    [74]李想,李海梅,马颖,等.居住区绿化树种固碳释氧和降温增湿效应研究[J].北方园艺,2008(8):99-102.
    [75]吴婕,李楠,陈智,等.深圳特区城市植被的固碳释氧效应[J].中山大学学报,2010,49(4):86-92.
    [76]高金晖,王冬梅.植物叶片滞尘规律研究—以北京市为例[J].北京林业大学学报,2007,29(2):94-99.
    [77]贺勇,李磊.北方30种景观树种净化空气效益分析[J].东北林业大学学报,2010,38(5):37-39.
    [78]谢怀建.城市绿化的生态和文化原则[J].生态经济,2001(7):83-85.
    [79]李联地,林艳,周庆营.北方城市绿化美化中存在的问题及改进方法[J].河北林业科技,2002(1):23-26.
    [80]郑路,冯大千,罗英,等.26种园林树种光照及水分生理特性研究[J].新疆农业大学学报,2005,28(1):49-52.
    [81]钟肖霞.小议城市绿化中乡土树种的应用问题[J].科技信息,2007(4):81.
    [82]朱宏跃.乡土植物在城市森林建设中的应用[J].广西热带农业,2007(6):42-44.
    [83]刘弘,马杰,李保印.2种彩叶植物的光合特性日变化研究[J].河南职业技术师范学院学报,2004,32(2):33-35.
    [84]刘桂林,梁海永,刘兴菊.国槐光合特性研究[J].河北农业大学学报,2003,26(4):68-70.
    [85]蒋文伟,刘彤,温国胜,等.城市观赏树种桂花的光合特性初步研究[J].浙江林业科技,2003,23(5):18-21.
    [86]李映雪,谢晓金,李永秀,等.3种彩叶植物光合生理特性的差异[J].东北林业大学学报,2009,37(5):64-66.
    [87]Beery J A, Bjokman O. Photosynfherie response and adaptation to temperature in higher plants[J]. Annual Review of Plant Physiology,1980,31:491-543.
    [88]高英芬,陈艳丽.影响植物新陈代谢的因素[J].高师理科学刊,2003,23(2):92-93.
    [89]陈展宇,吴磊,凌凤楼,等.旱稻叶片净光合速率变化及其与影响因子关系的研究[J].吉林农业大学学报,2008,30(3):237-240.
    [90]陈贤田,柯世省.茶树光合“午休”的原因分析[J].浙江林业科技,2002,22(3):80-83.
    [91]王冉.中国12种珍稀树种光合生理特性[J].东北林业大学学报,2010,38(11):15-20.
    [92]王海燕,陈晓燕,何炎红,等.七种绿化树种光合特性[J].干旱区资源与环境,2009,23(1):193-196.
    [93]郭丽,刘坤,张栋,等.三个红叶石楠品种光合特性的比较研究[J].安徽师范大学学报,2010,33(4):371-374.
    [94]许大全.光合作用效率[M].上海:上海科学技术出版社,2002:90.
    [95]王凯斌,刘明国,赵凤,等.四个美国产地树种光合特性比较[J].辽宁林业科技,2009(1):42-44.
    [96]王文栋,李吉玫,李翔,等.新疆乌拉泊库区沙枣与胡杨光合特性比较[J].西北植物学报,2011,31(2):377-384.
    [97]冷平生,杨晓红,胡悦,等.5种园林树木的光合和蒸腾特性的研究[J].北京农学院学报,2000,15(4):13-18.
    [98]王建华,任士福,史宝胜,等.遮荫对连翘光合特性和叶绿素荧光参数的影响[J].生态学报,2011,31(7):1811-1817.
    [99]张其德.大气CO2含量升高对光合作用的影响[J].植物通报,1992,9(4):18-23.
    [100]Greer D H, Berry J A, Bjorkman O. Photoinhibition of photosynthesis in intact bean leaves:role of light an temperature and requirement for chlorop lastprotein synthes is during recovery[J]. Planta, 1986,168:253-260.
    [101]王爱民,祖元刚.大兴安岭不同演替阶段白桦种群光合生理生态特征[J].吉林农业大学学报,2005,27(2):190-193.
    [102]李小俊,张明如,张利阳,等.太行山低山丘陵区5种木本植物光合特性的比较[J].浙江农林大学学报,2011,28(2):180-186.
    [103]韩焕金.城市绿化植物的固碳释氧效应[J].东北林业大学学报,2005,33(5):68-70.
    [104]潘瑞炽,董愚得.植物生理学[M].北京:高等教育出版社,1995:106-110.
    [105]韩俊永.深圳市主要园林植物生理生态特性与生态效益研究[D].南京:南京林业大学硕士论文,2005:11.
    [106]吴霞.小陇山林区森林固碳效益的研究[J].西北林学院学报,2008,23(5):164-167.
    [107]李想,李海梅,马颖,等.居住区绿化树种固碳释氧和降温增湿效应研究[J].北方园艺,2008(8):99-102.
    [108]代巍.G101北京段公路绿化的温湿度调节及固碳释氧研究[D].北京:北京林业大学学位论文,2009:46-48.
    [109]王丽勉,胡永红,秦俊,等.上海地区151种绿化植物固碳释氧能力的研究[J].华中农业大学学报,2007,26(3):399-401.
    [110]栗辉,刘晓东,邢军会.黑龙江省森林植物园固碳释氧及降温增湿效益[J].东北林业大学学报,2008,36(11):39-41.
    [111]马炜,孙玉军,王秀云.长白落叶松人工林固碳释氧效益评估方法[J].东北林业大学学报,2011,39(1):58-61.
    [112]黎国健,丁少江,周旭平.华南12种垂直绿化植物的生态效应[J].华南农业大学学报,2008,29(2):11-15.
    [113]杨士弘.城市绿化树木的降温增湿效应研究[J].地理研究,1994:13(4):74-79.
    [114]朱向涛.耐冬山茶生态效益研究[D].青岛:青岛农业大学硕士论文,2007:56-57.
    [115]刘振威,孙丽,马杰,等.校园内不同绿化树种片林生态效应研究[J].安徽农业科学,2005,33(5):822-825.
    [116]陆贵巧,谢宝元,谷建才,等.大连市常见绿化树种蒸腾降温的效应分析[J].河北农业大学学报,2006,29(2):65-67.
    [117]宋丽华,曹兵,吴李.银川市几种绿化树种降温增湿效应的比较[J].西北林学院学报,2009,24(3):46-48.
    [118]吴菲,李树华,刘娇妹.城市绿地面积与温湿效益之间关系的研究[J].中国园林,71-74.
    [119]朱春阳,李树华,纪鹏,等.城市带状绿地宽度与温湿效益的关系[J].生态学报,2011,31(2): 383-394.
    [120]秦俊,王丽勉,胡永红,等.上海居住区植物群落的降温增湿效应[J].生态与农村环境学报,2009,25(1):92-95.
    [121]黄枢,城市绿化建设的目标应是改善生态环境[J].环境保护,2002(7):22-24.
    [122]林秀芝,韩秀英,田润吉.浅谈城市绿化与生态环境建设[J].防护林科技,1998(3):51-53.
    [123]柴一新,祝宁,韩焕金.城市绿化树种的滞尘效应—以哈尔滨市为例[J].应用生态学报,2002,13(9),1121-1126.
    [124]刘玉璋,董光荣,金炯,等.塔里木盆地大气降尘初步观测研究[J].中国沙漠,1994,14(3):18-23.
    [125]李春梅,王书峰.新疆阿克苏市城市防洪规划水文计算[J].河南水利与南水北调,2010(8):55-57.
    [126]曹明艳,李荣,程群.阿克苏地区土壤养分特点[J].土壤肥料,1999(5):31.
    [127]池春月.临汾市区大气环境污染成因及防治对策[J].内蒙古电大学刊,2004(4):19-20.
    [128]柴一新,祝宁,韩焕金.城市绿化树种的滞尘效应—以哈尔滨市为例[J].应用生态学报,2002,13(9):1121-1126.
    [129]陈玮,何兴元,张粤,等.东北地区城市针叶树冬季滞尘效应研究[J].应用生态学报,2003,14(12):2113-2116.
    [130]康博文,刘建军,王得祥,等.20种主要绿化树种滞尘能力的研究[J].陕西林业科技,2003(4):54-56.
    [131]李六林,杨佩芳,田彩芳.新红星苹果不同枝类叶片中叶绿素含量的变化[J].果树科学,1999,16(1):78-80.
    [132]杨士军,罗峙渟,李科煌.不同植物滞尘能力的初步研究[J].上海环境科学.2005,24(1):43-46.
    [133]吕福梅,沈向,王东,等.紫叶矮樱叶片色素性质及其光合特性研究[J].中国农学通报,2005,21(2):225-228.
    [134]陈虹,阿衣巴提·托列吾,张立宇.新疆农业大学校园主要绿化植物滞尘能力初探[J].安徽农业科学,2009,37(26):12521-12522.
    [135]周瑞玲,庄强,李鹏.徐州市故黄河风光带园林植物的滞尘效应[J].林业科技开发,2010,24(6):44-47.
    [136]贾宗锴,孙晓光,张晓曼.石家庄市城市绿化植物滞尘能力初探[J].河北林业科技,2010(6):14-17.
    [137]Zhang X X, GuR Z, Chen Z X, et al. Dust removal by green areas in the residential quarters of Beijing[J]. Journal of Beijing Forestry University,1997,19(4):12-17.
    [138]赵平.植被恢复建群植物的生理生态特性研究[D].北京:中科院博士学位研究生学位论文,2001:76.