猪细小病毒感染对PK-15细胞因子转录时相影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪细小病毒(Porcine Parvovirus, PPV)是引起妊娠母猪繁殖障碍的主要病原体之一,可引起初产母猪产出死胎、畸形胎、木乃伊胎及病弱仔猪等,还可引起感染母猪不孕或反复发情,并普遍存在于国内外的养殖场,严重影响和制约着养猪业的发展。细胞因子(Cytokine,CK)是由免疫细胞和某些非免疫细胞活化后产生的高活性多功能的小分子多肽、糖蛋白或蛋白,具有调节炎症反应和免疫应答、抗肿瘤和抗病原微生物感染等多种生物学功能。为了进一步了解猪细胞因子对PPV感染的免疫反应机制,更深入的阐明PPV的致病机理,进行了以下研究:
     1利用实时定量PCR分别对PPV感染PK-15细胞后1 h、2 h、3 h、12 h、24 h、48 h、72 h细胞中的PPV DNA水平以及1 h、2 h、12 h、24 h、48 h、96 h时细胞中的IFN-β、IFN -γ、IFNAR-1、IFNAR-2、MHC-Ⅰ、MHC-Ⅱ、MX1、NOS、2-5OAS、RNaseL和IRF-3等干扰素及相关细胞因子mRNA分泌水平进行检测,结果发现,PPV感染PK-15细胞后1 h即能检测到PPV DNA,12 h后PPV开始迅速增殖,在感染后48 h达到峰值,为1800倍左右。IFN-β、IFN -γ、IFNAR-2、MHC-Ⅰ、iNOS表达量在感染后1 h并未见增加,但在2 h时增加明显,其中IFNAR-2达到未感染时的21倍左右,随后表达水平逐步降低;IFNAR-1在1 h时基因表达量开始增加,在2 h达到高峰,随后表达水平开始下降;MHC-Ⅱ、Mx1表达在感染后12 h显著增加,其中Mx1基因在24 h表达量达到8423倍,此后迅速下降;2-5OAS、RNaseL在48 h达到高峰,其它时间表达差异不显著;IRF-3在感染后1 h表达量显著增加,达到97倍,在2 h和12 h仍增加显著,48 h之后降低。
     2利用实时定量PCR分别对PPV感染PK-15细胞后1 h、2 h、12 h、24 h、48 h、96 h的细胞中的TNF-α、TNFR2、Bcl-2、Bcl-xl、FasL、p53、Caspase-8和PBR等凋亡相关细胞因子mRNA分泌水平进行检测,结果发现PPV感染PK-15细胞后TNF-α在2 h表达量明显增加,达到15倍,随着时间的延长表达量降低,在96 h后表达量变化不显著;TNFR2在2 h表达量显著增加,自12 h后表达量降低明显;Bcl-2 mRNA从12 h到48 h表达量明显增加,96 h后变化不显著;Bcl-xl在2 h时表达量显著增加,达到9.6倍,随后逐渐降低;FasL在12 h表达量增加显著,24 h后表达量下降显著;2 h时p53的表达量显著增加,24 h后表达量变化不明显;2 h时Caspase-8表达量显著增加,达到1.97倍,随后逐渐降低;PBR表达量从2 h开始增加,24 h达到41倍之多,随后表达量开始下降。
     3利用实时定量PCR分别对PPV感染PK-15后1 h、2 h、12 h、24 h、48 h、96 h的细胞中的IL-1β、2、6、8、10、12p35、12p40、13、15、17和18等炎性细胞因子mRNA分泌水平进行检测,结果发现PPV感染PK-15细胞后在1 h时IL-1β、IL-8、IL-12P40的表达量明显增加,在2 h时达到峰值,分别达到33倍、8倍、32倍;IL-6的表达量在1 h显著增加,达到19倍,12 h后变化不显著;IL-12P35表达量1 h时开始增加,12 h达到峰值;IL-13在2 h时表达量增加显著,随后逐渐下降;IL-17在PPV感染后表达量显著下降,甚至低于对照组细胞的表达量;IL-18基因在2 h表达量即显著增加,随后持续稳定高效表达。PK-15细胞不分泌IL-2、IL-10及IL-15。
     4利用实时定量PCR分别对PPV感染PK-15后1 h、2 h、12 h、24 h、48 h、96 h细胞中MIP-、TGF-β1、PGK1和MURR1分泌水平进行检测,结果发现MIP-在感染后1 h表达量即显著增加,在2 h达到峰值,基因表达量差异倍数为13倍;TGF-β1在感染后96 h表达变化量达到8.8倍,而在其余时间点检测结果均无显著变化;PGK1在感染后2 h的表达量即达到95倍之多,随后开始下降,但仍高于对照组细胞的基因表达量;MURR1在感染后2 h即开始大量表达,12 h达到81倍,24 h迅速达到301倍,48 h时仍为对照组细胞的基因表达量的12倍,至96 h无显著变化。
     5利用实时定量PCR分别对不同感染复数PPV感染PK-15后1 h、2 h、12 h、24 h、48 h细胞中的IFN-β、IRF-3、TNF-α和IL-18分泌水平,结果发现IFN-β在感染后1 h表达量开始增加,当12 h且MOI=1时表达量增加显著,达到11倍,此后开始下降;IRF-3在感染后1 h表达量显著增加,在1 h且MOI=10时表达量达到967倍;TNF-α在1 h时表达量开始增加,在2 h且MOI=1时表达量的差异倍数达到96,48 h时表达量开始下降;IL-18从1 h到48 h持续表达,在24 h且MOI=1时表达差异倍数达到64倍。
     综上所述,本试验分别对PPV的增殖规律,干扰素及相关细胞因子、凋亡相关细胞因子、炎性细胞因子、部分抗病毒基因及不同感染复数的PPV感染后PK-15部分细胞因子的转录时相进行了研究,为进一步了解细胞因子的免疫学作用机理及PPV的分子作用机制提供试验依据,为预防和治疗PPV相关药物的筛选及研制奠定了理论基础。
Porcine Parvovirus (PPV) is one of the major pathogens responsible for reproductive failure of pregnant sows. PPV can cause infected primiparous pregnant sows output fetal death, fetal malformation and the mummified, infected sows can cause infertility or repeated estrus. PPV widespread and prevalent in farms at home and abroad. PPV seriously affected and restricted the development of the pig industry. Cytokines (CK) is a highly active multi-functional small molecule peptide, glycoprotein, or protein which was secrete by immune cells and certain non-immune cell activation. It can regulate inflammation and immune response, anti-tumor and microbial infection of the original disease and other biological functions. To better understand the mechanism of porcine cytokines, further clarify the mechanism of PPV, we carried out the following studies:
     1. The PPV DNA levels and gene expression levels of transcripts from 11 cellular genes of PK-15 cell cultures infected with porcine parvovirus after 1 h, 2 h, 3 h, 12 h, 24 h, 48 h, 72 h and 1 h, 2 h, 12 h, 24 h,48 h, 96 h were detected by quantitative real-time PCR SYBR greenⅠm ethod. Of the PPV DNA levels tested, an hour after infection the virus DNA can be detected, 48 h after infection, the peak value was 1800 times. After infected, IFN-β, IFN-γ, IFNAR-2, MHC-Ⅰ, iNOS expression increased significantly in 2 hours, especially the expression levels of IFNAR-2 increased about 21 times; IFNAR-1 reached a peak in 2 h,then the expression began to decline; MHC-Ⅱ, Mx1 expression was increased significantly after infection in 12 h, which Mx1 gene in the 24 h expression level reached to 8423 times, then the expression was gradually decreased; 2-5OAS and RNaseL in 48 h reached a peak expression but at other times was not significant; the expression of IRF-3 was significantly increased after infection 1 h, reaching 97 times at 2 h and 12 h still increased significantly, 48 h after the expression was reduction.
     2. The gene expression levels of transcripts from 8 cellular genes of PK-15 cell cultures infected with porcine parvovirus after 1 h, 2 h, 12 h, 24 h, 48 h, 96 h were detected by quantitative real-time PCR SYBR greenⅠmethod. Of the genes levels tested, TNF-αexpression was significantly increased in the 2 h, reaching 15 times, with the time expression decreased, after 48 h the expression did not change significantly; TNFR2 in 2 h expression increased significantly, however, the expression decreased markedly in 12 h; from 12 h to 48 h, Bcl-2 mRNA expression was significantly increased, 96 hours after infection, the change was not significant; in the 2 h, the expression of Bcl-xl increased significantly, reaching 9.6 times, and then declined; in the 12 h FasL expression was increased significantly, but after 24 h, the expression was significantly decreased; in 2 h, the P53 expression was significantly increased, but after 48 h, the expression did not change significantly; the Caspase-8 expression increased significantly in 2 hours, reaching 1.97 times, and then declined; PBR expression began to increase from 2 h, in24 h reach to 41 times, then started to decline.
     3. The gene expression levels of transcripts from 11 cellular genes of PK-15 cell cultures infected with porcine parvovirus after 1 h, 2 h, 12 h, 24 h, 48 h, 96 h were detected by use of the quantitative real-time PCR SYBR greenⅠmethod. Of the genes levels tested,an hour after PK-15 cells infected with PPV, the IL-1β, IL-8, IL-12P40 expression was significantly increased, and reached the peak at 2 h, the value is 33 times, 8 times, 32 times; the expression of IL-6 increased significantly in 1 h, reaching 19 times, after 12 hours, the expression was not significant; the expression of IL-12P35 reached the peak at 12 h; IL-13 expression was 1.5-fold in 2 h, and then began to decrease;after PPV infected, IL-17 expression significantly decreased, even lower than the expression of the control cells; IL-18 expression is significantly increased in 2 h, followed by sustained high expression; PK-15 cells do not secrete IL-2, IL-10 and IL-15.
     4. The gene expression levels of transcripts from MIP-, TGF-β1, PGK1 and MURR1 of PK-15 cell cultures infected with porcine parvovirus after 1 h, 2 h, 12 h, 24 h, 48 h, 96 h were detected by use of the quantitative real-time PCR SYBR greenⅠmethod. Of the genes levels tested, after infection 1 h, the expression of MIP-is significantly increased, in the 2 h, the peak value reached 13 times; the expression of TGF-β1 reached 8.8 times in infected 96 h, while in the remaining time the test results did not change significantly; 2 hours after infection,PGK1 expression is 95 times, then decreased, but still higher than the control cell gene expression; 2 hours after infection,MURR1 expressed in large quantities, in 12 h, the value up to 81 times, the value is 301 times, the expression is no significant changes in 96 h.
     5. The gene expression levels of transcripts from 4 cellular genes of PK-15 cell cultures infected with three multiplicity of infection after 1 h, 2 h, 12 h, 24 h, 48 h, 96 h were detected by use of the quantitative real-time PCR SYBR greenⅠmethod. Of the genes levels tested, after infection 1 h, the expressions of IFN-βbegan to increase, when in the 12 h and MOI = 1, expressed increased significantly, reaching 11 times, then began to decline; the expression of IRF-3 was significantly increased from 1 h to 48 h, which in the 1 h and MOI = 10, expressed reached the peak, the value is about 967 folds; TNF-αexpression in large quantities when in 1 h, in 2 h and MOI = 1, the differences in the expression of multiple is the largest; from 1 h to 48 h ,IL-18 Sustained high expression continuous, in 24 h and MOI = 1, Peak reached 64 times.
     In summary, the expression of PPV DNA, interferon and related cytokines, apoptosis-related cytokines, inflammatory cytokines, some anti-virus gene and some cell cytokines of PK-15 cell after infected by different virus titer of PPV were studied. Provide an experiment support for further understand the role of cytokines in the immune mechanism and the molecular mechanisms of PPV, and establish theoretical foundation for screening and development of prevention and treatment of PPV-related drugs.
引文
[1] Cartwright S F, Huck R A. Virus isolation is associated with herd infertility, abortion and stillbirth in pigs [J]. Vet Rec, 1967, 81:196-197.
    [2]殷震,刘景华.动物病毒学[M].第2版.北京:科学出版社, 1997:1148-1150.
    [3]魏战勇,王学斌,崔保安,等.猪细小病毒核酸疫苗的构建及其对小鼠免疫原性的研究[J].中国生物工程杂志, 2006, 26(12):63-67.
    [4]李明刚.湖北省猪细小病毒感染血清学调查报告[J].中国动物检疫, 1995, 12(1):123-133.
    [5]王川庆.猪细小病毒的研究:河南省部分猪场母猪繁殖障碍的流行病学[J].中国畜禽传染病, 1995, 1:45-47.
    [6] Harding M J, Molitor T W. A monoclonal antibody which recognizes cell surface antigen and inhibits porcine parvovirus replication[J]. Arch Virol, 1992, 123:323-333.
    [7]赵俊龙,陈焕春.猪细小病毒和猪伪狂犬病毒复合PCR检测方法的建立[J].华中农业大学学报, 2002, 21(2):123-125.
    [8]赵俊龙,陈焕春,吕建强,等.猪细小病毒结构蛋白VP1和VP2的基因免疫研究[J].病毒学报, 2003, 19(1):47-51.
    [9]甘孟侯.当前我国猪传染病的发生特点及防治对策[J].中国兽医杂志, 2005, 4l(5):64-66.
    [10] Kradowks, EIIis J A, Meehan B. Viral wastingsyndrome of swine:experimental reproduction of postweaning multisystemic wasting syndrome in gnotobiotic swine by coinfection with porcine circovirus 2 and porcine parvovirus[J]. Vet Pathol, 2000, 37(3):254-263.
    [11] Vvasudevacharya J, Basak S, Compans R W. The complete nucleotide sequence of an infectious clone of porcine parvovirus strain NADL-2[J]. Virology, 2001, 178:611-618.
    [12] Molitor T W, Joo H S, Collett M S. Identification and characterization of a porcine parvovirus nonstructural polypeptide[J]. Journal of Virology, 2002, 59:554-559.
    [13] Ying X, Yi J L. Induction of immune responses in mice after intragastric administration of lactobacillus casei producing porcine parvovirus VP2 protein[J]. Appi Environ Microbiol, 2007, 73(21):704l-7047.
    [14] Molitor T W, Joo H S, Collett M S. Related articles porcine parvovirus: virus purification and structural and antigenic properties of virion polypeptides [J]. J Virology, 1983, 45(2):842-854.
    [15] Molitor T W, Joo H S, Collett M S. Porcine parvovirus DNA: characterization of the genomic and replicative form DNA of two virus islates [J]. Virology, 1984, 137(2):241-254.
    [16] Bergeron J, Hebert B, Tijssen P. Genome organization of the kresse strain of porcine parvovirus: identification of the allotropic determinant and comparison with those of NADL-2 and field isolates [J]. Journal of Virology, 1996, 70(4):2508-2515.
    [17] Anai R, Juanj M, Esmeralda D A, et al. Casal porcine parvovirus: DNA sequence and genome organization [J]. Journal General of Virology, 1989, 70:2541-2553.
    [18] Chen K C, Shull B C, Moses E A, et al. Complete nucleotide sequence and genome organization of bovine parvovirus[J]. J virol, 1986, 60(3):1085-1097.
    [19] Maranga L, Rueda P, Antonis A F G, et al. Large scale production and downstream processing of a recombinant porcine parvovirus vaccine [J]. Appl Microbiol Biotechnol, 2002, 59:45-50.
    [20] Choi J Y, Woo S D, Lee H K, et al. High-level expression of canine parvovirus VP2 using Bombyx mori nucleopolyhedrovirus vector [J]. Arch Virol, 2000, 145:171-177.
    [21] Sedlik C, Saron M, Sarraseca J, et al. Recombinant parvovirus-like particles as an antigen carrier: a novel nonreplicative exogenous antigen to elicit protective antiviral cytotoxic T cell [J]. Proc Natl Acad Sci USA, 1997, 94(14):7503-7508.
    [22]吴淑芳,付瑞,邢瑞昌,等.猪细小病毒血清学检测方法的建立[J].实验动物学, 2007, 24(2):56-59.
    [23]金喜新,崔保安,魏战勇,等.猪细小病毒NS1基因的原核表达及重组蛋白的复性[J].微生物学报, 2007, 47(1):126-130.
    [24]谢巧,李春华.猪细小病毒分子生物学诊断技术及基因工程疫苗的研究进展[J].畜牧与兽医, 2010, 42(2):92-95.
    [25] Kim J, Choi C, Chae C. Pathogenesis of postweaning multisystemic wasting syndrome reproduced by co-infection with Korean isolates of porcine circovirus 2 and porcine parvovirus[J]. Comp Pathol, 2003, 128(1):52-59.
    [26] Jonathan K R. The parvoviridae:an emerging virus family[J]. Infect Dis Rev, 2000, 2(3):99-109.
    [27]闫朝武.细胞因子与慢性炎症[J].国外医学免疫学分册, 2002, 25(2):98-101.
    [28] Gong F L. Medical Immunology[M]. Beijing, Science Press, 2000:287-296.
    [29]孙卫民,王惠琴.细胞因子研究方法学[M].北京:人民卫生出版社, 1999:165-179.
    [30] Meller-Edge M, Splitter G A. Role of interleukin in animals[J]. In progress in veterinary Microbiology and Immunology, 1988, 4:56-87.
    [31]孙明珠,党双锁.细胞因子与慢性肝脏疾病的研究进展[J].世界华人消化杂志, 2009, 17(21):2121-2126.
    [32] Charles G O. Analysis of cloned T cell functionⅠdissection of cloned T cell proliferation responses using cyclosprin A [J]. Immunol, 1992, (129):1865-1868.
    [33]张媛媛,唐红.非溶细胞性已型肝炎病毒清除过程中细胞因子的作用[J].肝脏, 2008, 13(3):260-262.
    [34] Mavia M A.基于结构的药物设计:在免疫药理和免疫抑制方面的应用[J].国外医学-药学分册, 1994, 21(2):17-19.
    [35]李祥瑞,闫慎飞.动物细胞因子的应用研究进展[J].畜牧与兽医, 1999, 31(5):306-308.
    [36]张斌.细胞因子与物质代谢[J].肠外与肠内营养, 1995, 2(4):272-275.
    [37] Krakauer T, Li B Q, Young H A. Flavonoid baiclain inhibits superantigen-induced in flammatory cytokines and chemokines[J]. FEBS Lett, 2001, 500(1):52-55.
    [38] Pitzel L, Jarry H, Wuttke W. Effects and interactions of prostaglandin F2 alpha,oxytocin,and cytokines on steroidogenesis of porcine luteal cells[J]. Endocrinology, 1993, 132(2):248-277.
    [39]柯江维,段荣,张涛.细胞因子对下丘脑-垂体-性腺轴及下丘脑-垂体-肾上腺轴的调控[J].江西医学检验, 2002, 20(6):379-381.
    [40]张晓志,彭朝辉.肿瘤基因治疗临床应用进展[J].国外医学-肿瘤学分册, 1998, 25(5):284.
    [41]张秋爱.慢性阻塞性肺病炎性细胞因子的检测及临床意义[J].细胞与分子免疫学杂志, 2009, 25(10):947-951.
    [42] Giulietti A, Overbergh L, Valckx D, et al. An overview of real-time quantitative PCR:applications to quantify cytokine gene expression[J]. Methods, 2001, 25(4):386-401.
    [43] Bustin S A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays[J]. J Mol Endocrinol, 2000, 25(2):169-193.
    [44] Yang F L. Development of quantitative real-time polymerase chain reaction for duck cateritiz virus DNA[J]. Avian Diseases, 2005, 49(3):337-400.
    [45] Taveau M, Stockholm D, Spencer M, et al. Quantitication of splice variants using molecular beacon or scorpion primers[J]. Anal Biochem, 2002, 305:227-235.
    [46]萨姆布鲁克, D. W.拉塞尔著.黄陪堂译.分子克隆实验指南[M].第三版.北京:科学出版社, 2002:463-528.
    [47] Shu-Rung C , Kung-Jiun W. Characterization of early gamma interferon ( IFN-γ) expression during murine listeriosis : Identification of N K1. 1 + CD11c + cells as the primary IFN-γ–expressing cells[J ] . Infect Immun, 2007, 75 (3) : 1167~1176.
    [48] Chelbi-Alix M K, Wietzerbin J. Interfron,a growing cytokine family:50 years of interfron research.Biochimie[J]. Biochimie, 2007, 89(6-7):713-718.
    [49] Goodbourn S. Interferons and viruses: an interplay between induction,signalling,antiviral responses and virus countmeasures[J]. J Gen Virol, 2008, 89(1):41-47.
    [50] Volpes R, van dan Oord J J, De Vos R, et al. Expressin of interferon-gamma receptor in normal and pathological human liver tissue[J]. J Hepatol, 1991, 12:195-202.
    [51] Weerd N A, Samarajiwa S A, Hertzog P J. Type I interferon receptors:biochemistry andbiological functions[J]. J Biol Chem, 2007, 282(28):20053-20057.
    [52] Fortier M H, Caron E, Hardy M P, et al. The MHC class l peptide repertoire is molded by the transcriptome[J]. The Journal of Experimental Medicine, 2008, 205:595-610.
    [53] Dong G, Wearsch P A, Peaper D R, et al. Insights into MHC class I peptide loading from the strcture of the tapasin-ERp57 thiol oxidoreductase heterodimer[J]. Immunity, 2009, 30:21-32.
    [54] Reichelt M, Stertz S, Krijnes-Locker J, et al. Missorting of La-Crosse virus nucleocapsid protein by the interferon induced MxA GTPase involves smooth ER membranes[J]. Traffic, 2004, 50(10):772-784.
    [55] Peltekian C, Gordien E, Garreau F, et al. Human MxA protein participates to the interferon-related inhibition of hepatitis B virus replication in female transgenic mice[J]. J Hepatol, 2005, 43(6):965-972.
    [56] Staeheli P, Yu Y S, Grob R, et al. A double stranded RNA inducible fish gene homologou to the murine influenza virus resistance gene Mx[J]. Mol Cell Biol, 1989, 9(7):3117-3121.
    [57] Moncada S, Palmer R M J, Higgs E A, et al. Nitric oxide:physiology,pathophysiology and pharmacology[J]. Pharmacol Rev, 1991, 43:109-143.
    [58] Yu X, Hirono K I, Ichida F. Enhanced iNOS expression in leukocytes and circulating endothelial cells is associated with the progression of coronary artery lesions in acute kawasaki disease [J]. Pediatric Research, 2004, 55(4):688-672.
    [59] Mykhailyk I V, Ostapchenko L I , Kucherenko M I. Interferon- induced 2′,5′- oligoadenylate system:key components and biological functions[J]. Ukr Biokhim Zh, 2003, 75(3):11-21.
    [60] Tanaka N, Nakanishi M, Kusakabe Y, et al. Structural basis for recognition of 2′,5′-linked oligoadenylates by human ribonuclease L[J]. EMBO, 2004, 23(20):3929-3938.
    [61] Liang S L, Quirk D, Zhou A. Rnase L:Its biological roles and regulation[J]. IUBMB LIFE, 2006, 58(9):508-514.
    [62] Malathi K, Paranjape J M, Bulanova E, et al. A transcriptional signaling pathway in the IFN system mediated by 2′,5′-oligoadenylate activation of Rnase[J]. PNAS, 2005, 102(41):14533-14538.
    [63] Fitzgerald K A, Mcwhirter S M, Fala K L, et al. IKK epsilon and TBK1 are essential componets of the IRF3 signaling pathway[J]. Nat Immunol, 2003, 4(5):491-496.
    [64] Juang Y T, Lowther W, Kellum M, et al. Primary activation of interferon A and interferon B gene transcription by interferon regulatory factor 3[J]. Proc Natl Acad Sci USA, 1998, 95:9837-9842.
    [65] Thompson C B. Apoptosis in the pathogenesis and treatment of disease[J]. Science, 1995,267:1456-1461.
    [66] Steller H. Mechanisms and genes of cellular suicide[J]. Science, 1995, 267:1445-1448.
    [67] Kapadia S, Lee J, Torre-Amione, et al. Tumor necrosis factor alpha gene and protein experission in adult feline myocardium after endotoxin administration[J]. J Clin Invest, 1995, 96(2):1042-1052.
    [68] Tracey K J, Lane F, Hilkens C M, et al. Introduction of tolerance by TNF-treated dentritic cells[J]. Lancet, 1990, 8648(1):1721-1728.
    [69] Pfeffer K. Mice seficient for the 55 KD tumor necrosis factor receptor are resistant toendotoxic shock,yet succumb to L-mono-cytogenes infection[J]. Cell, 1993, 73:457-467.
    [70] Peppel K, Crawford D, Beutler B, et al. A tumor necrosis factor(TNF)receptor-IgG heavy chain chimeric protein as a bivalent antagonist of TNF activity[J]. J Exp Med, 1991, 174:1483-1489.
    [71] Sinicrope F A, Rusm S B, Cleary K R, et al. Bcl-2 and P53 oncoprotein expression during colorectal tumorigenesis[J]. Cancer Res, 1995, 55:237-238.
    [72] Sermadiras S, Dumas M, Joly B, et al. Expression of Bcl-2 and Bax in cultured normal human kerationcytes and melanocytes:relation-ship to differentiation and melanogenesis[J]. Br J Dermatol, 1997, 137:883-889.
    [73] Boise L H, Thompson C B. Bcl–X(L)can inhibit apoptosis in cells that have undergone Fas -induced protease activation[J]. Proc Natl Acad Sci USA, 1997, 94(8):3759-3764.
    [74] Lee D H, Szczepanski M, Lee Y J. Role of Bax in quercetin-induced apoptosis in human prostate cancer cells[J]. Biochem Pharmacol, 2008, 75(12):2345-2355.
    [75] Liu J J, Nilsson A, Oredsson S, et a1. Boswellic acids trigger apoptosis via a pathway dependent on caspase-8 activation but independent on Fas/Fas ligand interaction in colon cancer HT-29 cells[J]. Carcinogenesis, 2002, 23(12):2087-2093.
    [76] Warnakulassuriya K A S S, Johson N N. Expression of P53 mutant nuclear phosphoprotein in oral carcinoma and potentially malignant oral lesions[J]. J Oral Med, 1992, 21:404-410.
    [77] Finlay C A, Hinds P w, Tan T H, et a1. Activating mutations for transformation by p53 produce a gene product that forms on hsc70-p53 complex with an altered half life[J]. Mol cell Biol, 1988, 8(2):531-539.
    [78] Hinds P, Finlay C, Levine A J. Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation[J]. J Virol, 1989, 63(2):739-746.
    [79] Sohn D, Schnlze O K, Janieke R U, et a1. Caspase-8 can be activated by interchain proteolysis without receptor-triggered dimmerization during drug-induced apoptosis[J]. J Biol Chem, 2005, 280(7):5267.
    [80] Carrington P E, Sandu C, Wei Y, et a1. The structure of FADD and its mode of interactionwith proeaspase-8[J]. Mol Cell, 2006, 22(5):599.
    [81] Beurdeley-Thomas A, Miccoli L, Oudard S, et a1. The peripheral benzodiazepine receptors:a review[J]. J Neuro Oncol, 2000, 46:45-56.
    [82] Levin E, Premkumar A, Veenman L, et a1. The peripheral-type benzodiazepine receptor and tumorigenicity:isoquino1ine binding protein(IBP)antisense knockdown in the C6 glioma cell line[J]. Bio-chemistry, 2005, 44:9924-9935.
    [83] Jorda E G, Jimenez A, Verdaguer E, et a1. Evidence in favour of a role for peripheral-type benzodiazepine receptor Ligands in amplification of neuronal apoptosis[J]. Apoptosis, 2005, 10:91-104.
    [84] Chen Q, Carroll H P, GadinaM. The newest interleukins:recent additions to the ever-growing cytokine family[J]. Vitam Horm, 2006, 74:207-228.
    [85] Kolb M, Margetts P J, Anthony D C, et al. Transient espression of IL-1 beta induces acute lung injuryand chronic repair leading to pulmonary fibrosis[J]. J Clin Invest, 2001, 107(12):1529-1536.
    [86] Mariathasan S, Newton K, Monack D M, et al. Differential activation of the inflammasome by caspase-1 adaptors[J]. ASC and Ipaf. Nature, 2004, 430(6996):213-218.
    [87]庄岩,杨尹默,王维民,等.急性胰腺炎鼠白细胞介素(1L)1β、IL-18、肿瘤坏死因子、IL-1β转化酶的表达[J].中华实验外科杂志, 2005, 22(1):71-72.
    [88] Hong D S, Angelo L S, Kurzrock R. Interleukin-6 and its receptor in cancer: implications for translational therapeutics[J]. Cancer, 2007, 110(9):1911.
    [89] Pickup J C, Mattock M B, Chusney G D, et al. NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X[J]. Diabetologia, 1997, 40(11):1286-1292.
    [90] Gura T. Chemokines take center stage in flammaatory ills[J]. Science, 1996, 272(5264):954.
    [91]张文胜,陈槐卿,陈友琴,等.流体低切应力作用时间对内皮细胞IL-8基因表达的影[J].生物医学工程学杂志, 2002, 19(1): 40.
    [92] Li S, Zhang X, Xia X. Regression of tumor growth and induction of long term antitumor of memory by interleukin-12 electro-gene therapy[J]. J Natl Cancer Inst, 2002, 94(10):762-768.
    [93] Carreno V,Quiroga J A. Biological properties of Interleukin 12 and its therapeutic use in persistent hepatitis B virus and hepatitis C virus infection[J]. J Viral Hepat,1997,9(2):83.
    [94] Watford W T, Moriguchi M, Morinobu A, et al. The biology of IL-12: coordinating innate and adaptive immune responses[J]. Cytokine Growth Factor Rev, 2003, 14(5):361-368.
    [95] Malefyt R D W, Figdor C G, Huijbens R, et al. Effects of IL-13 on phenotype, cytokine production, and cytotoxic function of human monocytes [J]. J Immunol, 1993,151(11):63-70.
    [96] Briere F, Bridon J M, Servet C, et al. IL-10 and IL-13 as B cell growth and differentiation factors[J]. Nouv Rev Fr Hematol, 2000, 40(3):233-235.
    [97] Harrington L E, Hatton R D, Mangan P R, et a1. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type l and 2 lineages[J]. Nat lmmunol, 2005, 6:1123-1132.
    [98] Park H, Li Z, Yang X O, et a1. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[J]. Nat lmmunol, 2005, 6:l141.
    [99] Laan M, Palmberg L, Larsson K, et a1. Free, soluble interleukin-17 protein during severe inflammation in human airways[J]. Eur Respir J, 2002, 19(3):534-537.
    [100] Chakir J, Shannon J, Molet S, et al. Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-beta, IL-11, IL-17,and type I and typeⅢcollagen expression[J]. J Allergy Clin lmmunol, 2003, 111(6):1293-1298.
    [101] Chabaud M, Lubberts E, Joosten L, et a1. IL-17 derived from juxta articular bone and synovium contributes to joint degradmion in rheuma toid arthritis[J]. Arthritis Res, 2001, 3(3):168-177.
    [102] Fujino S, Andoh A, Bamba S, et al. Increased expression of interleukin 17 in inflammatory bowel disease[J]. Gut, 2003, 52(1):65-70.
    [103] Rouvier E, Luciani M F, Mttei M G, et a1. CTLA-8, cloned from an activated T cell,bearing AU-Rich messenger RNA instability sequence and homlogous to a Herpesvirus saimiri gene[J]. J Immunol, 1993, 150(12):5445-5456.
    [104] Moseley T A, Haudenschild D R, RoseL, et a1. Interleukin-17 family and IL-17 receptors[J]. Cytokine Growth Factor Rev, 2003, 14(2):155-174.
    [105] Spriggs M K. Interleukin-17 and its receptor[J]. Clin Immunol, 1997, 17(6):366-369.
    [106] Kolis J K, Linden A. Interleukin-17 family members and inflammation[J].Immunity, 2004, 21(4):467-476.
    [107] Hung J, Mcquillan B M, Chapman C M, et al. Elevated interleukin-18 levels are associated with the metabolic syndrome independent of obesity and insulin resistance[J]. Immunology, 2005,96(2):247-51.
    [108] Kanda T, Tanaka T, Sekiguchi K, et al. Effect of interleukin-18 on viral myocarditis enhancement of interferon-gamma and natual killer cell activity[J]. J Mol Cell Cardiol, 2000, 32(12):2163-2171.
    [109] Kukita T, Nomiyama H, Ohmoto Y, et al. Macrophage inflammatory protein-1 alpha (LD78)expressed in human bonemarrow: its role in regulation of hematopoiesis andosteoclast recruitment[J]. Lab I nvest, 1997, 76:399- 406.
    [110] De Francesco M A, Poiesi C, Ricotta D, et al. H I V p17 reverses the anti-inflammatory activity of I L-4 on I L-15 stimulated monocytes and modulates their ability to secrete MIP-1 alpha[J]. Virus Research,2006,118 (12 2) :170-177.
    [111] Nakashima E, Oya A, Kubota Y, et al. A candidate for cancer gene therapy: M IP-1 alpha gene transfer to an adenocarcinoma cell line reduced tumorigenicity and induced protective immunity in immunocom petentmice[J]. Pharm Res, 1996, 13:1896-1901.
    [112] Cocchi F, De Vico A L, et al. Identification of RANTES,MIP-and MIP-1βas the major HIV-suppressive factors produced by CD8- T cells[J]. Science, 1995, 270:1811-1815.
    [113] Choi S J, Cruz J C, Craig F, et al. Macrophage inflammatory protein 1-al pha is a potential osteoclast stimulatory factor in multiple myeloma[J]. Blood, 2000, 96:671- 675.
    [114] Atamas S P, White B. Cytokine regulation of pulmonary fibrosis in scleroderma[J]. Cytokine Growth Factor Rev, 2003, 14(6):537.
    [115] Massague J, Blain S W, Lo R S. TGF-βsignaling in growth control, cancer,and heritable disorders[J]. Cell, 2000, 103:295.
    [116] Derynck R, Aknurst R J, Balmain A. TGF-βsignaling in tumor suppression and cancer progression[J]. Nature genet, 2001, 29:117.
    [117] Wang W G, Chen S W, Wang S C, et al. Effect of Qingfei Oral Liquid on Transforming Growth Factor-βl and Platelet-Derived Growth Factor-BB mRNA Gene Expression of Human Embryonic Lung Fibroblast Cells Infected by Adenovirus Type 31 and 7b[J]. Chinese Journal of Information on TCM, 2009, 16(7):33-35.
    [118]吴德,吴忠道,余新炳.磷酸甘油酸激酶的研究进展[J].中国热带医学, 2005, 5:385-387.
    [119] Chen G, Gharib T G, Wang H, et a1. Protein profiles associated with survival in lung adenocareinoma[J]. Proc Natl Acad sci USA, 2003, 100(23):13537-13542.
    [120] Duan Z, Lamendola D E, Yusuf R Z, et a1. Overexpression of human phosphoglycerate kinase 1(PGKI)induces a multidrug resistance phenotype[J]. Anticancer Res, 2002, 22(4):1933-1941.
    [121] Stuehler B, Reichert J, Stremmel W, et al. Analysis of the human homologue of the canine copper toxicosis gene MURR1 in Wilson disease patients[J]. J Mol Med, 2004, 82: 629-634.
    [122] Van De Sluis B, Rotuuizen J, Pearson P L, et al. Identification of a new copper metabolism gene by positional cloning in a purebred dog population[J]. Hum Mol Genel, 2002, 11:165-173.
    [123] Tao T Y, Liu F, Klomp L, et al. The copper toxicosis gene product Murr1 directly interacts with the Wilson disease protein[J]. J Biol Chem, 2003, 278:41593-41596.
    [124] Burstein E, Hoberg J E, Wilkinson A S, et al. COMMD proteins, a novel family of structural and functional homologs of MURR1[J]. J Biol Chem, 2005, 280:22222-22232.
    [125] Salmom P, Lecotonnec J Y, Galazka A, et al. Pharmacokinetics and pharmacodynamics of recombinant human interferon-βin health male volunteers[J]. J Interferon Cytokine Res, 1996, 16:759.
    [126] Hiscott F J. Convergence of the NF-kappaB and IRF pathways in the regulation of the innate antiviral response [J]. Cytokine Growth Factor Rev, 2007, 18 (526):483-490.
    [127] Zhong B, Y ang Y, Li S, et al. The adaptor protein MITA links Virus-sensing receptors to IRF-3 transcription factor activation[J]. Immunity, 2008, 29 (4):538-550.
    [128] Kleine T O, Zwerenz P, Zofel P, et al. New and old diaglnostic markers of meningitis in cerebrospinal fluid(CSF) [J]. Brain Res Bull, 2003, 61(3):287.
    [129] Singh J, Suruchi A. Anti TNF-αstrategy:present status of this therapeutic paradigm[J]. Indian J Pharmacol, 2004, 36(1):10-14.
    [130] Maiai S R. Infliximab treatment of rheumatoid arthritis[J]. Rheum Dis Clin North Am, 2004, 30(2):329-347.
    [131] Gracie J A, Robertson S E, Mcinnes I B. Interleukin-18[J]. J Leukoc Biol, 2003, 73:213-224.