白腐菌漆酶基因的克隆及序列分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
漆酶是一种含铜的多酚氧化酶,普遍存在于白腐菌中,具有降解木质素和使苯氧基类除草剂等有毒酚类物质无毒化的作用,还可去除石油工业废水的毒性。在造纸、饮料加工、和环保等方面具有广泛的应用前景。大多数白腐菌在水中的生长速度较慢,结球结块,仅能生活在水体表面,这些都限制了其在处理废水等方面的直接应用。克隆白腐菌漆酶的结构基因,对今后培育白腐菌漆酶基因大量表达的工程菌株和用工程菌处理酚类污染的废水等具有十分重要的意义。本研究以25种白腐真菌为材料,测定了不同菌株漆酶的活性,并对6种白腐菌漆酶基因进行了克隆和序列分析,结果如下:
     (1) 对25种白腐真菌进行了漆酶活性测定,结果有11个菌种具漆酶活性,它们分别是裂蹄木层孔菌(Phellinus linteus)、朱红密孔菌(Pycnoporus cinnabarinus)、环带干酪菌(Tyromyces zonatulus)、栎迷孔菌(Daedalea quercina)、三色革裥菌(Lenzites tricdor)、北方梭囊孔菌(Climacocystis borealis)、桦革裥菌(Lenzites betulina)、血红密孔菌(Pycnoporus sanguineus)、白耙齿菌(Irpex lactea)、单色下皮黑(Cerrenaunicolor)、梭孔菌(Favolus alveolaris)。
     (2) 建立了快速提取高纯度完整丝状真菌RNA、DNA的方法。
     (3) 通过RT-PCR实验证明了扁芝菌的mRNA不具有Poly(A)序列。
     (4) 设计并合成了用于克隆漆酶基因的一对简并引物,在6个菌种中扩增和克隆了与漆酶基因及其类似基因有同源性的特异片段,它们分别是朱红密孔菌(1227 bp)、血红密孔菌(1227 bp,AY331189)、单色下皮黑(1207 bp,AY454305)、环带干酪菌(1223 bp,AY454306)、北方梭囊孔菌(1201 bp,AY333124)、枥迷孔菌(1232 bp,AY333125)。片段的获得为这些菌种全长漆酶基因的克隆奠定了基础。
     (5) 获得了血红密孔菌漆酶基因全长cDNA序列。根据已克隆得到的血红密孔菌漆酶基因片段(AY331189),通过RACE技术从血红密孔菌中扩增得到漆酶全长cDNA序列(AY458017),共1902 bp,包括完整的开放读码框(1554 bp),编码518个氨基酸。其5′非编码区为51 bp,3′非编码区为297 bp。其编码的氨基酸序列与朱红密孔菌漆酶(1cc3-2)的同源性为96%,与其它担子菌漆酶的同源性也很高。蛋白质结构域预测结果表明在该基因的氨基酸序列中具有4个的铜离子结合区域,7个潜在的糖基化位点,其相对分子量为56313.2,等电点为5.59。
     (6) 获得了血红密孔菌漆酶基因完整DNA序列。根据血红密孔菌漆酶cDNA序列,设计一对特异性引物,经PCR扩增得到了该酶全长的DNA序列(AY510604),长2154 bp,该序列除包含全部血红密孔菌漆酶cDNA编码区外,还包括10个内含子序列,长度在52~
    
    70 bp之间,是典型的真核生物内含子,包括明显的5‘端的供体剪切位点、.3‘端的
    受体剪切位点和分支点序列。
Laccases is a kind of Cu-contained polyphenol oxidase produced by many white-rot fungi. It can degrade lignin and phenoxy containing herbicide and waste water in petroleum industry and affect toxic phenolic materials, so laccases can be widely applied in paper making industry drinking processing and environment protection. Most of white-rot fungi propagate slowly in water and agglomerate quickly, so they can only live on the surface of water, these characteristic directly restrict their applied for waste water treatment. Research on the cloning laccase structure gene of white-rot fungi has an important significance for cultivate engineering bacilli, which express high laccase activity and treat waste water containing phenolic materials by those engineering bacilli. In this paper, the activity of laccase in selected 25 strains were mensurated, the sequence of six white-rot fungi laccase gene have been cloned and analyzed. Main results as followed:
    (1) The activity of laccase from 25 selected white-rot fungi was mensurated. The results indicated that 11 strains have the activity of laccase, including Phellinus linteus Pycnoporus cinnabarinus Tyromyces zonatulus Daedalea quercina Lenzites tricdor Climacocystis borealis Lenzites betulina Pycnoporus sanguineus Irpex lactea Cerrena unicolor Favolus alveolaris.
    (2) The rapid methods of RNA and DNA extraction from mycelial fungi were established. Entire and high purity DNA and RNA can be isolated by these methods.
    (3) The results of RT-PCR experiment showed that mRNA of Eljvngia applanata has no Poly (A) tail sequence.
    (4) Six specific fragments were obtained from 6 fungi that have laccase activity using a pair of degenerate primer. These fragments share high identity with laccase gene from other organism, which were Pycnoporus cinnabarinus ( 1227 bp ) Pycnoporus sanguineus ( 1227 bp, AY331189) Cerrena unicolor (1207 bp, AY45.4305) Tyromyces zonatulus (1223 bp, AY454306) Climacocystis borealis (1201 bp, AY333124) Daedalea quercina (1232 bp, AY333125) .
    (5) The full-length cDNA of Pycnoporus sanguineus laccase gene was cloned. According to the laccase gene fragment of Pycnoporus sanguineus (AY331189), The full-length cDNA of Pycnoporus sanguineus laccase gene was isolated by using RACE (rapid amplification of cDNA ends) technique. The full length of sequence was 1902 bp, containing an open reading frame(1554 bp), encoding a peptide of 518 amino acids.5' untranslated region was 51 bp, 3'
    
    
    
    untranslated region was 297 bp. BLAST analysis revealed that the laccase cDNA and amino acids sequence from Pycnoporus sanguineus shared high identity with laccase gene from other organisms in nucleotides and amino acids respectively. The laccase protein has four catalytic cupric ions domain and seven glycosylation sites, the relative molecular weight was 56313.2, and theoretical pI was 5.59.
    (6) The complete DNA sequence of laccase from Pycnoporus sanguineus was obtained. Based on the Pycnoporus sanguineus laccase cDNA sequence, a pair of specific primer had been designed; the complete DNA sequence of 2154 bp (AY510604) was isolated by PCR. Besides the coding area of cDNA, the sequence containing 10 introns regions, with length between 52~70 bp, which showed typical eukaryotes intron characteristic, including 5' donor splicing site3' receptor splicing site and bifurcate sequence.
引文
1. Alexandre G, Zhulin I B. Laccases are widespread in bacteria. Trends Biotechnol, 2000, 18:41~42.
    2. Anastasia P, Litvintseva, Joan M, et al. Cloning, haracterization, and Transcription of Three Laccase Genes from Gaeumannomyces graminis var. tritici, the Take-All Fungus. Appl Envir Microbiol, 2002, 68: 1305~1311.
    3. Aramayo R, Timberlake W E. Sequence and molecular structure of the Aspergillus nidulans yA (laccase Ⅰ) gene. Nucleic Acids Res, 1990, 18: 3415.
    4. Baldi P, Brunak S. Bioinformstics: The Machine Learning Approach. MITPress, MA, 1998
    5. Ballance D J. Sequences important for gene expression in filamentous fungi. Yeast, 1986,2:229~236
    6. Benoit D, et al. JNKI: A protein kinase stimulated by UV light and Ha Rasth at binds and phosphorylates the c~jun activation domain. Cell, 1994,3(25): 1025~1037
    7. Berka R M, Schneider P, Golightly E J, et al. Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of the recombinant enzyme expressed in Aspergillus oryzae. Appl Environ Microbiol, 1997, 63:3151~3157
    8. Bertrand G. Surla presence simultanee de la tyrosinase dans le suc de quelques champignons C R Hebd Seances. Acad Sci, 1987,123:463~465
    9. Brown M A, Zhao Z, Mauk A G. Expression and characterization of a recombine multi-copper oxidase: laccase Ⅳ from Trametes versicolor. Inorg Chim Acta, 2002, 331:232~238
    10. Bumpus J A, Tien M, Wright D, et al. Oxidation of persistent environmental pollutants by a white rot fungi, science, 1985,228(7): 1434~1439.
    11. Cassland P, Jonsson L J. Characterization of a gene encoding Trametes versicolor laccase A and improved heterologous expression in Saccharomyces cerevisiae by decreased cultivation temperature. Appl Microbiol Biotechnol, 1999,52:393~400.
    12. Chomczynski P, Sacchi N. Single-Step Method of RNA Islation by Acid Guanidinium Thiccyanate-Phenol-Chloroform Etraction. Anal Biochem, 1987, 162(2): 156~159
    13. Christopher F. The structure and function of fungal laccase. 1994, 140(1): 19
    14. Clemmer J D. On-line enzyme activity determination using the stopped-flow technique: application to laccase activity in pulp mill waste-water treatment. Applied Microbiology
    
    and Biotechnology, 1997,48(2)
    15. Coll P M, Tabernero C, Santamaría R, et al. Characterization and structural analysis of the laccase Ⅰ gene from the newly isolated ligninolytic Basidiomycete PM1 (CECT 2971). Appl Environ Microbiol, 1993,59: 4129~4135.
    16. Collins P J, Dobson A D W. Regulation of laccase gone transcription in Trametes versicolor. Appl Environ Microbiol, 1997,63: 3444~3450.
    17. D'Souza T M, Boominathan K, Reddy C A. Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR. Appl Environ Microbiol, 1996, 62:3739~3744
    18. Dedeyan B, Klonowska A, Tagger S, et al. Biochemical and Molecular Characterization of a Laccase from Marasmius quercophilus. Appl Environ Microbiol, 2000, 66:925~929
    19. Ducros V, Dzves G J, et al. Acta Crystallogar. Sect. D: Biol Crystallogar, 1997, 53(5): 605~607
    20. Eggert C, Lafayette P R, Temp U, et al. Molecular analysis of a laccase gene from the white rot fungus Pycnoporus cinnabarinus. Appl Environ Microbiol, 1998, 64:1766~1772
    21. Eggert C, Temp U, Eriksson K E L. Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett, 1997, 407: 89~92.
    22. Engelberg-kulka H, Benhar Ⅰ, Schoulaker-Schwarz R. Translational introns: an additional regulatory element in gene expression. Trends Biochem Sci, 1993,18(18): 294~296
    23. Fernadez-Larrea J, Stahl U. Isolation and characterization of a laccase gene from Podospora anserina. Mol Gen Genet, 1996,252:539~551.
    24. Frohman M A, Dush M K, Martin G R. Rapid isolation of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci, 1988,85: 8998-9002.
    25. Frohman M A, Push M K, Martin G R. Rapid production of full-length cDNAs from rare transcripts: Amplification using a single gene-specific oligonucleotide prime. Proc Natl Acad Sci USA, 1988,85:8998~9002
    26. Gelo-Public M, Hyug-han K, Butlin N G, et al. Electrochemical studies. of a truncated laccase produced in Pichia pastoris. Appl Environ Microbiol, 1999,65:5515~5521
    27. Germann U A, MLler G, Hunziker P E, et al. Characterization of two allelic forms of Neurospora crassa laccase. J Biol Chem, 1998, 263: 885~896.
    28. Giardina P G, Palmieri A, Scaloni B, et al. Protein and gene structure of a blue laccase from Pleurotus ostreatus. Biochem J, 1999, 341:655~663.
    
    
    29. Giardina P, Aurilia V, Cannio R, et al. The gene, protein, and glycan structures of laccase from Pleurotus ostreatus. Eur J Biochem, 1996, 235:508~515
    30. Hoshida H, Nakao M, Kanazawa H, et al. Isolation of five laccase gene sequences from the white-rot fungus Trametes sanguinea by PCR, and cloning, characterization and expression of the yeast cDNA in yeasts. J Biosci Bioeng, 2001,92:372~380
    31. Huber M, Lerch K. The influence of copper on the induction of tyrosinase and laccase in Neurospora crassa. FEBS Lett, 1987,219: 335~338.
    32. Hunolstein C V, Valenti P, Visca P, et al. Production of laccases A and B by a mutant strainof Trametes versicolor. J Gen Appl Microbiol, 1986,32: 185~191.
    33. J nnson L, Saloheimo M. Penttil M. Laccase from the white-rot fungus Trametes versicolor: cDNA cloning of lcc1 and expression in Pichia pastoris. Curr Genet, 1997, 32:425~430.
    34. J nnson L, Sjstrm K, Hoggstrm I, et al. Characterization of a laccase gene from the white-rot fungus Trametes versicolor and structural features of basidiomycete laccases. Biochim Biophys Acta, 1995, 1251:210~215
    35. Kojima Y, Tsukada Y, Kawai Y, et al. Cloning, sequence analysis, and expression of ligninolytic phenoloxidase genes of the white-rot basidiomycete Coriolus hirsutus. J Biol Chem, 1990,265:15224~15230.
    36. Labored J. Sur laccase desvins. C.R.Hebd Seance.Acad Sci, 1896, 123:1074~1075
    37. Larrondo L F, Avila M, Salas L, et al. Heterologous expression of laccase cDNA from Ceriporiopsis subvermispora yields copper-activated apoprotein and complex isoform patterns. Microbiology, 2003, 149:1177~1182.
    38. Leif J, et al. Characterization of a laccase gene from the Nhite-rot fungus Trametes versicolor and structure features of basidiomycete laccases. Biochimical et biophysica Acta, 1995,1251:210~215
    39. Limura Y K, Takenouchi M N, et al. Cloning and sequence analysis of laccase genes and its use for an expression vector in Coriolus versicolor. Biotechnology in Pulp and Paper Industry, 1992:427~432
    40. Mansur M, Suárez T, Gonzá lez A E. Differential expression in the laccase gene family from basidiomycete Ⅰ-62 (CECT 20197). Appl Environ Microbiol, 1998,64:771~774.
    41. Martins L O, Soares C, Pereira M, et al. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem, 2002,277: 18849~18859.
    
    
    42. Messerschmidt A, et al. Refined crystal structure of ascorbate oxidase at 1.9 A resolution. J.Mol. Biol, 1992,224:179~205
    43. Mikuni J, Morohoshi N. Cloning and sequencing of a second Laccase gene from the white-rot fungus Coriolus versicolor. FEMS Microbiol. Lett. 1997, 155:79~84
    44. Muoz C, Guillén F, Martínez A T, et al. Induction and characterization of laccase in the ligninolytic fungus Pleurotus eryngii. Curr Microbiol, 1997,34:1~5.
    45. NCBI. What does NCBI do [EB/OL]. http://www. ncbi. nlm. nih. gov, 2000,5,2
    46. Otterbein L, Record E, Longhi S, et al. Molecular cloning of the cDNA encoding laccase from Pycnoporus cinnabarinus Ⅰ-937 and expression in Pichia pastoris. EurnⅠ{(uRm2000,267: 1619~1625
    47. Palmieri G, Giardina P, Bianco C, et al. Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol, 2000,66: 920~924.
    48. Parkinson N, Smith Ⅰ, Weaver R, et al. A new form of arthropod phenoloxidase is abundant in venom of the parasitoid wasp pimpla hypochondrica. Insect Biochem Mol Biol, 2001,31: 57~63.
    49. Perler F B, Adam E. Protein splicing and its application. Curr Opin Biotechnol, 2000, 11(4): 377~383
    50. Record E, Punt P J, Chamkha M, et al. Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme. Eur J Biochem, 2002, 269:602~609.
    51. Reinhammar B. In "Copper proteins and cooper enzymes" (Lonitie Ed),Boca Raton CRC Press, 1984,31~35
    52. Saloheimo M, Niku-Paavola M L, Knowles J K C. Isolation and structural analysis of the laccase gene from the lignin-degrading fungus Phlebia radiata. J Gen Microbiol, 1991,137:1537~1544.
    53. Salzberg S. Computatinal Methods in Molecular Biology. ElsevierScience, NewYork, 1998
    54. Sanchez-Amat A, Lucas-Elío P, Ferná ndez E, et al. Molecular cloning and functional haracterisation of a unique mutipotent polyphenol oxidase from Marinomonas mediterranea. Biochim Biophys Acta, 2001,1547:104~116.
    55. Scheel T, Hofer M, Ludwi S, et al. Differential expression of manganese peroxidase and laccase in white-rot fungi in the presence of manganese or aromatic compounds. Appl Microbiol Biotechnol, 2000, 54: 686~691.
    
    
    56. Scheel T, Holker U, Ludwig S, et al. Evidence for and expression of a laccase gene in three basidiomycetes degrading humic acids. Appl Microbiol Biotechnol, 1999, 52:66~69.
    57. Smith M, Shnyreva A, Wood D A, et al. Tandem organization and highly disparate expression of the two laccase genes lcc1 and lcc2 in the cultivated mushroom Agaricus bisporus. Microbiology, 1998, 144:1063~1069.
    58. Soden D M, O' Callaghan J, Dobson A D W. Molecular cloning of a laccase isozyme gene from Pleurotus sajor-caju and expression in the heterologous Pichia pastoris host. Microbiology, 2002, 148: 4003~4014.
    59. Takeshi S, et al. EPR spectra of type 3 coppers on Rhus vernicifera laccase and Cucumis sativus ascorbate oxidase. Biochimical et biophysica Acta, 1995,1248:143~148
    60. Thomas B R, Yonekura M, Morgan T D, et al. A trypsin solubilised laccase from phrate pupal integument of the tobacco hornworm, Manduca sexta. Insect Biochem 1989, 19:611~622.
    61. Tsai H F, Wheeler M H, Chang Y C, et al. A developmentally regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus fumigatus. J Bacteriol, 1999, 181:6469~6477.
    62. Wahleithner J A, Xu F, Brown K M, et al. The identification and characterization of four laccases from the plant pathogenic fungus Rhizoctonia solani. Curr Genet, 1996,29:395~403.
    63. Wilkie T M, Simon M I. Cloning multigene families with degenerate PCR primers. Methods: A Companion to Methods in Enzymology, 1991,2(1): 32~41
    64. Yaver D S, Golightly E J. Cloning and characterization of three laccase genes from the white rot basidiomycete Trametes villosa: genomic organization of the laccase gene family. Gene, 1996,181:95~102.
    65. Yaver D S, Xu F, Golightly E J, et al. Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Appl Environ Microbiol, 1996, 62:834~841.
    66. Yoshida H. Chemistry of Lacquer (Urushi), part 1. J Chem Soc, 1883, 43:472~486.
    67. Zhao J, Chen Y H, Kwan H S. Molecular Cloning, Characterization, and Differential Expression of a Glucoamylase Gene from the Basidiomycetous Fungus Lentinula edodes. Appl Environ Microbiol, 2000, 66:2531~2535
    68. Zhao J, Kwan H S. Characterization, molecular cloning, and differential expression analysis of laccase genes from the edible mushroom Lentinula edodes. Appl Environ Microbiol,
    
    1999, 65: 4908~4913.
    69.钞亚鹏,钱世钧.真菌漆酶及其应用.生物工程进展,2001,21(5):23~28
    70.陈静,倪坚,陈江野.简并PCR法用于白色念珠菌MAPK新基因的筛选.生物化学与生物物理学报,2000,32(3):305~311
    71.胡德华,方平.网上序列类似性检索.医学信息,2001,14(2):68~70
    72.胡平平,付时雨.漆酶催化活性中心结构及其特性研究进展.林产化学与工业,2001,21(3):69~75
    73.季立才,胡培植.漆酶催化氧化反应研究进展.林产化学与工业,1997,17(1):79~84
    74.孔凡晶,马有志,陈孝,等.差异显示和RACE技术的发展与应用.生物技术通报,2003,1:13~16
    75.李光日,余惠生,付时雨,等.漆酶催化活性中心结构及应用的研究进展.纤维素科学与技术,2000,8(2):42~48
    76.李明春,_王俊琦,邢来君.丝状真菌深黄被孢霉RNA的提取方法.菌物系统,1999,18(1):108~111
    77.刘淑珍,钱世钧.担子菌漆酶的分离纯化及其性质研究.微生物学报,2003,43(1):73~78
    78.卢圣栋.现代分子生物学实验技术(第二版).北京:中国协和医科大学出版社,1999
    79.缪静,姜竹茂.漆酶的最新研究进展.烟台师范学院学报,2001,17(2):146~150
    80.强伯勤,方福德.中国基因组研究的现在与未来.生物化学与生物物理进展,2000,27(5):455~460
    81.秦小琼,傅庭治,曹幼琴,等.红栓菌胞外漆酶的诱导纯化及部分特性研究 微生物学报,1996,36(5):360~369
    82.邱为民 张思仲,武辉,等.一种新的cDNA末端快速扩增获取全长cDNA的方法.遗传,2001,23(5):480~482
    83.沈同,王镜岩.生物化学.北京:高等教育出版社,1991
    84.沈珝琲,方福德.真核基因表达调控.高等教育出版社,1997
    85.唐克轩,开国银,张磊,等.RACE的研究及其在植物基因克隆上的应用.复旦学报,2002,41(6):704~709
    86.王洪振,周晓馥,宋朝霞,等.简并PCR技术及其在基因克隆中的应用.遗传,2003,25(2):201~204.
    87.王玲.基于知识发现的生物信息学.生物工程进展,2000,20(3):27~29
    88.王玉成,薄海侠,杨传平.胡杨、柽柳总RNA提取方法的建立.东北林业大学学报,2003,31(5):99~100
    89.王哲,黄高升.NCBI的数据库资源及其应用.生命科学,2002,14(1):59~62
    90.望天志,李卫莲,万洪文.微量热法测定漆酶活性.自然杂志,1997,19(6):361
    91.吴昊.基因组学、生物信息学及其对科学和社会的影响.世界科技研究与发展,1999,21(5):9~14
    
    
    92.吴坤,朱显峰,张世敏,等.杂色云枝产漆酶的发酵条件研究.菌物系统,2001,20(2):207~213
    93.严东辉,杨宝君.松材线虫体外酶组成分析.林业科学研究,1997,10(3):265~269
    94.朱玉贤,李毅.现代分子生物学.高等教育出版社,1998