毛细力光刻技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在半导体工业,传统光刻技术早已成为制作大规模集成电路的支柱,由于光刻设备极其昂贵,并且传统光刻技术已经逐渐达到其分辨率极限,因此研究其他能够替代传统光刻技术的半导体加工技术具有极大的现实意义。毛细力光刻技术作为一种新型的非传统光刻技术已经发展了十多年的时间,与传统光刻技术相比,毛细力光刻技术具有其他的一些优点:1)它不需要依赖昂贵的制作设备;2)它具有很高的分辨率;3)它的制作工艺简单、制作周期短;4)模板可重复利用,可以大幅度降低制作成本;5)能够用于大面积大尺寸纳米结构制作。然而到目前为止,国内外关于毛细力光刻技术的研究多集中在平面上,鲜有将之应用于曲面上微纳加工的研究报道。此外,关于该技术的研究大多集中于实验方面,而在仿真方面工作较少,并且只局限于粗略的定性分析,而没有实现真正意义上严格的数值仿真。针对以上研究现状,本文对毛细力光刻技术在曲面上的微纳加工以及平面上的大面积加工进行了深入的研究;同时采用严格的有限元数值模拟方法,对毛细力光刻技术的动态物理过程进行仿真,获得了与实验结果基本一致的结果。本论文的研究工作具体如下:
     实验方面:1)研究了三维曲面上的毛细力光刻技术,利用此技术制作了微米同心圆环结构和纳米衍射光栅结构,所获得的样品台阶高度分别达到了母板台阶高度的65%和83%;2)研究了去润湿辅助的毛细力光刻技术,我们发现利用此技术可以制作出周期性结构尺寸减半的纳米光栅样品,文中使用周期为430nm的光栅母板制作出了周期为215nm的光栅样品;3)研究了利用毛细力光刻技术制作亚波长抗反射结构的工艺过程,并利用软光刻技术在光学元件表面制作了sol-gel材料抗反射结构,所制作的抗反射结构使光学元件表面的反射率在可见光波长范围内降低了1%左右。
     理论方面:利用COMSOL Multiphysics仿真软件建立了封闭毛细管中毛细上升现象的仿真模型。系统地研究了模型中接触角、毛细管直径以及通道内部压强对毛细管中气液界面上升高度的影响。通过比较毛细力光刻仿真和实验结果,我们发现该模型能够精确地预测毛细力光刻技术的作用过程,从而使毛细力光刻技术的研究工作变得更加容易。
     目前,关于毛细力光刻技术的研究工作尚不成熟,为了能够让此技术应用于实际的工业生产中,仍需要开展大量的研究工作。本文的研究内容将有助于后来的研究人员快速地掌握这一新技术。
Traditional photolithography has been the dominant technology to manufacturethe large-scale integrated circuit in semiconductor industry. However, traditionalphotolithography requires the very expensive equipment from one hand and isgradually approaching its resolution limit from the other hand so that it is alwaysinteresting to develop new lithographic technologies to replace the traditionalphotolithography. Capillary force lithography as an alternative lithographictechnology is a novel non-traditional lithography technology and has been developedfor more than one decade. Capillary force lithography has a few advantages over thetraditional photolithography technology:1) it doesn’t need expensive equipment;2)it has a very high resolution;3) the fabrication process is simple and short;4) themold is reusable so that the fabrication cost is significantly saved;5) it can beadapted for large-scale nanofabrication in larger area. Up to now, the most reportedworks on capillary force lithography are implemented on the plane surfaces ratherthan the curved surfaces. Moreover, the most reported researches are focusing on theexperiments. There is nearly no work is reported on the rigorous numericalsimulation of the process but just some work on the rough qualitative analysis whichcan not predict the fabrication process precisely. In view of the above research situation, this thesis carries on a deep research on the micro-and nano-fabricationon the curved surfaces in large area by using the capillary force lithography. At thesame time, a rigorous finite element simulation method was employed to simulatethe dynamic physical process of capillary force lithography. The main work down inthis thesis includes:
     In experiment:1) Capillary force lithography on3D curved surfaces wasresearched. Micro and nanogratings with concentric circular structures on3D curvedsurfaces were successfully fabricated by employing this technology. The heights ofthe fabricated structures obtained in our experiments have reached65%and83%ofthe masters for micro and nanostructures respectively;2) Dewetting assistedcapillary force lithography was found and developed. We found that the resolution ofthe capillary force lithography can be enhanced for two folds by this technology. Inthe thesis, a period of215nm grating was obtained by using the master gratingwhose period is430nm;3) The process of fabricating sub-wavelength antireflectionstructures by capillary force lithography was developed. The sol-gel antireflectionstructures were fabricated on the surface of optical elements by soft lithography. Thefabricated antireflection structures can effectively reduce the the reflectance ofoptical elements surface by about1%in the range of visible light.
     In theory: A simulation model of capillary rise phenomenon in the closedcapillary tube was built by utilizing the COMSOL Multiphysics simulation software.How the contact angle, the diameter of capillary tube and the inner pressure of thetube affect the height of the gas/liquid interface was studied systematically. Incomparison with the experimental results, the model is found to be able to predictthe dynamic fabrication process precisely. This will make the study on capillaryforce lithography easier.
     At present, the capillary force lithography is still immature and extensive workneeds to be done to make the technology more practical for industry. The work downin this thesis can be helpful for those following researchers to catch up with this newtechnology.
引文
[1] K. Y. Suh, Y. S. Kim, H. H. Lee.Capillary force lithography [J]. Adv Mater,2001,13:1386-1389
    [2] S. Y. Chou, P. R. Krauss, P. J. Renstrom. Imprint of sub-25nm vias and trenchesin polymers [J]. Appl Phys Lett,1995,67(21):3114-3116
    [3] S. Y. Chou, P. R. Krauss, P. J. Renstrom. Renstrom. Imprint lithography with25-nanometer resolution [J]. Sci,1996,272:85-87
    [4] S. Y. Chou, P. R. Krauss, P. J. Renstrom. Nanoimprint lithography [J]. J Vac SciTechnol B,1996,14(6):4129-4133
    [5] S. Y. Chou, P. R. Krauss, W. Zhang, et al. Sub-10nm imprint lithography andapplications [J]. J Vac Sci Technol B,1997,15(6):2897-2904
    [6] M. D. Austin, H. Ge, W. Wu, et al. Fabrication of5nm line-width and14nm pitchfeatures by nanoimprint lithography [J]. Appl Phys Lett,2004,84(26):5299-5301
    [7] M. Colburn, S. Johnson, M. Stewart, et al. Step and flash imprint lithography: anew approach to high-resolution patterning [J]. Proc SPIE Int Soc Opt Eng,1999,3676:379–389
    [8] D. Bratton, D. Yang, J. Dai, et al. Recent progress in high resolution lithography[J]. Polym Adv Technol,2006,17:94-103
    [9] J. P. Rolland, E. C. Hagberg, G. M. Denison, et al. High-resolution softlithography: enabling materials for nanotechnologies [J]. Angew Chem,2004,116:5920-5923
    [10]Y. Xia, G. M. Whitesides. Soft lithography [J]. Annu Rev Master Sci,1998,28:153-184
    [11]E. Delamarche, H. Schmid, Michel B, et al. Stability of moldedpolydimethylsiloxane microstructures [J]. Adv Mater,1997,9:741-746
    [12]X Zhao, Y. Xia, G. M. Whitesides. Soft lithography methods for nano-fabrication[J]. J Mater Chem,1997,7(7):1069-1074
    [13]Y. Xia, J. J. McClelland, R. Gupta, et al. Replica molding using polymericmaterials: a practical step toward nanomanufacturing [J]. Adv Mater,1997,9:147-149
    [14]E. Kim, Y. Xia, G. M. Whitesides. Polymer microstructures formed by molding incapillaries [J]. Nat,1995,376:581-584
    [15]K. Y. Suh, H. H. Lee. Capillary force lithography: large-area patterning,self-organization, and anisotropic dewetting [J]. Adv Funct Mater,2002,12:405-413
    [16]K. Y. Suh, P. Kim, H. H. Lee. Capillary kinetics of thin polymer films inpermeable microcavities [J]. Appl Phys Lett,2004,85:4019-4021
    [17]D. Y. Khang, H. H. Lee. Pressure-assisted capillary force lithography [J]. AdvMater,2004,16:176-179
    [18]C. M. Bruinink, M. Péter, M. de Boer, et al. Stamps for submicrometer softlithography fabricated by capillary force lithography [J]. Adv Mater,2004,16:1086-1090
    [19]X. Yu, Z. Wang, R. Xing, et al. Solvent assisted capillary force lithography [J].Polymer,2005,46:11099-11103
    [20]C. Luo, R. Xing, Y. Han. Ordered pattern formation from dewetting of polymerthin film surface disturbance by capillary force lithography [J]. Surface Science,2004,552:139-148
    [21]H. Yoon, T. Kim, S. Choi, et al. Capillary force lithography with impermeablemolds [J]. Appl Phys Lett,2006,88:254104(1-3)
    [22]K. Y. Suh, M. C. Park, P. Kim. Capillary force lithography: A versatile tool forstructured bio-materials interface towards cell and tissue engineering [J]. Adv FunctMater,2009,19:2699-2712
    [23]D. Zhang, W. Yu, T. Wang, et al. Fabrication of diffractive optical elements on3-D curved surfaced by capillary force lithography [J]. Optics Express,2010,18:15009-15016
    [24]R. Kwak, H. E. Jeong, K. Y. Suh. Fabrication of monolithic bridge structures byvacuum-assisted capillary force lithography [J]. Small,2009,5:790-794
    [25]I. Wong, C. M. Ho. Self assembled monolayer patterning using capillary forcelithography [J]. Micro Electro Mechanical Systems, MEMS,2006, Istanbul, Turkey,558-561
    [26]K. Y. Suh, H. H. Lee. Self organized polymeric microstructures [J]. Adv Mater,2002,4:346-351
    [27]Y. S. Kim, K. Y. Suh, H. H. Lee. Fabrication of three-dimensional microstructuresby soft molding [J]. Appl Phys Lett,2001,79:2258-2287
    [28]S. H. Lee, P. K. Suh, H. E. Jeong, et al. Electrically induced formation ofuncapped, hollow polymeric microstructures [J]. J Micromech Microeng,2006,16:2292-2297
    [29]S. H. Lee, H. E. Jeong, M. C. Park, et al. Fabrication of hollow polymericmicrostructures for shear-protecting cell containers [J]. Adv Mater,2008,20:788-792
    [30]P. Kim, B. K. Lee, H. Y. Lee, et al. Molded nanowell electrodes for site-selectivesingle liposome arrays [J]. Adv Mater,2008,20:31-36
    [31]K. Y. Suh, A. Khademhosseini, S. Jon, et al. Direct confinement of lndividualviruses within Polyethylene Glycol(PEG) nanowells [J]. Nano Lett,2006,6:1196-1201
    [32]P. Kim, S. E. Lee, H. S. Jung, et al. Soft lithographic patterning of supported lipidbilayers onto a surface and inside microfluidic channels [J]. Lab Chip,2006,6:54-59
    [33]A. Khademhosseini, S. Jon, K. Y. Suh, et al. Direct pattering of protein-and cell-resistant polymeric monolayers and microstructures [J]. Adv Mater,2003,15:1995-2000
    [34]A. Khademhosseini, K. Y. Suh, S. Jon, et al. A soft lithographic approach tofabricate patterned microfluidic channels [J]. Anal Chem,2004,76:3675-3681
    [35]H. E. Jeong, K. Y. Suh. On the thickness uniformity of micropatterns ofhyaluronic acid in a soft lithography molding method [J]. J Appl Phys,2005,97:114701
    [36]A. Khademhosseini, K. Y. Suh, J. M. Yang, et al. Layer-by-layer deposition ofhyaluronic acid and poly-L-lysine for patterned cell co-cultures [J]. Biomaterials,2004,25:3583-3592
    [37]K. Y. Suh, A. Khademhosseini, J. M. Yang, et al. Soft lithography patterning ofhyaluronic acid on hydrophilic substrates using molding and printing [J]. Adv Mater,2004,16:584-588
    [38]K. Y. Suh, J. Seong, A. Khademhosseini, et al. A simple soft lithography route tofabrication of poly(ethylene glycol) microstructures for protein and cell patterning [J].Biomaterial,2004,25:557-563
    [39]A. Khademhosseini, J. Yeh, S. Jon, et al. Molded polyethylene glycolmicrostructures for capturing cells with microfluidic channels [J]. Lab Chip,2004,4:452-430
    [40]J. M. Karp, J. Yeh, G. Eng, et al. Controlling size, shape and homogeneity ofembryoid bodies using poly(ethylene glycol) microwells [J]. Lab Chip,2007,7:786-794
    [41]K. Y. Suh, R. Langer. Microstructures of poly(ethylene glycol) by molding anddewetting [J]. Appl Phys Lett,2003,83:1668-1670
    [42]D. H. Kim, P. Kim, I. Song, et al. Guided three-dimensional growth of functionalcardiomyocytes on polyethylene glycol nanostructures [J]. Langmuir,2006,22:5419-5426
    [43]P. Kim, D. H. Kim, B. Kim, et al. Fabrication of nanostructures of polyethyleneglycol for applications to protein adsorption and cell adhesion [J]. Nanotechnology,2005,16:1-7
    [44]D. H. Kim, C. H. Seo, K. Han, et al. Guided cell migration on microtexturedsubstrates with variable local density and anisotropy [J]. Adv Funct Mater,2009,19:1579-1586
    [45]K. W. Kwon, S. S. Choi, S. H. Lee, et al. Label-free, microfluidic separation andenrichment of human breast cancer cells by adhesion difference [J]. Lab Chip,2007,7:1461-1468
    [46]M. C. Park, J. Y. Hur, K. W. Kwon, et al. Pumpless selective docking of yeastcells inside a microfluidic channel induced by receding meniscus [J]. Lap Chip,2006,6:988-994
    [47]H. E. Jeong, J. K. Lee, H. N. Kim, et al. A nontransferring dry adhesive withhierarchical polymer nanohairs [J]. PNAS,2009,106:5639-5644
    [48]H. E. Jeong, R. Kwak, J. K. Kim, et al. Generation and self-replication ofmonolithic, dual-scale polymer structures by two-step capillary force lithography [J].Small,2008,4:1913-1918
    [49]R. Kwak, H. E. Jeong, K. Y. Suh. Fabrication of monolithic bridge structures byvacuum-assisted capillary force lithography [J]. Small,2009,5:790-794
    [50]K. Y. Suh, H. E. Jeong, D. H. Kim, et al. Capillarity assisted fabrication ofnanostructures using a less permeable mold for nanotribological applications [J]. JAppl Phys,2006,100:034303
    [51]X. Duan, Y. Zhao, A. Perl, et al. Nanopatterning by an integrated processcombining capillary force lithography and microcontact printing [J]. Adv Funct Mater,2010,20:663-668
    [52]C. M. Bruinink, M. Péter, P. A. Maury, et al. Capillary force lithography:Fabrication of functional polymer templates as versatile tools for nanolithography [J].Adv Funct Mater,2006,16:1555-1565
    [53]J. M. Jung, F. Stellacci, H. T. Jung. Generation of various complex patternedstructures from a single ellipsoidal dot prepattern by capillary force lithography [J].Adv Mater,2007,19:4392-4398
    [54]S. K. Lee, J. M. Jung, J. S. Lee, et al. Fabrication of complex patterns with a widerange of feature sizes from a single line prepattern by successive application ofcapillary force lithography [J]. Langmuir,2010,26:14359-14363
    [55]C. M. Bruinink, M. Péter, M. Boer, et al. Stamps for submicrometer softlithography fabricated by capillary force lithography [J]. Adv Mater,2004,16:1086-1090
    [56]H. E. Jeong, S. H. Lee, P. Kim, et al. Stetched polymer nano hairs bynanodrawing [J]. Nano Lett,2006,6:1508-1513
    [57]H. E. Jeong, S. H. Lee, J. K. Kim, et al. Nanoengingeered multiscale hierarchicalstructures with tailored wetting properties [J]. Langmuir,2006,22:1640-1645
    [58]H. E. Jeong, R. Kwak, J. K. Kim, et al. Generation and self-replication ofmonolithic, dual-scale polymer structures by two-step capillary force lithography [J].Small,2008,4:1913-1918
    [59]H. E. Jeong, S. H. Lee, P. Kim, et al. High aspect-ratio polymer nanostructures bytailored capillarity and adhesive force [J]. Colloids and Surfaces A: Physicochem EngAspects,2008,313-314:359-364
    [60]H. E. Jeong, M. K. Kwak, C. I. Park, et al. Wettability of nanoengineereddual-roughness surfaces fabricated by UV-assisted capillary force lithography [J].Journal of Colloid and Interface Science,2009,339:202-207
    [61]高世桥,刘海鹏.毛细力学[M].北京:科学出版社,2010
    [62]E. W. Washburn. The Dynamics of Capillary Flow [J]. Physical Review,1921,17(3):273–283
    [63]F. C. Goodrich. The mathematical theory of capillarity (I–III)[J]. Proceedings ofthe Royal Society of London, Series A, Mathematical and Physical Sciences,1961,260(1303):481–489,490–502&503–509
    [64]H. J. Butt, M. Kappl. Normal capillary forces [J]. Advances in Colloid andInterface Science,2009,146(1-2):48-60
    [65]J. W. van Honschoten, N. Brunets, N. R. Tas. Capillarity at the nanoscale [J].Chem Soc Rev,2010,39:1096–1114
    [66]M. J. Jensen. Bubbles in microchannels [M]. Master Project, c960835. TechnicalUniversity of Denmark,2002.5
    [67]T. Young. An essay on the cohesion of fluids [J]. Philos Trans Roy Soc, London,1805,95:65-87
    [68]郑洽馀,鲁钟琪.流体力学[M].北京:机械工业出版社,1980.37-38
    [69]Capillary rise in tubes. http://web.mit.edu/nnf/education/wettability/gravity.html,2013
    [70]D. Myers. Surfaces, Interfaces, Colloids: Principles and Applications [M]. SecondEdition, John Wiley&Sons,1999.117-118
    [71]谢永军.曲面激光直接写入技术[D]:[博士学位论文].长春:中国科学院研究生院(长春光学精密机械与物理研究所),2003
    [72]W. R. Childs, R. G. Nuzzo. Decal transfer microlithography: A newsoft-lithographic patterning method [J]. J Am Chem Soc,2002,124:13583-13596
    [73]J. G. Kim, N. Takama, B. J. Kim, et al. Optical soft lithographic technology forpatterning on curved surfaces [J]. J Micromech Microeng,2009,19:1-8
    [74]H. C. Ko, M. P. Stoykovich, J. Song, et al. A hemispherical electronic eye camerabased on compressible silicon optoelectronics [J]. Nat,2008,454:748-753
    [75]K. H. Jeong, J. Kim, L. P. Lee. Biologically inspired artificial compound eyes [J].Sci,2006,312:557-561
    [76]W. R. Childs, R. G. Nuzzo. Patterning of thin-film microstructures on non-planarsubstrate surfaces using decal transfer lithography [J]. Adv Mater,2004,16:1323-1327
    [77]E. Yablonovitch. Photonic band-gap structures [J]. J Opt Soc Am B,1993,10:283-195
    [78]J. C. Knight. Photonic crystal fibres [J]. Nat,2003,424:847-851
    [79]P. Russell. Photonic crystal fibres [J]. Sci,2003,299:358-362
    [80]J. Limpert, T. Schreiber, S. Nolte, et al. High-power air-clad large-mode-areaphotonic crystal fiber laser [J]. Opt. Express,2003,11:818-823
    [81]D. Pezzetta, C. Sibilia, M. Bertolotti. Photonic-bandgap structures in planarnonlinear waveguides: application to second-harmonic generation [J]. J Opt Soc AmB,2001,18:1326-1333
    [82]W. Gwyn, R. Stulen, D. Sweeny, et al. Extreme ultraviolet lithography [J]. J VacSci Technol B,1998,16:3142-3149
    [83]R. Stulen, D. Sweeney. Extreme ultraviolet lithography [J]. IEEE J QuantumElectron,1999,35:694-699
    [84]D. P. Sanders. Advances in patterning materials for193nm immersionlithography [J]. Chem Rev,2010,110:321-360
    [85]吴玥.利用双层薄膜的去润湿制备微透镜以及双层薄膜反转去润湿的基础研究[D]:[硕士学位论文].长春:吉林大学材料科学与工程学院,2006
    [86]李伟.应用图案化表面去润湿现象构筑微观有序结构[D]:[博士学位论文].长春:吉林大学化学学院,2007
    [87]朱迪夫.通过多元方法构造功能性有序微结构阵列[D]:[博士学位论文].长春:吉林大学化学学院,2010
    [88]阎长江.溶剂诱导SBS聚合物薄膜去润湿机理的研究[D]:[硕士学位论文].哈尔滨:哈尔滨工业大学材料科学与工程学院,2010
    [89]I. Karapanagiotis, D. F. Evans, W. W. Gerberich. Dewetting dynamics of thinpolystyrene films from sputtered silicon and gold surfaces [J]. Colloids and SurfacesA: Physicochem Eng Aspects,2002,207:59-67
    [90]A. M. Higgins, R. A. L. Jones. Anisotropic spinodal dewetting as a route toself-assembly of patterned surfaces [J]. Nature,2000,404:476-477
    [91]J. Huang, F. Kim, A. R. Tao, et al. Spontaneous formation of nanoparticle stripepatterns through dewetting [J]. Nat Mater,2005,4:896-900
    [92]R. Van Hameren, P. Schon, A. M. van Buut, et al. Macroscopic Hierarchicalsurface patterning of porphyrin trimers via self-assembly and dewetting [J]. Science,2006,314:1433-1436
    [93]T. G. Stange, D. F. Evans, W. A. T. Hendrickson. Nucleation and growth ofdefects leading to dewetting of thin Polymer films [J]. Langmuir,1997,13:4459-4465
    [94]K. Jacobs, S. Herminghaus, and K. R. Mecke. Thin liquid polymer films rupturevia defects [J]. Langmuir,1998,14:965-969
    [95]L. Leger, J. F. Joanny. Liquid spreading [J]. Rep Prog Phys,1992,55:431-486
    [96]R. Xie, A. Karim, J. F. Douglas, et al. Spinodal dewetting of thin polymer films[J]. Phys Rev Lett,1998,81:1251-1254
    [97]G. Reiter, A. Sharma, A. Casoli, et al. Destabilising effect of long-range forces inthin liquid films on wettable substrates [J]. Enrophys Lett,1999,46:512-518
    [98]G. Reiter, A. Sharma, A. Casoli, et al. Thin film instability induced by long-rangeforces [J]. Langmuir,1999,15:2551-2558
    [99]J. Zhang, N. J. Fredin, D. M. Lynn. Apparent dewetting of ultrathin multilayeredpolyelectrolyte films incubated in aqueous environments [J]. Langmuir,2007,23:11603-11610
    [100] G. Reiter. Dewetting of thin polymer films [J]. Phys Rev Lett,1992,68:75-78
    [101] K. Y. Suh, H. H. Lee. Anistrtopic hole formation in thin polymer filmsconfined by walls [J]. Journal of chemical physics,2001,115:8204-8208
    [102] K. Y. Suh, J. Park, H. H. Lee. Controlled polymer dewetting by physicalconfinement [J]. Journal of chemical physics,2002,116:7714-7718
    [103] Park J, Suh K Y, Seo S M, et al. Anisotropic rupture of polymer strips drivenby Rayleigh instability [J]. J Chem Phys,2006,124:214710
    [104] K. Y. Suh. Capillarity-induced patterning of thin polymer films and relatedregular dewetting structures [J]. Israel Journal of Chemistry,2008,47:303-307
    [105] P. J. Yoo, K. Y. Suh, H. H. Lee. Short-and Long-range interactions in thinfilms of polymer blends in microchannels [J]. Macromolecules,2002,35:3205-3212
    [106] K. Y. Suh, P. J. Yoo, H. H. Lee. Meniscus formation and breakdown of thinpolymer films in microchannels [J]. Macromolecules,2002,35:4414-4418
    [107]郁道银,谈恒英.工程光学[M].北京:机械工业出版,1999.268-269
    [108]赵凯华,钟锡华.光学下册[M].北京:北京大学出版社,1984.18-21
    [109] R. S. Sokolova, A. V. Mikhaǐlov, G. A. Muranova, et al. Multispectralantireflection coating for the visible, near-IR, and IR regions [J]. Journal of OpticalTechnology,2005,72(10):784-786
    [110] Y. Kanamori, M. Ishimori, K. Hane. High efficient light-emitting diodes withantireflection subwavelength grating [J]. IEEE Photonics Technology Letters,2002,14:1064–1066
    [111] J. Y. Chen, K. W. Sun. Enhancement of the light conversion efficiency ofsilicon solar cells by using nanoimprint anti-reflection layer [J]. Solar EnergyMaterials&Solar Cells,2010,94:629-633
    [112] A. Gombert, B. Bl si, C. Bühler, et al. Some application cases and relatedmanufacturing techniques for optically functional microstructures on large areas [J].Optical Engineering,2004,43(11):2525-2533
    [113] S. A. Boden, D. M. Bagnall. Tunable reflection minima of nanostructuredantireflective surfaces [J]. Applied Physics Letters,2008,93:133108(1-3)
    [114] Y. M. Song, S. J. Jang, J. S. Yu, et al. Bioinspired parabola subwavelengthstructures for improved broadband antireflection [J]. Small,2010,6(9):984-987
    [115] Y. Li, J. Zhang, S. Zhu, et al. Biomimetic surfaces for high-performanceoptics [J]. Advanced Materials,2009,21:4731-4734
    [116] Z. Yu, H. Gao, W. Wu, et al. Fabrication of large area subwavelengthantireflection structures on Si using trilayer resist nanoimprint lithography and lift off[J]. Journal of Vacuum Science&Technology B,2003,21(6):2874-2877
    [117] Y. Kanamori, M. Sasaki, K. Hane. Broadband antireflection gratingsfabricated upon silicon substrates [J]. Optics letters,1999,24(20):1422-1424
    [118] S. Wang, X. Yu, H. Fan. Simple lithographic approach for subwavelengthstructure antireflection [J]. Applied Physics Letters,2007,91:031105(1-3)
    [119] D. Raguin, G. M. Morris. Antireflection structured surfaces for the infracedspectral region [J]. Applied Optics,1993,32(7):1154-1167
    [120] D. Raguin, G. M. Morris. Analysis of antireflection-structured surfaces withcontinuous one-dimensional surface profiles [J]. Applied Optics,1993,32(14):2582-2598
    [121]张殿文.亚波长衍射光学元件增透特性的研究[D]:[硕士学位论文].长春:中国科学院研究生院(长春光学精密机械与物理研究所),2002
    [122] C. G.. Bernhard. Structural and functional adaption in a visual system [J].Endeavour,1967,26:79-84
    [123] Y. Li, J. Zhang, B. Yang. Antireflective surfaces based on biomimeticnanopillared arrays [J]. Nano Today,2010,5:117-127
    [124] C. Sun, P. Jiang, B. Jiang. Broadband moth-eye antireflection coatings onsilicon [J]. Applied physics letters,2008,92:061112(1-3)
    [125] H. Chen, S. Chuang, C. Lin, et al. Using colloidal lithography to fabricateand optimize sub-wavelength pyramidal and honeycomb structures in solar cells [J].2007,15(22):14793-14803
    [126] T. Nakanishi, T. Hiraoka, A. Fujimoto, et al. Nano-patterning using anembedded particle monolayer as an etch mask [J]. Microelectronic Engineering,2006,83:1503-1508
    [127] D. Zhang, W. Yu, D. Hao, et al. Functional nanostructured surfaces in hybridsol-gel glass in large area for antireflective and super-hydrophobic purposes [J].Journal of Materials Chemistry,2012,22:17328-17331
    [128] W. Yu, X. Yuan. UV induced controllable volume growth in hybrid sol-gelglass for fabrication of a refractive microlens by use of a grayscale mask [J]. OpticsExpress,2003,11(18):2253-2258
    [129] W. Yu, X. Yuan. Patternabled hybrid sol-gel material cuts the cost offabrication of microoptical elements for photonics applications [J]. Journal ofMaterials Chemistry,2004,14(5):821-823
    [130] P. yr s, J. T. Rantala, S. Honkanen, et al. Diffraction grating in sol-gel filmsby direct contact printing using a UV-mercury lamp [J]. Optics Communication,1999,162(4-6):215-218
    [131] S. Pelissier, D. Blanc, M. P. Aanrews, et al. Single-step UV recording ofsinusoidal surface gratings in hybrid sol-gel glasses [J]. Applied Optics,1999,38(32):6744-6748
    [132] F. Zhao, Y. Xie, S. He, et al. Single step fabrication of microlens arrays withhybrid HfO2-SiO2sol-gel glass on conventional lens surface [J]. Optics Express,2005,13(15):5846-5852
    [133]彭新玲,赵高扬.感光溶胶-凝胶法制备光波导研究[J].光子学报,2008,37(6):1198-1112
    [134] C. W. Hirt, D. B. Nichols. Volume of fluid method for the dynamics of freeboundaries [J]. Journal of Computational Physics,1981,39:201-225
    [135] M. R. Davidson, M. Rudman. Volume of fluid calculation of heat or masstransfer across deforming interfaces in two-fluid flow [J]. Numerical Heat TransferPart B: Fundamentals,2002,41(3-4):291-308
    [136]黄筱云.自由表面追踪方法理论研究及数值模拟[D]:[硕士学位论文].天津:天津大学建工学院,2005
    [137]张宝岭.AMTEC多级毛细泵数值模拟研究[D]:[硕士学位论文].哈尔滨:哈尔滨工程大学动力与能源工程学院,2010
    [138] Mems Module User’s Guide. Comsol AB.2008, Version3.5:30-42,348-367
    [139] D. Jacqmin. Calculation of two-phase Navier-Stokes flows using Phase-Fieldmodeling [J]. Journal of computational physics,1999,155:96-127
    [140] Mems Module Model Library. Comsol AB.2008, Version3.5:392-412