软骨修复用水凝胶的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在软骨修复中,支架为细胞和组织生长提供适宜的环境。水凝胶的结构和天然软骨的细胞外基质相似,并可通过微创注射等方法来实现组织修复,因此是用于软骨修复和再生的一类非常重要的材料。我们利用光引发聚合的方法制备了可注射型水凝胶并在水凝胶中引入微载体、生物大分子、生长因子等,研究了水凝胶的结构与性能。针对软骨组织的特点,进一步设计了仿生化的水凝胶。这些工作对软骨的修复与再生用水凝胶支架的设计和制备有重要意义。
     在本课题组以前的工作基础上,水溶性可交联聚合的壳聚糖(CML)通过在壳聚糖上依次接枝甲基丙烯酸(MA)和乳酸(LA)制得。光引发剂(Irgacure2959)在特定波长(365 nm)的紫外光作用下引发CML在水溶液中聚合,制备了可注射型壳聚糖水凝胶。水凝胶的凝胶时间从分钟到几十分钟,且当引发剂浓度低于0.05%时,对凝胶时间影响较大,因此用0.05%引发剂来制备水凝胶。干态的水凝胶吸收水分后可以溶胀到原重量几十到一百多倍。当交联密度较高、pH较高、溶液中有二价阴离子时,水凝胶的平衡溶胀比较低。水凝胶的粘弹性测试表明水凝胶的储能模量在0.8-7 kPa,损耗模量在10-100 Pa。交联密度较高的水凝胶,储能模量和损耗模量也相对较高,在含溶菌酶的PBS中降解相对较慢。体外软骨细胞的培养表明由Irgacure2959引发形成的水凝胶的细胞毒性小于由过硫酸铵/四甲基乙二胺(APS/TEMED)引发形成的水凝胶的细胞毒性。
     为了促进水凝胶中软骨细胞的生长,将明胶引入CML水凝胶中,用光聚合的方法制备了含明胶的CML水凝胶。以明胶分子为模板研究了生物大分子在CML水凝胶中的释放行为。随着明胶的交联程度增大、含量增加,水溶液的pH增大,从CML水凝胶中释放出的明胶相对含量减少。在20℃下从CML水凝胶中释放出的明胶相对含量比37℃下少。另外,溶液中的离子和氨基酸等也会影响明胶的释放。明胶的包埋也会影响CML水凝胶的结构与性能。如随着明胶含量的增大,水凝胶的网孔尺寸变小,平衡溶胀比降低,对水凝胶的粘弹性和水凝胶的降解性能也有一定的影响。体外软骨细胞培养发现CML水凝胶中的明胶一定程度上可以促进软骨细胞的生长和细胞外基质的分泌;随着培养时间的延长,软骨细胞在CML水凝胶中逐渐向下迁移。
     通过MA的接枝成功地合成了可共价交联的明胶(GM),并通过光引发聚合的方法制备了可注射型明胶水凝胶。明胶接枝MA后分子量分布变宽,zeta电位升高。光照20 min后,固体核磁的结果显示GM化学凝胶中不存在未反应的双键。通过差示扫描量(?)仪(DSC)表征了明胶接枝前后的物理溶胶-凝胶转变点,MA的接枝、聚合物浓度等会影响其熔融温度和熔融焓。圆二色谱(CD)证实了明胶中存在三螺旋结构,改性后三螺旋结构的含量减少。随着聚合物浓度增加,水凝胶的凝胶时间缩短、平衡溶胀比降低、储能模量和损耗模量增加、平均网孔尺寸减小。我们还将TGF-β1包埋在明胶水凝胶中,研究了软骨细胞在水凝胶中的生长。体外软骨细胞的培养表明GM水凝胶可以支持软骨细胞生长和保持软骨细胞的表型;TGF-β1能促进软骨细胞生长并保持软骨细胞的表型。
     结合可注射型水凝胶支架和可注射型微载体支架两者的优点,我们将GM固定在聚乳酸/乙醇酸(PLGA)粒子表面。然后把改性后的粒子分散在CML的溶液中,在Irgacure2959的引发下,PLGA粒子表面的双键和CML的双键一起聚合,形成复合的可注射型水凝胶支架。这种复合型水凝胶支架具有更好的力学性能和生物活性,有着更广泛的应用前景。
     最后,针对软骨组织的特点,利用点击化学制备了透明质酸/明胶/硫酸软骨素的仿生水凝胶。首先合成了含有叠氮基团的透明质酸(HA-AA)、硫酸软骨素(CS-AA)和含有炔基的明胶(G-PA)。在Cu(I)催化下,叠氮基团和炔基反应使含HA-AA、CS-AA、G-PA的水溶液凝胶化。水溶液的凝胶时间随氯化亚铜的浓度的增加而缩短,直到1 mg/mL。水凝胶在PBS中的溶胀比为18.8±2.4,比单纯的明胶水凝胶的平衡溶胀比大。动态粘弹性的结果显示了水凝胶为弹性体。水凝胶在PBS中4周的失重为50%左右。两周内大约有20%的明胶和10%的CS从水凝胶中释放出来。原子力显微镜显示了水凝胶表面较为平整。体外软骨细胞的培养表明软骨细胞可以在水凝胶表面生长,并保持软骨细胞的表型。
In cartilage regeneration, scaffolds can provide suitable environment for cellgrowth and tissue formation. Hydrogel is a kind of hydrated polymer networks, whichmimics the native extracellular matrix (ECM) of cartilage. The hydrogel can betransplanted into damaged site to realize tissue repair through injection in a minimallyinvasive way. Therefore, the hydrogel is a kind of very important materials incartilage repair and regeneration. In this dissertation, injectable hydrogels wereprepared by photoinitiating polymerization, into which microcarriers,biomacromolecules and growth factors were introduced. The structure and propertiesof the hydrogels were studied. A biomimic hydrogel was designed at last. Theseworks had great significance in designing ideal biomaterials for cartilage repair andregeneration.
     Based on the previous research work in our laboratory, water-soluble andcrosslinkable chitosan was synthesized by sequentially grafting of methacrylic acid(MA) and lactic acid (LA). Irradiated by 365 nm UV light, Photoinitiator(Irgacure2959) was used to initiate CML polymerization in water solution and therebyobtain chitosan hydrogel. The gelation time was controlled from several minutes totens minutes. When the photoinitiator concentration was lower than 0.05%, thegelation time was longer and influenced greatly by the photoinitiator concentration.Therefore, in this work, the hydrogel was obtained using 0.05%photoinitiator. Thedry hydrogels could adsorb water by a factor of tens to hundred. The swelling ratiowas smaller at larger crosslinking density, higher pH value, and in salt solutions,especially in Na_2SO_4 and Na_2HPO_4 solution. Rheological measurement recorded thestorage modulus and loss modulus of 0.8-7 kPa and 10-100 Pa, respectively. With ahigher degree of MA substitution, the resultant hydrogel had a larger modulus anddegraded slowly too. In vitro chondrocyte culture showed that the cytotoxicity of thehydrogel made by Irgacure2959 was much smaller than that of the hydrogel made byammonium persulfate (APS)/ N,N,N',N'-tetramethylethylenediamine (TEMED).
     In order to promote the chondrocytes growth in hydrogel, gelatin was introducedinto the CML hydrogel. The release behaviors of gelatin as a biomacromoleculartemplate in CML hydrogel were studied. The released gelatin ratio was smaller at alarger crosslinking extent of gelatin, original gelatin content in hydrogel and higherpH value. The released gelatin ratio was smaller at 20℃than that at 37℃. Moreover,the released gelatin ratio was influenced by ions and amino acids in solution. Thestructure and properties of the CML hydrogel were also influenced by the embeddedgelatin. When the embedded gelatin increased, mesh size of the hydrogel was smallerand swelling ratio of the hydrogel decreased. The rheological properties anddegradation properties were also influenced by the embedded gelatin. In vitrochondrocyte culture showed that the gelatin containing hydrogel could promotechondrocyte growth and secrete ECM. Chondrocytes in the CML hydrogel couldmove downward along with the culture time.
     We modified gelatin with MA and obtained crosslinkable gelatin (GM), whichwas used to form injectable gelatin hydrogel by photoinitiating polymerization. Thepolydispersity of molecular weight broadened and zeta potential increased too aftermodification with MA. There were no double carbon bonds in hydrrogel detected byhydrogen spectrum of high resolution magic angle spinning nuclear magneticresonance (~1H HR-MAS NMR) after irradiation for 20 min. The sol-gel transitionpoint of gelatin before and after modification was characterized by differentialscanning calorimeter (DSC), revealing that it is influenced by MA modification andpolymer concentration. Triple helix structure existed in the gelatin gel and wasconfirmed by circular dichroism (CD), whose content decreased after modification.With polymer concentration increasing, the gelation time decreased, swelling ratiodecreased, storage modulus and loss modulus increased and mesh size decreased.Transform growth factor-β1 (TGF-β1) also combined into the GM hydrogel topromote the chondrocyte growth. In vitro chondrocyte culture showed that the GMhydrogel both with and without TGF-β1 could support the chondrocyte growth andmaintain the chondrocyte phenotype. TGF-β1 could promote chondrocyte growth andmaintaining chondrocytic phenotype.
     Combination of advantages of the injectable hydrogels and the injectablemicrocarriers, a composite hydrogel was prepared. First, the surface of poly(lactic-co-glycolic acid) (PLGA) microparticles were modified with GM. Themodified particles were then dispersed in CML solution. Under UV irradiation,particles were polymerized with CML to obtain a composite hydrogel, which showedbetter mechanical property and cytoviability than that of the CML hydrogel. Asinjectable materials, the composite hydrogel might have wider potential applications.
     At last, hyaluronic acid (HA)/gelatin/chondroitin sulfate hydrogel was formed byclick chemistry to mimic the compositions of natural cartilage matrix. HA and CSwere modified with 11-azido-3,6,9-trioxaundecan-1-amine (AA), which contain -N_3group. Gelatin was modified by propargylamine (PA), which contain acetylene group.Catalyzed by Cu (Ⅰ), -N_3 group was reacted with acetylene group to obtain thehydrogel. As Cu (Ⅰ) concentration increasing, the gelation time was shortened until1 mg/mL. The swelling ratio of this hydrogel was 18.8±2.4, larger than that of thegelatin hydrogel. The rheological result showed that this hydrogel was elastomeric.The weight loss of this hydrogel in 4 weeks reached to 50%. About 20%gelatin and10%CS was released from this hydrogel in 2 weeks. The surface of hydrogel filmwas smooth characterized by atomic force microscopy (AFM). In vitro chondrocyteculture showed that the chondrocytes could grow on the surface of the hydrogel andmaintain its phenotype.
引文
1.王正国,再生医学研究进展.中华创作骨科杂志 2006,8,1-3.
    2. Langer, R.; Vacanti, J. P., Tissue engineering. Science 1993, 260, (5110), 920-6.
    3. Wolter, J. R.; Meyer, R. F., Sessile macrophages forming clear endothelium-like membrane on inside of successful keratoprosthesis. Trans Am Ophthalmol Soc 1984, 82, 187-202.
    4.龚逸鸿,浙江大学博士学位论文.2006.
    5. Cima, L. G.; Vacanti, J. P.; Vacanti, C.; Ingber, D.; Mooney, D.; Langer, R., Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech Eng 1991, 113, (2), 143-51.
    6. Jauregui, H. O.; Gann, K. L., Mammalian hepatocytes as a foundation for treatment in human liver failure. J Cell Biochem 1991, 45, (4), 359-65.
    7. Chung, C.; Burdick, J. A., Engineering cartilage tissue. Adv Drug Deliv Rev 2008, 60, (2), 243-62.
    8.杨志明,组织工程基础与临床.四川科学技术出版社 2000,93-100.
    9. Elisseeff, J., Injectable cartilage tissue engineering. Expert Opin Biol Ther 2004, 4, (12), 1849-59.
    10. Kim, W. S.; Vacanti, J. P.; Cima, L.; Mooney, D.; Upton, J.; Puelacher, W. C.; Vacanti, C. A., Cartilage engineered in predetermined shapes employing cell transplantation on synthetic biodegradable polymers. Plast Reconstr Surg 1994, 94, (2), 233-7; discussion 238-40.
    11. Freed, L. E.; Marquis, J. C.; Nohria, A.; Emmanual, J.; Mikos, A. G.; Langer, R., Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res 1993, 27, (1), 11-23.
    12. Vacanti, C. A.; Langer, R.; Schloo, B.; Vacanti, J. P., Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast Reconstr Surg 1991, 88, (5), 753-9.
    13. Cao, Y.; Vacanti, J. P.; Paige, K. T.; Upton, J.; Vacanti, C. A., Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg 1997, 100, (2), 297-302; discussion 303-4.
    
    14. Bonzani, I. C.; George, J. H.; Stevens, M. M., Novel materials for bone and cartilage regeneration. Curr Opin Chem Biol 2006,10, (6), 568-75.
    
    15. Guilak, F.; Butler, D. L.; Goldstein, S. A., Functional tissue engineering: the role of biomechanics in articular cartilage repair. Clin Orthop Relat Res 2001, (391 Suppl),S295-305.
    
    16. Goessler, U. R.; Bugert, P.; Bieback, K.; Baisch, A.; Sadick, H.; Verse, T.; Kluter,H.; Hormann, K.; Riedel, F., Expression of collagen and fiber-associated proteins in human septal cartilage during in vitro dedifferentiation. Int J Mol Med 2004, 14, (6),1015-22.
    
    17. Goessler, U. R.; Bugert, P.; Bieback, K.; Sadick, H.; Baisch, A.; Hormann, K.;Riedel, F., In vitro analysis of differential expression of collagens, integrins, and growth factors in cultured human chondrocytes. Otolaryngol Head Neck Surg 2006,134,(3), 510-5.
    
    18. Goessler, U. R.; Bieback, K.; Bugert, P.; Heller, T.; Sadick, H.; Hormann, K.;Riedel, F., In vitro analysis of integrin expression during chondrogenic differentiation of mesenchymal stem cells and chondrocytes upon dedifferentiation in cell culture. Int J Mol Med 2006,17, (2), 301-7.
    
    19. Goessler, U. R.; Bieback, K.; Bugert, P.; Nairn, R.; Schafer, C.; Sadick, H.;Hormann, K.; Riedel, F., Human chondrocytes differentially express matrix modulators during in vitro expansion for tissue engineering. Int J Mol Med 2005, 16,(4), 509-15.
    
    20. Schulze-Tanzil, G; Mobasheri, A.; de Souza, P.; John, T.; Shakibaei, M., Loss of chondrogenic potential in dedifferentiated chondrocytes correlates with deficient Shc-Erk interaction and apoptosis. Osteoarthritis Cartilage 2004,12, (6), 448-58.
    
    21. Gan, L.; Kandel, R. A., In vitro cartilage tissue formation by Co-culture of primary and passaged chondrocytes. Tissue Eng 2007,13, (4), 831-42.
    
    22. Buschmann, M. D.; Gluzband, Y. A.; Grodzinsky, A. J.; Kimura, J. H.; Hunziker, E. B., Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix.J Orthop Res 1992,10, (6), 745-58.
    
    23. Homicz. M. R.: Chia, S. H.; Schumacher, B. L.; Masuda, K.; Thonar, E. J.; Sah, R.L.; Watson. D.. Human septal chondrocyte redifferentiation in alginate, polyglycolic acid scaffold, and monolayer culture. Laryngoscope 2003,113, (1), 25-32.
    
    24. Lin, Z.; Willers. C.; Xu, J.; Zheng, M. H., The chondrocyte: biology and clinical application. Tissue Eng 2006,12, (7), 1971-84.
    
    25. An, Y. H.; Webb, D.; Gutowska, A.; Mironov, V. A.; Friedman, R. J., Regaining chondrocyte phenotype in thermosensitive gel culture. Anat Rec 2001, 263, (4),336-41.
    
    26. Van Osch, G. J.; Mandl, E. W; Jahr, H.; Koevoet, W; Nolst-Trenite, G.; Verhaar, J.A., Considerations on the use of ear chondrocytes as donor chondrocytes for cartilage tissue engineering. Biorheology 2004,41, (3-4), 411-21.
    
    27. Panossian, A.; Ashiku, S.; Kirchhoff, C. H.; Randolph, M. A.; Yaremchuk, M. J.,Effects of cell concentration and growth period on articular and ear chondrocyte transplants for tissue engineering. Plast Reconstr Surg 2001,108, (2), 392-402.
    
    28. Kafienah, W; Jakob, M.; Demarteau, O.; Frazer, A.; Barker, M. D.; Martin, I.;Hollander, A. P., Three-dimensional tissue engineering of hyaline cartilage:comparison of adult nasal and articular chondrocytes. Tissue Eng 2002, 8, (5), 817-26.
    
    29. Hicks, D. L.; Sage, A. B.; Schumacher, B. L.; Sah, R. L.; Watson, D., Growth and phenotype of low-density nasal septal chondrocyte monolayers. Otolaryngol Head Neck Surg 2005,133, (3), 417-22.
    
    30. Tay, A. G.; Farhadi, J.; Suetterlin, R.; Pierer, G.; Heberer, M.; Martin, I., Cell yield,proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes. Tissue Eng 2004,10, (5-6), 762-70.
    
    31. Yan, H.; Yu, C., Repair of full-thickness cartilage defects with cells of different origin in a rabbit model. Arthroscopy 2007,23, (2), 178-87.
    
    32. French, M. M.; Rose, S.; Canseco, J.; Athanasiou, K. A., Chondrogenic differentiation of adult dermal fibroblasts. Ann Biomed Eng 2004,32, (1), 50-6.
    
    33. Johnstone, B.; Hering, T. M.; Caplan, A. I.; Goldberg, V. M.; Yoo, J. U., In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 1998, 238, (1), 265-72.
    34. Coleman, R. M.; Case, N. D.; Guldberg, R. E., Hydrogel effects on bone marrow stromal cell response to chondrogenic growth factors. Biomaterials 2007, 28, (12), 2077-86.
    35. Williams, C. G.; Kim, T. K.; Taboas, A.; Malik, A.; Manson, P.; Elisseeff, J., In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng 2003, 9, (4), 679-88.
    36. Wang, Y.; Kim, U. J.; Blasioli, D. J.; Kim, H. J.; Kaplan, D. L., In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 2005, 26, (34), 7082-94.
    37. Zuk, P. A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J. W.; Katz, A. J.; Benhaim, P.; Lorenz, H. P.; Hedrick, M. H., Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001, 7, (2), 211-28.
    38. Nawata, M.; Wakitani, S.; Nakaya, H.; Tanigami, A.; Seki, T.; Nakamura, Y.; Saito, N.; Sano, K.; Hidaka, E.; Takaoka, K., Use of bone morphogenetic protein 2 and diffusion chambers to engineer cartilage tissue for the repair of defects in articular cartilage. Arthritis Rheum 2005, 52, (1), 155-63.
    39. Park, Y.; Sugimoto, M.; Watrin, A.; Chiquet, M.; Hunziker, E. B., BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel. Osteoarthritis Cartilage 2005, 13, (6), 527-36.
    40. Fukumoto, T.; Sperling, J. W.; Sanyal, A.; Fitzsimmons, J. S.; Reinholz, G. G.; Conover, C. A.; O'Driscoll, S. W., Combined effects of insulin-like growth factor-1 and transforming growth factor-betal on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthritis Cartilage 2003, 11, (1), 55-64.
    41.高长有,胡.,管建均,沈家骢,淬冷速率对聚氨酯多孔膜形态结构的影响.材料研究学报 2002,16,(1),77-82.
    42.高长有,胡小红,管建均,李安,沈家骢,热致相分离技术制备聚氨酯多孔 膜的条件控制.高分子学报 2001,19,(3),351-356.
    43. Gao Changyou, L. A., Yi Xiaoshu. Shen Jiachong, Construction of cell-compatible layer and culture of human umbilical vascular endothelial cells on porous polystyrene membranes. Journal of Applied Polymer Science 2001, 81, 3523-3529.
    44. Gong Yihong, M. Z., Gao Changyou, Wang Wei, Shen Jiacong, Specially elaborated thermally induced phase separation to fabricate poly(L-lactic acid) scaffolds with ultra large pores and good interconnectivity. J Appl Polym Sci 2006, 101, 3336-3342.
    45. Tan, H.; Gong, Y.; Lao, L.; Mao, Z.; Gao, C., Gelatin/chitosan/hyaluronan ternary complex scaffold containing basic fibroblast growth factor for cartilage tissue engineering. J Mater Sci Mater Med 2007, 18, (10), 1961-8.
    46.谈华平,浙江大学博士论文.2007.
    47. Mikos AG, T. A., et al, Preparation and characterization of poly(L-lactic acid) foams. Polymer 1994, 35, 1068-1077.
    48. Chen, G.; Ushida, T.; Tateishi, T., Preparation of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams by use of ice microparticulates. Biomaterials 2001, 22, (18), 2563-7.
    49. Ma, Z.; Gao, C.; Gong, Y.; Shen, J., Cartilage tissue engineering PLLA scaffoldwith surface immobilized collagen and basic fibroblast growth factor. Biomaterials2005, 26, (11), 1253-9.
    50.周庆亮,浙江大学硕士学位论文.2005.
    51. Zhou QY, G. Y., Gao CY., Microstructure and mechanical properties of poly(L-lactide) scaffolds fabricated by gelatin particle leaching method. J Appl Polym Sci 2005, 98, 1373-1379.
    52. Yoshimoto, H.; Shin, Y. M.; Terai, H.; Vacanti, J. P., A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003, 24, (12), 2077-82.
    53. Li, W. J.; Danielson, K. G.; Alexander, P. G.; Tuan, R. S., Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J Biomed Mater Res A 2003,67, (4), 1105-14.
    
    54. Shin, H. J.; Lee, C. H.: Cho. I. H.; Kim, Y. J.; Lee, Y. J.; Kim, I. A.; Park, K. D.;Yui, N.; Shin, J. W.. Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J Biomater Sci PolymEd 2006,17, (1-2), 103-19.
    
    55. Hsu, S. H.; Chang. S. H.: Yen, H. J.; Whu, S. W.; Tsai, C. L.; Chen, D. C.,Evaluation of biodegradable polyesters modified by type II collagen and Arg-Gly-Asp as tissue engineering scaffolding materials for cartilage regeneration. Artif Organs 2006,30,(1), 42-55.
    
    56. Uematsu, K.; Hattori, K.; Ishimoto, Y.; Yamauchi, J.; Habata, T.; Takakura, Y.;Ohgushi, H.; Fukuchi, T.; Sato, M., Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials 2005,26, (20), 4273-9.
    
    57. Hollander, D. A.; von Walter, M.; Wirtz, T.; Sellei, R.; Schmidt-Rohlfing, B.; Paar,O.; Erli, H. J., Structural, mechanical and in vitro characterization of individually structured Ti-6A1-4V produced by direct laser forming. Biomaterials 2006, 27, (7),955-63.
    
    58. Stevens, M. M.; George, J. H., Exploring and engineering the cell surface interface. Science 2005, 310, (5751), 1135-8.
    
    59. Hoffman, A. S., Hydrogels for biomedical applications. Adv Drug Deliv Rev 2002,54,(1), 3-12.
    
    60. Awad, H. A.; Wickham, M. Q.; Leddy, H. A.; Gimble, J. M.; Guilak, F.,Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate,and gelatin scaffolds. Biomaterials 2004,25, (16), 3211-22.
    
    61. Lee, D. A.; Bader, D. L., Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J Orthop Res 1997, 15,(2), 181-8.
    
    62. Peppas, N. A.; Benner, R. E., Jr., Proposed method of intracordal injection and gelation of poly (vinyl alcohol) solution in vocal cords: polymer considerations.Biomaterials 1980, 1, (3), 158-62.
    63. Kuijpers, A. J.; van Wachem, P. B.; van Luyn, M. J.; Engbers, G. H.; Krijgsveld,J.; Zaat, S. A.; Dankert, J.; Feijen, J., In vivo and in vitro release of lysozyme from cross-linked gelatin hydrogels: a model system for the delivery of antibacterial proteins from prosthetic heart valves. J Control Release 2000,67, (2-3), 323-36.
    
    64. Hiemstra, C.; Aa, L. J.; Zhong, Z.; Dijkstra, P. J.; Feijen, J., Rapidly in situ-forming degradable hydrogels from dextran thiols through Michael addition.Biomacromolecules 2007,8, (5), 1548-56.
    
    65. Berger, J.; Reist, M.; Mayer, J. M.; Felt, O.; Peppas, N. A.; Gurny, R., Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 2004, 57, (1), 19-34.
    
    66. Hong, Y.; Mao, Z.; Wang, H.; Gao, C.; Shen, J., Covalently crosslinked chitosan hydrogel formed at neutral pH and body temperature. J Biomed Mater Res A 2006, 79,(4), 913-22.
    
    67. Hong, Y.; Song, H.; Gong, Y.; Mao, Z.; Gao, C.; Shen, J., Covalently crosslinked chitosan hydrogel: properties of in vitro degradation and chondrocyte encapsulation.Acta Biomater 2007,3, (1), 23-31.
    
    68.洪奕,浙江大学博士学位论文.2006.
    
    69. Crescenzi, V.; Cornelio, L.; Di Meo, C.; Nardecchia, S.; Lamanna, R., Novel hydrogels via click chemistry: synthesis and potential biomedical applications.Biomacromolecules 2007,8, (6), 1844-50.
    
    70. Hilborn, D. A. O. a. J., Poly(vinyl alcohol)-Based Hydrogels Formed by "Click Chemistry". Macromolecules,, 2006,39, 1709-1718.
    
    71. Himabindu Nandivada, X. J., Joerg Lahann, Click Chemistry: Versatility and Control in the Hands of Materials Scientists. Advanced Materials 2007, 2007, (19),2197-2208.
    
    72. Zhao, H.; Ma, L.; Zhou, J.; Mao, Z.; Gao, C.; Shen, J., Fabrication and physical and biological properties of fibrin gel derived from human plasma. Biomed Mater 2008,3, (1), 15001.
    
    73. Schense, J. C.; Hubbell, J. A., Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa. Bioconjug Chem 1999,10, (1), 75-81.
    74. Eyrich, D.; Brandl, F.; Appel, B.; Wiese, H.; Maier, G,; Wenzel, M.; Staudenmaier,R.; Goepferich, A.; Blunk, T., Long-term stable fibrin gels for cartilage engineering.Biomaterials 2007,28, (1), 55-65.
    
    75. Yasushi Okumura, K. I., The Polyrotaxane Gel: ATopological Gel by Figure-of-Eight Cross-links. Advanced Materials 2001,13.485-487.
    
    76. Gong J P, K. Y., Osada Y, Kurokawa T., Double-Network Hydrogels with Extremely High Mechanical Strength. Advanced Materials 2003,15,1155-1158.
    
    77. Yang-Ho Na, T. K., Yoshinori Katsuyama, Hiroyuki Tsukeshiba, Jian Ping Gong,Yoshihito Osada, Satoshi Okabe, Takeshi Karino, Mitsuhiro Shibayama, Structural Characteristics of Double Network Gels with Extremely High Mechanical Strength.Macromolecules 2004, 39, 5370-5374.
    
    78. Nakayama A, K. A., Gong J P, Osada Y, Takai M, Erata T, Kawano S, High Mechanical Stength Double-Network Hydrogel with Bacterial Cellulose. Advanced Functional Materials 2004,14,1124-1128.
    
    79. Yasuda, K.; Ping Gong, J.; Katsuyama, Y; Nakayama, A.; Tanabe, Y.; Kondo, E.;Ueno, M.; Osada, Y, Biomechanical properties of high-toughness double network hydrogels. Biomaterials 2005,26, (21), 4468-75.
    
    80. Haraguchi K, T. T., Nanocomposite Hydrogel: A Unique Organic-Inorganic Network Structure with Extraordinary Mechanical,Optical and Swelling/Deswelling Properties. Advanced Materials 2002,14, 1120-1124.
    
    81. Ting Huang, H. X., Kexin Jiao, Liping Zhu, Hugh R. Brown, Huiliang Wang, A Novel Hydrogel with High Mechanical Strength: A Macromolecular Microsphere Composite Hydrogel. Advanced Materials 2006,19, 1622-1626.
    
    82. Dusek K, P. D., Transition in swollen polymer networks induced by intramolecular condensation. Journal of Polymer Science 1968, 6A, 1209-1216.
    
    83. T, T., Collapse of gels and the critical endpoint. Physical Review Letters 1978, 40,820-823.
    
    84. Petka, W. A.; Harden, J. L.; McGrath, K. P.; Wirtz, D.; Tirrell, D. A., Reversible hydrogels from self-assembling artificial proteins. Science 1998,281, (5375), 389-92.
    
    85. Miyata, T.; Asami, N.; Uragami, T., A reversibly antigen-responsive hydrogel. Nature 1999, 399, (6738), 766-9.
    
    86. Nowak, A. P.; Breedveld, V.; Pakstis, L.; Ozbas, B.; Pine, D. J.; Pochan, D.;Deming, T. J., Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 2002,417, (6887), 424-8.
    
    87. Ehrick, J. D.; Deo, S. K.; Browning, T. W.; Bachas, L. G.; Madou, M. J.; Daunert,S., Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics. Nat Mater 2005,4, (4), 298-302.
    
    88. Yang, J.; Xu, C.; Wang, C.; Kopecek, J., Refolding hydrogels self-assembled from N-(2-hydroxypropyl)methacrylamide graft copolymers by antiparallel coiled-coil formation. Biomacromolecules 2006,7, (4), 1187-95.
    
    89. Holmes, T. C.; de Lacalle, S.; Su, X.; Liu, G.; Rich, A.; Zhang, S., Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds.Proc Natl Acad Sci USA 2000,97, (12), 6728-33.
    
    90. Kisiday, J.; Jin, M.; Kurz, B.; Hung, H.; Semino, C.; Zhang, S.; Grodzinsky, A. J.,Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A 2002, 99, (15), 9996-10001.
    
    91. Zhang, S.; Holmes, T. C.; DiPersio, C. M.; Hynes, R. O.; Su, X.; Rich, A.,Self-complementary oligopeptide matrices support mammalian cell attachment.Biomaterials 1995,16, (18), 1385-93.
    
    92. Zhang, S.; Holmes, T.; Lockshin, C.; Rich, A., Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A 1993,90, (8), 3334-8.
    
    93. Sieminski, A. L.; Semino, C. E.; Gong, H.; Kamm, R. D., Primary sequence of ionic self-assembling peptide gels affects endothelial cell adhesion and capillary morphogenesis. J Biomed Mater Res A 2008, 87, (2), 494-504.
    
    94. Hartgerink, J. D.; Beniash, E.; Stupp, S. I., Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci U S A,4 2002,99,(8), 5133-8.
    
    95. Hartgerink, J. D.; Beniash, E.; Stupp, S. I., Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001,294. (5547), 1684-8.
    
    96. Paramonov, S. E.; Jun, H. W.; Hartgerink, J. D., Modulation of peptide-amphiphile nanofibers via phospholipid inclusions. Biomacromolecules 2006,7,(1), 24-6.
    
    97. Dong, H.; Paramonov, S. E.; Aulisa, L.: Bakota, E. L.; Hartgerink, J. D.,Self-assembly of multidomain peptides: balancing molecular frustration controls conformation and nanostructure. J Am Chem Soc 2007,129, (41), 12468-72.
    
    98. Murakami, Y.; Maeda, M., DNA-responsive hydrogels that can shrink or swell.Biomacromolecules 2005,6, (6), 2927-9.
    
    99. Chang Kee Lee, S. R. S., Sun Hee Lee, Ju-Hong Jeon, Insuk So, Tong Mook Kang, Sun I. Kim, Ji Young Mun, Sung-Sik Han, Geoffrey M. Spinks, Gordon G.Wallace, Seon Jeong Kim, DNA Hydrogel Fiber with Self-Entanglement Prepared by Using an Ionic Liquid Angewandte Chemie International Edition 2008, 47, (13),2470-2474.
    
    100. Senuma, Y.; Franceschin, S.; Hilborn, J. G.; Tissieres, P.; Bisson, I.; Frey, P.,Bioresorbable microspheres by spinning disk atomization as injectable cell carrier:from preparation to in vitro evaluation. Biomaterials 2000,21,(11), 1135-44.
    
    101. Chen, R.; Curran, S. J.; Curran, J. M.; Hunt, J. A., The use of poly(1-lactide) and RGD modified microspheres as cell carriers in a flow intermittency bioreactor for tissue engineering cartilage. Biomaterials 2006,27, (25), 4453-60.
    
    102. Mercier, N. R.; Costantino, H. R.; Tracy, M. A.; Bonassar, L. J., A novel injectable approach for cartilage formation in vivo using PLG microspheres. Ann Biomed Eng 2004, 32, (3), 418-29.
    
    103. Choi, Y. S.; Park, S. N.; Suh, H., Adipose tissue engineering using mesenchymal stem cells attached to injectable PLGA spheres. Biomaterials 2005, 26, (29), 5855-63.
    
    104. Hong, Y.; Gao, C.; Xie, Y.; Gong, Y.; Shen, J., Collagen-coated polylactide microspheres as chondrocyte microcarriers. Biomaterials 2005, 26, (32), 6305-13.
    
    105. Qiu, Q. Q.; Ducheyne, P.; Ayyaswamy, P. S., New bioactive, degradable composite microspheres as tissue engineering substrates. J Biomed Mater Res 2000,52, (1), 66-76.
    106. Hsu, F. Y.; Chueh, S. C.; Wang, Y. J., Microspheres of hydroxyapatite/reconstituted collagen as supports for osteoblast cell growth.Biomaterials 1999,20, (20), 1931-6.
    
    107. Barrias, C. C; Ribeiro, C. C.; Lamghari, M.; Miranda, C. S.; Barbosa, M. A.,Proliferation, activity, and osteogenic differentiation of bone marrow stromal cells cultured on calcium titanium phosphate microspheres. J Biomed Mater Res A 2005,72, (1), 57-66.
    
    108. Gong, Y.; He, L.; Li, J.; Zhou, Q.; Ma, Z.; Gao, C.; Shen, J., Hydrogel-filled polylactide porous scaffolds for cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 2007, 82, (1), 192-204.
    
    109. Qingpu Hou, P. A. D. B. a. K. M. S., Injectable scaffolds for tissue regeneration. Journal of Materials Chemistry 2004,14, 1915-1923.
    
    110.Hong, Y.; Gong, Y.; Gao, C.; Shen, J., Collagen-coated polylactide microcarriers/chitosan hydrogel composite: injectable scaffold for cartilage regeneration. J Biomed Mater Res A 2008, 85, (3), 628-37.
    
    111.Tuli, R.; Tuli, S.; Nandi, S.; Huang, X.; Manner, P. A.; Hozack, W. J.; Danielson,K. G.; Hall, D. J.; Tuan, R. S., Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J Biol Chem 2003,278,(42), 41227-36.
    
    112. Gooch, K. J.; Kwon, J. H.; Blunk, T.; Langer, R.; Freed, L. E.;Vunjak-Novakovic, G., Effects of mixing intensity on tissue-engineered cartilage.Biotechnol Bioeng 2001,72, (4), 402-7.
    
    113. Roberts, A. B.; Kondaiah, P.; Rosa, F.; Watanabe, S.; Good, P.; Danielpour, D.;Roche, N. S.; Rebbert, M. L.; Dawid, I. B.; Sporn, M. B., Mesoderm induction in Xenopus laevis distinguishes between the various TGF-beta isoforms. Growth Factors 1990, 3, (4), 277-86.
    
    114. Gooch, K. J.; Blunk, T.; Cornier, D. L.; Sieminski, A. L.; Bursac, P. M.;Vunjak-Novakovic, G.; Freed, L. E., IGF-I and mechanical environment interact to modulate engineered cartilage development. Biochem Biophys Res Commun 2001, 286, (5), 909-15.
    115. Martin, I.; Suetterlin, R.; Baschong, W.; Heberer. M.; Vunjak-Novakovic, G.; Freed, L. E., Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF-2 during 2D expansion and BMP-2 during 3D cultivation. J Cell Biochem 2001, 83, (1), 121-8.
    116. DeFail, A. J.; Chu, C. R.; Izzo, N.; Marra, K. G.. Controlled release of bioactive TGF-beta 1 from microspheres embedded within biodegradable hydrogels. Biomaterials 2006, 27, (8), 1579-85.
    117. Park, H.; Temenoff, J. S.; Holland, T. A.; Tabata, Y.; Mikos, A. G., Delivery of TGF-betal and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 2005, 26, (34), 7095-103.
    118. Holland, T. A.; Tabata, Y.; Mikos, A. G., Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J Control Release 2005, 101, (1-3), 111-25.
    119. Huang, Q.; Goh, J. C.; Hutmacher, D. W.; Lee, E. H., In vivo mesenchymal cell recruitment by a scaffold loaded with transforming growth factor betal and the potential for in situ chondrogenesis. Tissue Eng 2002, 8, (3), 469-82.
    120. Mauck, R. L.; Nicoll, S. B.; Seyhan, S. L.; Ateshian, G. A.; Hung, C. T., Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng 2003, 9, (4), 597-611.
    121.李安永,田现书,谈谈人类疾病的基因治疗.生物学通报 1998,33,24-26.
    122. Saraf, A.; Mikos, A. G., Gene delivery strategies for cartilage tissue engineering. Adv Drug Deliv Rev 2006, 58, (4), 592-603.
    123.姚康德,宋雪峰,刘文广,曹德勇,陈亦平,尹玉姬,组织工程研究与开发进展.中国修复重建外科杂志 2002,16,325-328.
    124. Grande, D. A.; Mason, J.; Light, E.; Dines, D., Stem cells as platforms for delivery of genes to enhance cartilage repair. J Bone Joint Surg Am 2003, 85-A Suppl 2, 111-6.
    125. Gupta, A., Analyses of myo-electrical silence of erectors spinae. J Biomech 2001, 34, (4), 491-6.
    126. Hu, J. C.; Athanasiou, K. A., The effects of intermittent hydrostatic pressure on self-assembled articular cartilage constructs. Tissue Eng 2006,12, (5), 1337-44.
    
    127. Lee, C. R.; Grodzinsky, A. J.; Spector, M., Biosynthetic response of passaged chondrocytes in a type II collagen scaffold to mechanical compression. J Biomed Mater Res A 2003,64, (3), 560-9.
    
    128. De Croos, J. N.; Dhaliwal, S. S.; Grynpas, M. D.; Pilliar, R. M.; Kandel, R. A.,Cyclic compressive mechanical stimulation induces sequential catabolic and anabolic gene changes in chondrocytes resulting in increased extracellular matrix accumulation.Matrix Biol 2006,25, (6), 323-31.
    
    129. Waldman, S. D.; Couto, D. C.; Grynpas, M. D.; Pilliar, R. M.; Kandel, R. A., A single application of cyclic loading can accelerate matrix deposition and enhance the properties of tissue-engineered cartilage. Osteoarthritis Cartilage 2006, 14, (4),323-30.
    
    130. Ng, K. W.; Mauck, R. L.; Statman, L. Y.; Lin, E. Y.; Ateshian, G. A.; Hung, C. T.,Dynamic deformational loading results in selective application of mechanical stimulation in a layered, tissue-engineered cartilage construct. Biorheology 2006, 43,(3-4),497-507.
    
    131. Hunter, C. J.; Mouw, J. K.; Levenston, M. E., Dynamic compression of chondrocyte-seeded fibrin gels: effects on matrix accumulation and mechanical stiffness. Osteoarthritis Cartilage 2004,12, (2), 117-30.
    
    132. Suh, J. K.; Matthew, H. W., Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 2000, 21, (24),2589-98.
    
    133. Khor, E.; Lim, L. Y., Implantable applications of chitin and chitosan.Biomaterials 2003,24, (13), 2339-49.
    
    134. Williams, C. G.; Malik, A. N.; Kim, T. K.; Manson, P. N.; Elisseeff, J. H.,Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 2005,26, (11), 1211-8.
    
    135. Bryant, S. J.; Anseth, K. S.; Lee, D. A.; Bader, D. L., Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. J Orthop Res 2004, 22, (5), 1143-9.
    136. Cerutti, P. A., Prooxidant states and tumor promotion. Science 1985, 227, (4685), 375-81.
    137. Li, Q.; Wang, J.; Shahani, S.; Sun, D. D.: Sharma, B.; Elisseeff, J. H.; Leong, K. W., Biodegradable and photocrosslinkable polyphosphoester hydrogel. Biomaterials 2006, 27, (7), 1027-34.
    138. Chen, B.; Lin, H.; Wang, J.; Zhao, Y.; Wang, B.; Zhao, W.; Sun, W.; Dai, J., Homogeneous osteogenesis and bone regeneration by demineralized bone matrix loading with collagen-targeting bone morphogenetic protein-2. Biomaterials 2007, 28, (6), 1027-35.
    139. Wang, D. A.; Varghese, S.; Sharma, B.; Strehin, I.; Fermanian, S.; Gorham, J.; Fairbrother, D. H.; Cascio, B.; Elisseeff, J. H., Multifunctional chondroitin sulphate for cartilage tigsue-biomaterial integration. Nat Mater 2007, 6, (5), 385-92.
    140. Wang, D. A.; Williams, C. G.; Li, Q.; Sharma, B.; Elisseeff, J. H., Synthesis and characterization of a novel degradable phosphate-containing hydrogel. Biomaterials 2003, 24, (22), 3969-80.
    141. Gruber, H. F., Photoinitiators for free radical polymerization. Progress in Polymer Science 1992, 17, (6), 953-1205.
    142. Senich G. A., F. R. E., Radiation curing of coatings. J. Macromol. Sci., Rev. Macromol. Chem. Phys. 1984, C24, 239-324.
    143. Wen-Fu Lee, R.-J. W., Superabsorbent polymeric materials. Ⅱ. Swelling behavior of crosslinked poly[sodium acrylate-co-3-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate] in aqueous salt solution. Journal of Applied Polymer Science 1997, 64, (3), 1701-1712.
    144. Bajpai, S. K., Swelling-degwelling behavior of poly(acrylamide-co-maleic acid) hydrogels. Journal of Applied Polymer Science 2001, 80, (14), 2782-2789.
    145. Lin, C. C.; Metters, A. T., Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 2006, 58, (12-13), 1379-408.
    146. Brandl, F.; Sommer, F.; Goepferich, A., Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials 2007, 28, (2), 134-46.
    147. Lutolf, M. P.; Hubbell, J. A., Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005, 23, (1), 47-55.
    148. Montembault, A.; Viton, C.; Domard, A., Rheometric study of the gelation of chitosan in aqueous solution without cross-linking agent. Biomacromolecules 2005, 6, (2), 653-62.
    149. Y. T. Sung, M. S. H., J. C. Hyun, W. N. Kim, H. S. Lee, Rheological properties and interfacial tension of polypropylene-poly(styrene-co-acrylonitrile) blend containing compatibilizer. Polymer 2003, 44, (5), 1681-1687.
    150. Patel, P. N.; Smith, C. K.; Patrick, C. W., Jr., Rheological and recovery properties of poly(ethylene glycol) diacrylate hydrogels and human adipose tissue. J Biomed Mater Res A 2005, 73, (3), 313-9.
    151. Choi, W. I.; Kim, M.; Tae, G.; Kim, Y. H., Sustained release of human growth hormone from heparin-based hydrogel. Biomacromolecules 2008, 9, (6), 1698-704.
    152. Tabata, Y.; Ikada, Y., Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities. Biomaterials 1999, 20, (22), 2169-75.
    153. Biondi, M.; Ungaro, F.; Quaglia, F.; Netti, P. A., Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev 2008, 60, (2), 229-42.
    154.范宏斌,胡蕴玉,李旭升,吕荣,白建萍,王军,明胶-硫酸软骨素-透明质酸钠作为组织工程软骨支架的实验研究.中国修复重建外科杂志 2005,19,(6),473-477.
    155. Sutter, M.; Siepmann, J.; Hennink, W. E.; Jiskoot, W., Recombinant gelatin hydrogels for the sustained release of proteins. J Control Release 2007, 119, (3), 301-12.
    156.崔俊锋,尹玉姬,张福,江叶芬,姚康德,明胶基生物材料在组织工程中的应用.国外医学生物医学分册 2004,27,(1),1-3.
    157.曹峻岭等,组织工程化软骨的构建及应用.西安交通大学学报(医学版) 2008, 29, (2), 121-127.
    158. Mwangi, J. W.; Ofner, C. M., 3rd, Crosslinked gelatin matrices: release of a random coil macromolecular solute. Int J Pharm 2004, 278, (2), 319-27.
    159. Giraudier, S.; Hellio, D.; Djabourov, M.; Larreta-Garde, V., Influence of weak and covalent bonds on formation and hydrolysis of gelatin networks. Biomacromolecules 2004, 5, (5), 1662-6.
    160.何有节,张迈华,刘其则,王允肃,何先祺,朱正和,明胶的标准^1H和^13C-NMR谱.皮革科学与工程 1990,(2),1-9.
    161. Bigi, A.; Bracci, B.; Cojazzi, G.; Panzavolta, S.; Roveri, N., Drawn gelatin films with improved mechanical properties. Biomaterials 1998, 19, (24), 2335-40.
    162. Bigi, A.; Cojazzi, G.; Panzavolta, S.; Rubini, K.; Roveri, N., Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials 2001, 22, (8), 763-8.
    163. Bigi, A.; Cojazzi, G.; Panzavolta, S.; Roveri, N.; Rubini, K., Stabilization of gelatin films by crosslinking with genipin. Biomaterials 2002, 23, (24), 4827-32.
    164. Terentjev, J. L. G. a. E. M., Helix-coil transition of gelatin: helical morphology and stability. Soft Matter 2008, 4, 544-549.
    165. Michon, C.; Cuvelier, G.; Relkin, P.; Launay, B., Influence of thermal history on the stability of gelatin gels. Int J Biol Macromol 1997, 20, (4), 259-64.
    166. Cuppo, F.; Venuti, M.; Cesaro, A., Kinetics of gelatin transitions with phase separation: T-jump and step-wise DSC study. Int J Biol Macromol 2001, 28, (4), 331-41.
    167. Gornall, J. L.; Terentjev, E. M., Concentration-temperature superposition of helix folding rates in gelatin. Phys Rev Lett 2007, 99, (2), 028304.
    168.刘小玲,许时婴,鸡骨明胶的凝胶化研究.食品科学 2008,29,(6),83-86.
    169. R. Usha, T. R., The effects of urea and n-propanol on collagen denaturation: using DSC, circular dicroism and viscosity. Thermochimica Acta 2004, 409, (201-206), 201.
    170. Macosko, C. W., Rheology: Principles, Measurements and Applications.. 1994.
    171. Gander, B.; Gurny, R.; Doelker, E.; Peppas, N. A., Effect of polymeric network structure on drug release from cross-linked poly(vinyl alcohol) micromatrices. Pharm Res 1989,6, (7), 578-84.
    
    172. Brandrup, J., Immergut, E.H., Polymer Handbook. 1975.
    
    173. Veis, A., The Macromolecular Chemistry of Gelatin. 1964.
    
    174. Jiang, W.; Gupta, R. K.; Deshpande, M. C.; Schwendeman, S. P., Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens.Adv Drug Deliv Rev 2005, 57, (3), 391-410.
    
    175. Young, S.; Wong, M.; Tabata, Y.; Mikos, A. G., Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release 2005, 109, (1-3),256-74.
    
    176. Jain, R. A., The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000,21, (23), 2475-90.
    
    177. Chung, Y. I.; Ahn, K. M.; Jeon, S. H.; Lee, S. Y.; Lee, J. H.; Tae, G., Enhanced bone regeneration with BMP-2 loaded functional nanoparticle-hydrogel complex. J Control Release 2007,121, (1-2), 91-9.
    
    178. Zhang, X. Z.; Jo Lewis, P.; Chu, C. C., Fabrication and characterization of a smart drug delivery system: microsphere in hydrogel. Biomaterials 2005, 26, (16),3299-309.
    
    179. Yoon, J. J.; Song, S. H.; Lee, D. S.; Park, T. G., Immobilization of cell adhesive RGD peptide onto the surface of highly porous biodegradable polymer scaffolds fabricated by a gas foaming/salt leaching method. Biomaterials 2004, 25, (25),5613-20.
    
    180. Chen, F. M.; Zhao, Y. M.; Sun, H. H.; Jin, T.; Wang, Q. T.; Zhou, W.; Wu, Z. F.;Jin, Y, Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics. J Control Release 2007,118, (1), 65-77.
    
    181. Hamed, G. R., Reinforcement of rubber. Rubber Chemistry and Technology 2000,73, 524-533.
    
    182. Mow, V. C.; Ratcliffe, A.; Poole, A. R., Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 1992,13, (2), 67-97.
    183. Li, Q.; Williams, C. G.; Sun, D. D.; Wang, J.; Leong, K.; Elisseeff, J. H.,Photocrosslinkable polysaccharides based on chondroitin sulfate. J Biomed Mater Res A 2004,68,(1), 28-33.
    
    184. Hartmuth C. Kolb, M. G. F., K. Barry Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition 2001,40, (11), 2004-2021.
    
    185. Kolb, H. C.; Sharpless, K. B., The growing impact of click chemistry on drug discovery. Drug Discov Today 2003, 8, (24), 1128-37.
    
    186. Liu, S. Q.; Ee, P. L.; Ke, C. Y.; Hedrick, J. L.; Yang, Y. Y., Biodegradable poly(ethylene glycol)-peptide hydrogels with well-defined structure and properties for cell delivery. Biomaterials 2009, 30, (8), 1453-61.
    
    187. Victoria D. Bock, H. H., Jan H. van Maarseveen, Cul-Catalyzed Alkyne-Azide Click Cycloadditions from a Mechanistic and Synthetic Perspective European Journal of Organic Chemistry 2006,2006, (1), 51-68.