骨组织工程网化生物陶瓷支架制备及性能优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网化生物陶瓷支架由于良好的三维贯通结构和骨传导性,可以作为细胞粘附、迁移、分化和增殖的三维模板,有利于血管化的形成并引导组织的生长,在组织工程支架领域已经得到非常广泛的应用。但是由于陶瓷的脆性,其力学性能一直无法满足体内承力部位植入的需要,大大限制了它的临床应用。因此,改善网化生物陶瓷支架的力学性能就变得尤为重要。
     本文主要采用有机泡沫浸渍法制备网化羟基磷灰石(HA)陶瓷支架,通过比较初始粉体的形状优化制备工艺,然后对网化支架进行力学和生物学性能的优化。分别采用热等静压和聚合物浸涂法改善支架力学性能;同时,为了改善网化支架的生物学性能,利用仿生矿化技术,对网化Ti金属支架、HA/PCL和HA/PDLLA支架进行了表面生物活化,以改善支架对细胞等的亲和性。此外,采用挤压法成功改善了颗粒造孔制备的多孔HA陶瓷支架的贯通性,达到了多孔结构网化目的,同时具有更高的力学性能,并系统考察了造孔颗粒大小等因素对支架力学性能的影响。采用粘度计、体视显微镜、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、和抗压强度测试等分析手段,系统地研究了网化HA支架的性能。获得的主要结论如下:
     1.采用有机泡沫浸渍法成功地制备了网化羟基磷灰石(HA)陶瓷支架,研究了不同颗粒形态的HA粉体对网化HA陶瓷支架力学强度的影响,实验结果表明:球形HA粉体所制备的网化陶瓷具有最佳的烧结性能和力学性能,这是由于球形HA粉体颗粒间具有最佳的堆积效果,所配制的浆料具有最高的粘度,因此在样品的浸渍涂覆过程中,泡沫上涂覆的HA浆料最多,因此最终烧结的网化支架的骨架最厚。
     2.采用了热等静压、PCL涂层涂覆和PDLLA涂层涂覆等方法改善网化HA陶瓷支架的力学性能,研究了不同方法改善支架力学性能的机理,实验结果表明:1)三种方法均能有效地改善网化HA陶瓷支架的力学性能,采用聚合物涂覆法对支架的力学性能改善更明显;2)热等静压法对支架力学性能的改善是因为在二次烧结过程中,晶粒进一步致密化,使支架内部的微孔和微裂纹明显减少;3)网化HA陶瓷支架涂覆聚己内酯(PCL)和聚乳酸(PDLLA)涂层,不仅在表面能观察到聚合物,在网化多孔结构骨架微孔内部也有一些渗透的聚合物,从而实现了聚合物与陶瓷骨架的复合,在一定程度上降低支架的脆性,达到补强增韧的效果;
     3.利用仿生矿化技术对网化支架的多孔结构上进行Ca-P涂层修饰,改善其生物学性能:1)通过在模拟体液(SBF)中仿生矿化,成功地在多孔Ti支架多孔结构表面沉积具有纳米网状结构的Ca-P涂层,支架的三维贯通结构不变;2)通过在过饱和的钙磷溶液(SCPS)中仿生矿化,成功在HA/PCL复合支架表面修饰具有片层状结构的Ca-P涂层;3)在PDLLA涂层中添加CaSO_4和硫酸软骨素(CS)颗粒可以成功地改善复合支架的生物活性,在SBF中仿生矿化7天和14天后支架表面出现纳米网状结构的Ca-P涂层,添加CaSO_4的复合支架的生物活性更好;SBF的浓度会影响仿生矿化Ca-P涂层的微观结构,在1倍SBF中Ca-P涂层呈纳米网状结构,在1.5倍SBF中呈片层状结构。
     4.采用挤压法成功地改善颗粒造孔工艺制备的多孔HA陶瓷支架的贯通性,实现了完全网化的多孔贯通结构;造孔剂的颗粒大小基本不影响支架的孔隙率;支架的收缩率与造孔剂蜡球大小和成形剂甲壳素无关;影响支架收缩率的主要因素是HA的浓度,HA的浓度越高,支架的收缩率越小,但过高的HA浓度不利于支架的收缩;造孔剂粒度对支架的抗压强度有明显影响:随着蜡球粒度的增大,对应的网化HA陶瓷支架的抗压强度逐渐降低。
Porous hydroxyapatite (HA) ceramic scaffolds are universally used for bone repair and replacement, and for serving functions to support the adhesion, transfer, proliferation and differentiation of cells due to the three-dimensional (3D) interconnected structure. Due to the brittleness of HA bioceramics, these scaffolds are not suitable to clinical load-bearing sites with the poor strength. Therefore, the application of porous HA bioceramics have been restricted. It is significant to improve the mechanical properties of porous HA bioceramics while maintained the high porosity.
     The polymer impregnating method was firstly adopted to produce porous hydroxyapatite (HA) ceramic scaffolds with 3D porous structures. The preparation process of porous HA bioceramics are optimized by investigating the concentrations of HA slurry, coating times and particle morphologies. Then, the Hot Isostatic Pressing (HIP) and polymer-coating methods were used to enhance the mechanical strength of porous HA bioceramics. At the same time, considering the biological properties, biomineralization technique was employed for porous Titanium (Ti), HA/PCL and HA/PDLLA scaffolds to improve the affinity to cell. The effect of some bioactive phases including HA, CaSO_4 and CS are investigated by introducing into the polymer coating. Besides, the interconnectivity of porous HA bioceramics fabricated by particle leaching are successfully improved by using extrusion method. The results show that the prepared HA bioceramics scaffolds possess excellent foam-like structure and mechanical properties. Nanoindenter, rotating viscosimeter, stereomicroscope, scanning electron microscopy (SEM), X-ray diffractometer (XRD) and mechancail tester were used to study the properties of porous HA bioceramics scaffold. Main conclusions are drawn as follows:
     1. The porous HA scaffold with highly porous structure are successfully prepared by polymer impregnating method. The influence of particle morphologies on mechanical strength of porous HA bioceramics scaffold were investigated. The results showed that the porous HA bioceramics made from spherical HA particles held a higher compressive strength and sintering properties than when using other HA particles morphologies. The use of spherical particles in the preparation process of porous HA bioceramics proved to form the most homogeneous slurry with a higher viscosity, and held more coating on the PU template for the same impregnating process.
     2. HIP, PCL-coating and PDLLA-coating methods were used to enhance the mechanical properties of porous HA bioceramics scaffold. The strength mechanism of different methods was studies in detail. The results showed that: 1) All three methods are useful to enhance the mechanical properties of porous HA bioceramics, which is better by using the polymer-coating method. 2) As a technique to enhance the sintering and densification of ceramics, the HIP treatment is effective to improve the mergence between grains during the sintering process. Micropores and microcracks decrease significantly in struts of HIP-treated HA scaffolds. 3) PCL lining and PDLLA lining can serve to protect and support the scaffold in the initial stage of use after its implantation in vivo under different load bearing conditions, while the intergranular polymer can strengthen the bridge connection between the particles to prevent the crack propagation or the alteration of its pathway.
     3. The biomimetic mineralization technique was employed to modify the biological properties of porous structure by depositing Ca-P coating. 1) The nano net-like structure of Ca-P was deposited on the porous Ti scaffold by immersed in simulated body fluid (SBF) and had no influence on the interconnectivity of Ti scaffold. 2) The plate-like Ca-P was successfully deposited on the HA/PCL composite scaffold by immersed in supersaturation calcium phosphate solution (SCPS). 3) The introduction of bioactive phase (HA、CaSO_4 and CS) into PDLLA coating effectively enhanced the bioactivity of composite scaffold. After 7 and 14 days immersion in SBF, a nano net-like Ca-P coating were found on the surface of composite scaffolds. The bioactivity of the composite scaffolds with CaSO_4 is higher than the other composite scaffolds. With the increase of the concentration of SBF, the morphologies of deposited apatite are plate-like different from the net-like apatite immersed in 1SBF.
     4. Extrusion method is significant to improve the interconnectivity of porous HA bioceramics scaffold prepared by particle leaching method that hold excellent mechanical properties. The size of pore former of wax has no influence on the porosity (about 86%) of porous HA bioceramics. The shrinkage ratio (56%) of the three sinter porous HA bioceramics scaffolds have nothing to do with the particle size and chitin formagen except the HA concentration. With the increase of HA concentration, the shrinkage ratio of scaffold is descendent. The particle size have obvious effect on the compressive strength: with the increase of the size of wax, the compressive strength of porous HA bioceramics scaffold present a gradual decreasing tendency.
引文
[1]L.L.Hench.Bioceramics:From concept to clinic.Journal of the American Ceramic Society,74(7),1991:1487-1510
    [2]A.A.Ignatius,S.Wolf,P.Augat,L.E.Claes.Composites made of rapidly resorbable ceramics and poly(lactide) show adequate mechanical properties for use as bone substitute materials.Journal of Biomedical Materials Research,57,2001:126-131
    [3]王学江.纳米羟基磷灰石仿生复合生物材料研究.四川大学博士学位论文,2003
    [4]V.G.Sukumaran,N.Bharadwaj.Ceramics in dental applications.Trends in Biomaterials and Artificial Organs,20(1),2006:7-11
    [5]F.H.Albee.Studies in bone growth:triple calcium phosphate as a stimulus to osteogenesis.Annals of Surgery,71(1),1920:32-39
    [6]L.Peltier,E.Bickel,R.Lillio,M.Thein.The use of plaster to fill defects in bone.Annals of Surgery,146,1957:61-69
    [7]H.L.Manock.New developments in polyurethane and PU/acrylic dispersions.Pigment and Resin Technology,29(3),2000:143-151
    [8]H.F.Morris,M.Manz,W.Stoffer,D.Weir.Casting alloys:the materials and "The Clinical Effects".Advances in dental research,6(1),1992:28-31
    [9]J.Guiral,L.Ferrandez,J.M.Curto,J.Basora,P.Vicente.Carbon and polyester fibers as a scaffold for bone repair:studies of segmentary implants in the rabbit radius.Acta orthopaedica Scandinavica,61(1),1990:16-20
    [10]L.L.Hench,J.Wilson.Surface-active biomaterials.Science,226,1984:630-636
    [11]X.D.Zhang,P.Zou,C.Wu,Y.Qu,J.G.Zhang.A study of porous block HA ceramics and its osteogeneses.Editors:A.Ravaglioli,A.Krajewski.Bioceramics and the human Body.Elsevier,1991:408-415
    [12]H.Yamasaki,H.Sakai.Osteogenic response to Porous hydroxyapatite ceramics under the skin of dogs.Biomaterials,13(5),1992:308-312
    [13]H.Yamasaki.Heterotopic bone formation around porous hydroxyapatite ceramies in the subcutis of dogs.Japan Journal of Oral Biology,32,1990:190-192
    [14]J.M.Toth,J.L.Lynch,K.R.Hamson.Osteoinductivity by calcium phophate ceramics. The proeeeding of fourth world biomaterials Congress, 1992
    [15] U. Ripamonti. Bone induction in nonhuman primates: an experimental study on the Baboon. Clinical Orthopeadics and Related Research, 1991: 284-293
    [16] H. Yuan, Z. Yang, Y. Li, X. Zhang, J. D. de Bruijn, K. de Groot.Osteoinduction by calcium phosphate biomaterials. Journal of Biomedical Materials Research, 9(12), 1998: 723-726
    [17] H. Yuan, Z. Yang, J. D. de Bruijn, K. de Groot, X. Zhang. Material-dependent bone induction by calcium phosphate ceramics: a 2.5-years study in dog.Biomaterials, 22(19), 2001: 2617-2623
    [18] H. Yuan, M. Van Den Doel, S. Li, C. A. Van Blitterswijk, K. de Groot, J. D. de Bruijn. A comparison of the osteoinductive potential of two calcium phosphate ceramics implanted in tramuscularly in goats. Journal of Biomedical Materials Research, 13(12), 2002: 1271-1275
    [19] H. Yuan, Y. Li, Z. Yang, J. Weng, X. Zhang. Calcium phosphate ceramic induced osteogenesis in rabbits. Editors: X. Zhang, Y. Ikada. Biomedical materials researeh in the Far East (III). Kyoto, 1997: 228-229
    [20] H. Yuan, K. Kurashina, J. D. de Bruijn, Y. Li, K. de Groot, X. Zhang. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterial, 20(19), 1999: 1799-1806
    [21] H. Yuan, J. D. de Bruijn, Y. Li, J. Feng, Z. Yang, K. de Groot, X. Zhang.Bone formation induced by calcium phosphate ceramics in soft tissue of dogs:a comparative study between porous alpha-TCP and beta-TCP. Journal of Materials Science: Materials in Medicine, 12(1), 2001: 7-13
    [22] Z. J Yang, H. Yuan, P. Zou, W. Tong, S. Qu, X. D. Zhang. Osteogenic responses to extraskeletally implanted synthetic porous calcium phosphate ceramics: an early stage histomorpllological study in dogs. Journal of Materials Science: Materials in Medicine, 8(11), 1997: 697-701
    [23] Z. Yang, H. Yuan, W. Tong, P. Zou, W. Chen, X. Zhang. Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics: variability among different kinds of animals. Biomaterials, 17(22), 1996: 2131-2137
    [24] U. Ripamonti. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials, 17(1), 1996: 31-35
    [25] X. Zhang, H. Yuan, K. de Groot. Calcium phosphate biomaterials with intrinsic osteoinductivity. Biomaterials with intrinsic osteoinductivity. The 6th world biomaterials congress. Hawaii, USA: 2000
    [26] P. Habibovie, H Yuan, C. M. van der Valk, G. Meijer, C. A. van Blitterswijk, K. de Groo.3D microenvironment as essential element for osteoinduction by biomaterials.Biomaterials,26,2005:3565-3575
    [27]包崇云.四川大学博士后研究论文.2004
    [28]S.F.Hulbert,F.A.Young,R.S.Mathews,J.J.Klawitter,C.D.Talbert,F.H.Stelling.Potential of ceramic materials as permanently implantable skeletal prostheses.Journal of Biomedical Materials Research,4,1970:433-456
    [29]J.D.Bobyn,R.M.Pilliar,H.U.Cameron,G.C.Weatherly.The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone.Clinical orthopaedics and related research,1980:263-270
    [30]K.Whang,K.E.Healy,D.R.Elenz,E.K.Nam,D.C.Tsai,C.H.Thomas.Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture.Tissue Engineering,5,1999:35-51
    [31]C.E.Holy,J.A.Fialkov,J.E.Davies,M.S.Shoichet.Use of a biomimetic strategy to engineer bone.Journal of Biomedical Materials Research A,65,2003:447-453
    [32]A.Boyde,A.Corsi,R.Quarto,R.Cancedda,P.Bianco.Osteoconduction in large macroporous hydroxyapatite ceramic implants:evidence for a complementary integration and disintegration mechanism.Bone,24(6),1999:579-589
    [33]O.Barou,S.Mekraldi,L.Vico,G.Boivin,C.Alexandre,M.H.Lafage-Proust.Relationships between trabecular bone remodeling and bone vascularization:a quantitative study.Bone,30(4),2002:604-612
    [34]M.Shin,H.Yoshimoto,J.P.Vacanti.In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold.Tissue Engineering,10(1-2),2004:33-41.
    [35]K.F.Leong,C.M.Cheah,C.K.Chua.Solid free form fabrication of three dimensional scaffolds for engineering replacement tissues and organs.Biomaterials,24,2003:3262-3278
    [36]S.Yang,K.F.Leong,Z.Du,C.K.Chua.Review:the design of scaffolds for use in tissue engineering,part 1.Traditional approaches.Tissue Engineering,7,2001:679-690.
    [37]R.Langer,J.P.Vacanti.Tissue engineering.Science,260,1993:920-926
    [38]A.J.Salgada,O.P.Coutinho,R.L.Reis.Bone tissue engineering:state of the art and future trends.Macromolecular bioscience,4,2004:743-765
    [39]D.W.Hutmacher.Scaffolds in tissue engineering bone and cartilage.Biomaterials,21(24),2000:2529-2543
    [40]P.X.Ma.Scaffolds for tissue fabrication.Materials Today,7(5),2004:30-40.
    [41]G.P.Chen,T.Ushida,T.Tateishi.Scaffold design for tissue engineering.Macromolecular bioscience,2(2),2002:67-77
    [42]G.Vunjak-Novakovic,L.E.Freed.Effects of mixing on the composition and morphology of tissue-engineered cartilage.Advanced Drug Delivery Reviews,33,1998:15-30
    [43]M.J.Lysaght,J.Reyes.The growth of tissue engineering.Tissue Engineering,7,2001:485-493
    [44]V.Maquet,R.Jerome.Polylactide Macroporous biodegradable implants for cell transplantation.Ⅱ.Preparation of polylactide foams by liquid-liquid phase separation.Materials Science Forum,250,1997:15-42
    [45]L.G.Friffith.Polymeric biomaterials.Acta Materialia,48,2000:263-277
    [46]K.J.L.Burg,S.Porter,J.F.Kellam.Biomaterials developments for bone tissue engineering.Biomaterials,21,2000:2347-2359
    [47]R.Lange,F.Luthen,U.Beck,J.Rychly,A.Baumann,B.Nebe.Cell-extracellular matrix interaction and physico-chemical characteristics of titanium surfaces depend on the roughness of the material.Biomolecular Engineering,19,2002:255-261
    [48]W.He,K.E.Gonsalves,N.Batina,D.B.Poker,E.Alexander,M.Hudson.Micro/nanomachining of polymer surface for promoting osteoblast cell adhesion.Biomedical Delivery,5,2003:101-108
    [49]J.Mansbridge,K.Liu,R.Patch,K.Symons,E.Pinney.Three-dimensional fibroblast culture implant for the treatment of diabetic foot ulcers:metabolic activity and therapeutic range.Tissue Engineering,4,1998:403-414
    [50]J.E.Davies.In vitro modeling of the bone/implant interface.The Anatomical record,245,1996:426-445
    [51]C.M.Agrawal,R.B.Ray.Biodegradable polymeric scaffolds for musculoskeletal tissue engineering.Journal of Biomedical Materials Research,55,2001:141-150
    [52]N.G.Ingo,B.Fleiner,S.Jepsen,Y.Ail.Culture of cells gained from temporomandibular joint cartilage on non-absorbable scaffolds.Biomaterials,22,2001:2569-2577
    [53]L.Smith.Ceramic-plastic material as bone substitute.Archives of surgery,87,1963:653-661
    [54]S.F.Hulbert,H.L.Richbourg,J.J.Klawitter,B.W.Sauer.Evaluation of a metal-ceramic composite hip prosthesis.Journal of Biomedical Materials Research,9(4),1975:189-198
    [55]郑昌琼,冉均国.无机生物材料.成都科技大学出版社.1996,335
    [56]X.D.Zhang,W.Q.Chen,J.Weng.The researeh of osteoinduetivity on calciumphosphate eeramies.The 19th Annual Meeting of the society for biomaterials.Birminghain.AL,USA,1993,3
    [57]X.D.Zhang,W.Q.Chen,J.Weng.Initiation of the osteoinduction in calciumphosPhate ceramies without the bonegrowth factor.The 19th Annual Meeting of the society for biomaterials.Birminghain.AL,USA.1993,299
    [58]G.Daculsi,R.Z.LeGeros,E.Nery,K.Lynch,B.Kerebel.Transformation of biphasic calcium phosphate ceramics in vivo:ultrastructural and physicochemical characterization.Journal of Biomedical Materials Research,23(8),1989:883-894
    [59]S.M.Best,A.E.Porter,E.S.Thian,J.Huang.Bioceramics:Past,present and for the future.Journal of the European Ceramic Society,28,2008:1319-1327
    [60]王宙,李智,蔡军.生物陶瓷的发展与现状.大连大学学报,22(6),2001:57-61
    [61]李世普.生物医用材料导论.武汉工业大学出版社,8,2000:53-196
    [62]黄占杰.磷酸钙陶瓷生物降解研究的进展.功能陶瓷,28(1),1997:14-18
    [63]闵少雄.靳安民.国外医学生物医学工程分册,6(23),2000:353-357
    [64]K.H.W.Seah,R.Thampuran,S.H.Teoh.The Influence of pore morphology on corrosion.Corrosion Science,4-5,1998:547-556
    [65]C.E.Wen,Y.Yamada,K.Shimojima,Y.Chino,T.Asahina,M.Mabuchi.Processing and mechanical properties of autogenous titanium implant materials.Journal of Materials Science:Materials in Medicine,13,2002:397-401
    [66]师昌绪.材料科学技术百科全书.中国大百科全书出版社,1995:919-921
    [67]E.Pissiotis,L.S.W.Spanberg.Biological evaluation of collagen gels containing calcium hydroxide and hydrxoyapatite.Endodontics,16,1990:468-473
    [68]A.K.Schlegel,H.M(o|¨)hler,F.Busch,A.Mehl.Preclinical and clinical studies of a collagen membrane(Bio-Gide).Biomaterials,18(7),1997:535-538
    [69]B.L.Seal,T.C.Otero,A.Panitch.Polymeric biomaterials for tissue and organ regeneration.Materials Science and Engineering R-reports,34,2001:147-230
    [70]石桂欣,王身国,贝建中.皮肤组织工程-细胞支架的构筑及其生物相容性评价.北京生物医学工程,21(3),2002:222-225
    [71] R. P. Meining, C. M. Buesing, J. Helm, S. Gogolewski. Regeneration ofdiaphyseal bone defects using resorbale poly(L-lactide) and poly(D-lactide) membranes in the Yucatan pig model. Journal of orthopaedic trauma, 11, 1997:551-558
    [72] J. O. Hollinger, G. C. Battistone. Biodegradable bone repair materials. Clinical Orthopaedics and Related Research, 207, 1986: 290-305
    [73] J. E. Devin, M. A. Attawia, C. T. Laurencin. Three-dimensional degradable porous polymer-ceramic matrices for use in bone repair. Journal of Biomaterials Science: Polymer Edition, 7(8), 1996: 661-669
    [74] D. F. Williams. Biodegradation of surgical polymers. Journal of Materials Science, 17, 1982: 1233-1246
    [75] D. F. Williams. Mechanisms of biodegradation of implantable polymers.Clinical materials, 10(1-2), 1992: 9-12
    [76] O. Bostman, U. Paivarinta, E. Partio, J. Vasenius. Degradation and tissue replacement of an absorbable polyglycolide screw in the fixation of rabbit femoral osteotomies. The Journal of Bone and Joint Surgery, 74, 1992:1021-1031
    [77] E. J. Bergsma, W. C. de Bruijn, F. R. Rozema. Late degradation tissue response to poly(L-lactide) bone plates and screws. Biomaterials, 16, 1995:25-31
    [78] R. Suuronen, T. Pohjonen, J. Hietanen. A 5-year in vitro and in vivo study of the biodegradation of polylactide planets. Journal of Oral and Maxillofacial Surgery, 56, 1998:604-614
    [79] D. E. Cutright, E. E. Hunsuck. The repair of fractures of the orbital floor using biodegradable polylactic acid. Oral surgery, oral medicine, and oral pathology,33(1), 1972:28-34
    [80] M. Vert, P. Christel, F. Chabot. Bioresorbable plastic materials for bone surgery. Editors: G. W. Haastings, P. S. Ducheyne. Macromolecular biomaterials. Boca Raton: CRC Press, 1984: 119-142
    [81] O. Bostman, U. Paivarinta, Partio E. The tissue-implant interface during degradation of absorbable polyglycolide fracture fixation screws in the rabbit femur. Clinical orthopaedics and related research, 285, 1992: 263-272
    [82] A. Weiler, H. J. Helling, U. Kirch, T. K. Zirbes, K. E. Rehm. Foreign-body reaction and the course of osteolysis after polyglycolide implants for fracture fixation. Experimental study in sheep. The Journal of bone and joint surgery (British volume), 78, 1996: 369-376
    [83]P.J.Atkinson,R.L.Lancaster,T.S.Atkinson.Breaking strength retention and hidtologic effects around 1,3-mm ORTHOSORB Polydioxanone absorbable pins at various sites in the rabbit.The Journal of foot and ankle surgery,37,1998:42-47
    [84]A.Piattelli,A.Scarano,F.Coraggio.Early tissue reactions to polylactic acid resorbable membranes:a histological and histochemical study in rabbit.Biomaterials,19,1998:889-896
    [85]C.M.Agrawal,K.A.Athanasiou.Technique to control pH in vicinity of biodegrading PLA-PGA implants.Journal of Biomedical Materials Research,38,1997:105-114
    [86]M.R.Hutchinson,S.A.Ash.Failure of a biodegradable meniscal arrow.A case report.The American journal of sports medicine,27,1999:101-103
    [87]李湘洲,李凡.生物陶瓷材料的现状与发展趋势.佛山陶瓷,12,2003:3-5
    [88]P.Sarvanapavan,L.L Hench.Mesoporous calcium silicate glasses.I.synthesis.Journal of Non-Crystalline Solids,18(3),2003:1-13
    [89]李世普,陈小明.生物陶瓷.武汉工业大学出版社,1989:48-78
    [90]B.Y.Chou,E.Chang.Plasma-sprayed hydroxyapatite coating on titanium alloy with ZrO_2 second phase and ZrO_2 intermediate layer.Surface and Coatings Technology,153(1),2002:84-92
    [91]R.Strang,C.J.Whitters,D.Brown,R.L.Clarke,R.V.Curtis,P.V.Hatton.Dental materials:1996 literature review.Part 2.Journal of Dentistry,26(4),1998:273-291
    [92]S.Agathopoulos,D.U.Tulyaganov,P.A.Marques,M.C.Ferro,M.H.Fernandes,R.N.Correia.The fluorapatite-anorthite system in biomedicine.Biomaterials,24,2003:1317-1331
    [93]王海亭,陈磊,金雪玲,朱海涛.羟基磷灰石(HAP)材料在生物材料中的研究与开发.山东陶瓷,25(2),2002:3-8
    [94]M.Sous,R.Bareille,F.Rouais,D.Cl(?)ment,J.Am(?)d(?)e,B.Dupuy,Ch.Baquey.Cellular biocompatibility and resistance to compression of macroporous beta-tricalcium phosphate ceramics.Biomaterials,19(23),1998:2147-2153
    [95]张兴栋.生物医用材料国际市场走势.新材料产业,11,2005:27-32
    [96]J.C.Merry,I.R.Gibson,S.M.Best,W.Bonfield.Synthesis and characterization of carbonate hydroxyapatite.Journal of Materials Science:Materials in Medicine,9(12),1998:779-783
    [97]A.C.Tas.Synthesis of biomimetic Ca-hydroxyapatite powders at 37℃ in synthetic body fluids.Biomaterials,21(14),2000:1429-1438
    [98]D.M.Liu,T.Troczynski,W.J.Tseng.Water-based sol-gel synthesis of hydroxyapatite:process development.Biomaterials,22(13),2001:1721-1730
    [99]S.J.Li,J.R.de Wijn,P.Layrolle,K.de Groot.Synthesis of macroporous hydroxyapatite scaffolds for bone tissue engineering.Journal of Biomedical Materials Research,61(1),2002:109-120
    [100]S.Koutsopoulos.Synthesis and characterization of hydroxyapatite crystals:a review study on the analytical methods.Journal of Biomedical Materials Research,62(4),2002:600-612
    [101]W.Wang,S.Zhang,K.Wei,N.Zhao,J.Chen,X.Wang.Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template.Materials Letters,60(12),2006:1484-1487
    [102]Dentalviews.美国专家研制牙齿整形及补牙新材料,2001
    [103]L.J.Gibson,M.F.Ashby.Cellular solids:Structure and properties.Second edition,Cambridge:Cambridge University Press,1997:152-200
    [104]O.E.Petrov,E.Dyulgerova,L.Petrov,R.Popova.Characterization of calcium phosphate phases obtained during the preparation of sintered biphase Ca-P ceramics.Materials Letters,48,2001:162-167
    [105]B.S.Chang,C.K.Lee,K.S.Hong,H.J.Youn,H.S.Ryu,S.S.Chung,K.W.Park.Osteoconduction at porous hydroxyapatite with various pore configurations.Biomaterials,21(12),2000:1291-1298
    [106]J.X.Lu,B.Flautre,K.Anselme,P.Hardouin,A.Gallur,M.Descamps,B.Thierry.Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo.Journal of Materials Science:Materials in Medicine,10(2),1999:111-120
    [107]闫玉华,樊东辉.B-TCP多孔陶瓷药物载体的制备与微观结构.武汉工业大学学报,4,1995:106-108
    [108]D.Tadic,F.Beckmann,K.Schwarz,M.Epple.A novel method to produce hydroxyapatite objects with interconnecting porosity that avoids sintering.Biomaterials,25,2004:3335-3340
    [109]Y.Doi,H.Iwanaga,T.Shibutani,Y.Moriwaki,Y.Iwayama.Osteoclastic responses to various calcium phosphates in cell cultures.Journal of Biomedical Materials Research,47(3),1999:424-433
    [110]D.M.Liu.Preparation and characterization of porous hydroxyapatite bioceramics via slip casting route.Ceramics International,24,1998:441-447
    [111]M.Milosevski,J.Bossert,D.Milosevski,N.Gruevska.Preparation and properties of dense and porous calcium phosphate.Ceramics International,25,1999:692-698
    [112]A.Drissen,C.P.A.T.Klein,K.De Groot K.Preparation and some properties of sintered β-whitiockite.Biomaterials,3(2),1982:113-116
    [113]G.Zhang,F.Jian,O.Tatsuki.Fabrication of porous ceramics with unidirectionally aligned continuous pores.Journal of the American Ceramic Society,84(6),2001:1395-1397
    [114]Y.W.Gu,M.S.Yong,B.Y.Tay,C.S.Lim.Synthesis and bioactivity of porous Ti alloy prepared by foaming with TiH_2.Materials Science and Engineering C,doi:10.1016/j.msec.2008.11.003
    [115]Schwartzwalder,A.V.Somess.美国专利,1963:3 090 094
    [116]A.Tampieri,G.Celotti,S.Sprio,A.Delcogliano,S.Franzese.Porosity-graded hydroxyapatite ceramics to replace natural bone.Biomaterials,22(11),2001:1365-1370
    [117]J.Tian,J.Tian.Preparation of porous hydroxyapatite.Journal of Materials Science,36,2001:3061-3066
    [118]段曦东.多孔陶瓷的制备、性能及应用.陶瓷研究,14(3),1999:12-17
    [119]J.Macan,A.Gajovi(?),H.Ivankovi(?).Porous zirconium titanate ceramics synthesized by sol-gel process.Journal of the European Ceramic Society,doi:10.1016/j.jeurceramsoc.2008.07.001
    [120]倪春.医用生物制品的真空冷冻干燥技术.广西机械,1,1999:15-18
    [121]张玉珍.冷冻-干燥工艺合成复合孔结构的多孔陶瓷.江苏陶瓷,3,2001:33-35
    [122]A.R.Boccaccini,J.J.Blaker.Bioactive composite materials for tissue engineering scaffolds.Expert Review of Medical Devices,2,2005:303-317
    [123]Y.S.Nam,J.J.Yoon,T.G.Park.A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive.Journal of Biomedical Materials Research,53(1),2000:1-7
    [124]Y.S.Nam,T.G.Park.Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation.Journal of Biomedical Materials Research,47(1),1999:8-17
    [125]Y.S.Nam,T.G.Park.Biodegradable polymeric microcellular foams by modified thermally induced phase separation method.Biomaterials,20(19),1999:1783-1790
    [126]R.Zhang,P.X.Ma.Poly(alpha-hydroxylacids)/hydroxyapatite porous composites for bone-tissue engineering.I.Preparation and morphology.Journal of Biomedical Materials Research,44(4),1999:446-455
    [127]D.C.Tancred,B.A.O.Mccormack,A.J.Carr.A synthetic bone implant macrosopically identical tocancellous bone.Biomaterials,19,1998:2302-2311
    [128]H.H.Lu,S.F.E1-Amin,K.D.Scott,C.T.Laurencin.Three-dimensional,bioactive,biodegradable,polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like ceils in vitro.Journal of Biomedical Materials Research A,64A,2003:465-474
    [129]王士斌,翁连进,郑昌琼.骨形态发生蛋白/多孔β-磷酸三钙复合人工骨.四川联合大学学报,3(5),1999:76-80
    [130]杨守峰,张世新,田杰谟.精细陶瓷成型新工艺-快速自动成型.功能材料,29(4),1998:337-342
    [131]S.J.Kalita,S.Bose,H.L.Hosick,A.Bandyopadhyay.Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling.Materials Science and Engineering C,23,2003:611-620
    [132]C.E.Wilson,J.D.de Bruijn,C.A.van Blitterswijk,A.J.Verbout,W.J.Dhert.Design and fabrication of standardized hydroxyapatite scaffolds with a defined macro-architecture by rapid prototyping for bone-tissue-engineering research.Journal of Biomedical Materials Research A,68(1),2004:123-132
    [133]E.Berry,J.M.Brown,M.Connell,C.M.Craven,N.D.Efford,A.Radjenovic,M.A.Smith.Preliminary experience with medical applications of rapid prototyping by selective laser sintering.Medical Engineering and Physics,19(1),1997:90-96
    [134]D.W.Hutmacher,M.Sittinger,M.V.Risbud.Scaffold-based tissue engineering:rationale for computer-aided design and solid free-form fabrication systems.Trends in Biotechnology,22(7),2004:354-362
    [135]刘培生.多孔材料引论.清华大学出版社,2004
    [136]J.Banhart,J.Baumeister,M.Weber.Metal foams near commercialization.Metal Powder Report,4,1997:38-41
    [137]L.Montanaro,Y.Jorand,G.Fantozzi,A.Negro.Ceramic foams by powder processing.Journal of the European Ceramic Society,18,1998:1339-1350
    [138]D.A.Hirschfeld,T.L.Li,D.M.Liu.Processing of porous oxide ceramics.Key Engineering Materials,115,1996:65-80
    [139]M.Scheffler,P.Colombo.Cellular ceramics:structure,manufacturing,properties and applications.Wiley,2005:227
    [140]R.Brezny,D.J.Green,C.Q.Dam.Evaulation of strut strength in open-cell ceramics.Journal of the American Ceramic Society,72(6),1989:885-889
    [141]朱新文,汇东亮,谭寿洪.多孔陶瓷的制备、性能及应用:(Ⅱ)多孔陶瓷的结构、性能及应用.陶瓷学报,6,2003:86-90
    [142]H.D.Kim,R.F.Valentini.Retention andactivity of BMP-2 in hyaluronic acid-based scaffolds in vitro.Journal of Biomedical Materials Research,59(3),2002:573-584
    [143]S.Nishiguchi,H.Kato,M.Neo,M.Oka,H.M.Kim,T.Kokubo,T.Nakamura.Alkali-and heat-treated porous titanium for orthopedic implants.Journal of Biomedical Materials Research,54(2),2001:198-208
    [144]Y.Hu,D.W.Grainger,S.R.Winn,J.O.Hollinger.Fabrication of poly(alpha-hydroxy acid) foam scaffolds using multiple solvent systems.Journal of Biomedical Materials Research,59(3),2002:563-572
    [145]F.A.Maspero,K.Ruffieux,B.Muller,E.Wintermantel.Resorbable defect analog PLGA scaffolds using CO_2 as solvent:structural characterization.Journal of Biomedical Materials Research,62(1),2002:89-98
    [146]F.Causa,P.A.Netti,L.Ambrosio,G.Ciapetti,N.Baldini,S.Pagani,D.Martini,A.Giunti.Poly-ε-caprolactone/hydroxyapatite composites for bone regeneration:in vitro characterization and human osteoblast response.Journal of Biomedical Materials Research A,76(1),2006:151-162
    [147]R.Nazarov,H.J.Jin,D.L.Kaplan.Porous 3-D scaffolds from regeneratedsilk fibroin.Biomacromolecules,5(3),2004:718-726
    [148]F.Zhao,Y.Yin,W.W.Lu,J.C.Leong,W.Zhang,J.Zhang,M.Zhang,K.Yao.Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds.Biomaterials,23(15),2002:3227-3234
    [149]刘培生,马晓明.多孔材料检测方法.冶金工业出版社,2006
    [150]J.Dong,H.Kojima,T.Uemura,M.Kikuchi,T.Tateishi,J.Tanaka.In vivo evaluation of a novel porous hydroxyapatite to sustain osteogenesis of transplantedbone marrow-derived osteoblastic cells.Journal of Biomedical Materials Research,57(2),2001:208-216
    [151]E.A.Botchwey,S.R.Pollack,E.M.Levine,C.T.Laurencin.Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system.Journal of Biomedical Materials Research,55(2),2001:242-253
    [152]G.Chen,T.Ushida,T.Tateishi.Poly(DL-lactic-co-glycolic acid) sponge hybridized with collagen microsponges and deposited apatite particulates.Journal of Biomedical Materials Research,57(1),2001:8-14
    [153]S.H.Oh,S.G.Kang,E.S.Kim,S.H.Cho,J.H.Lee.Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/ poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method.Biomaterials,24(22),2003:4011-4021
    [154]A.R.E1-Ghannam.Advanced bioceramic composite for bone tissue engineering:design principles and structure-bioactivity relationship.Journal of Biomedical Materials Research A,69(3),2004:49-501
    [155]P.Li.Biomimetic nano-apatite coating capable of promoting bone ingrowth.Journal of Biomedical Materials Research A,66(1),2003:79-85
    [156]J.D.Sanios,P.L.Silva,J.C.Knowies,S.Talal,F.J.Monteiro.Reinforcement of hydroxyapatite by adding P_2O_5-CaO glasses with Na)2O,K_2O and MgO.Journal of Materials Science:Materials in Medicine,7(3),1996:187-189
    [157]张丽娜,纳米羟基磷灰石及其复合材料的制备与研究.青岛大学,2004
    [158]E.Champion,S.Gautier.Characterization of hot pressed Al_2O_3-platelet reinforced hydroxyapatite composites.Journal of Materials Science:Materials in Medicine,7(2),1996:125-130
    [159]M.Knepper,S.Moricca,B.K.Milthorpe.Stability of hydroxyapatite while processing short-fibre reinforced hydroxyapatite ceramics.Biomaterials,18(23),1997:1523-1529
    [160]J.A.Delgado,L.Morej(?)n,S.Mart(?)nez,M.P.Ginebra,N.Carlsson,E.Fern(?)ndez,J.A.Planell,M.T.Clavaguera-Mora,J.Rodr(?)guez-Viejo.Zirconia-toughened hydroxyapatite ceramic obtained by wet sintering.Journal of Materials Science:Materials in Medicine,10(12),1999:715-719
    [161]E.S.Ahn,N.J.Gleason,J.Y.Ying.The effect of zirconia reinforcing agents on the microstructure and mechanical properties of hydroxyapatite-based nanocomposites.Journal of the American Ceramic Society,88(12),2005:3374-3379
    [162]J.Li,B.Fartash,L.Hermansson.Hydroxyapatite-alumina composites and bone-bonding.Biomaterials,16(5),1995:417-422
    [163]H.W.Kim,Y.H.Koh,S.B.Seo,H.E.Kim.Properties of fluoridated hydroxyapatite-alumina biological composites densified with addition of CaF_2.Materials Science and Engineering C,23(4),2003:515-521
    [164]但敏,李斌,陈枫,郭爱波,刘玉萍,刘明海,胡希伟.羟基磷灰石(HA) 的制备方法及其研究进展.现代生物医学进展,6(11),2006:125-127
    [165]吴波,梁成浩.羟基磷灰石复合涂层制备的研究进展.电镀与精饰,29(5),2007:17-20
    [166]王朝元,段友容,B.Markovic,C.Rolfe Howlett,H.Zreiqat,张兴栋.羟基磷灰石陶瓷诱导成骨细胞的研究.四川大学学报,40(6),2003:1110-1113
    [167]B.M.Tracy,B.H.Doremus.Direct electron microscopy studies of the bone-hydroxylapatite interface.Journal of Biomedical Materials Research,18(7),1984:719-726
    [168]P.Ducheyne,M.Wevers,P.de Meester.Fatigue properties of implant materials in hip prosthesis form:a standardized test.Journal of Biomedical Materials Research,17(1),1983:45-57
    [169]T.Kokubo.Bioactive glass ceramics:properties and applications.Biomaterials,12(2),1991:155-163
    [170]A.E1-Ghannam,P.Ducheyne,I.M.Shapiro.Formation of surface reaction products on bioactive glass and their effects on the expression of the osteoblastic phenotype and the deposition of mineralized extracellular matrix.Biomaterials,18(4),1997:295-303
    [171]A.E1-Ghannam,P.Ducheyne,I.M.Shapiro.Porous bioactive glass and hydroxyapatite ceramic affect bone cell function in vitro along different time lines.Journal of Biomedical Materials Research,36(2),1997:167-180
    [172]M.Okumura,H.Ohgushi,Y.Dohi,T.Katuda,S.Tamai,H.K.Koerten,S.Tabata.Osteoblastic phenotype expression on the surface of hydroxyapatite ceramics.Journal of Biomedical Materials Research,37(1),1997:122-129
    [173]T.Kokubo,H.Takadama.How useful is SBF in predicting in vivo bone bioactivity? Biomaterials,27(15),2006:2907-2915
    [174]X.Lu,Y.Leng.Theoretical analysis of calcium phosphate precipitation in simulated body fluid.Biomaterials,26,2005:1097-1108
    [175]D.Lickorish,L.Guan,J.E.Davies.A three-phase,fully resorbable,polyester/calcium phosphate scaffold for bone tissue engineering:evolution of scaffold design.Biomaterials,28,2007:1495-1502
    [176]J.Zhao,L.Y.Guo,X.B.Yang,J.Weng.Preparation of bioactive porous HA/PCL composite scaffolds.Applied Surface Science,255,2008:2942-2946
    [177]C.A.Vacanti,L.J.Bonassar.An overview of tissue engineered bone.Clinical orthopedics and related research,1999:S375-381
    [178]张宏泉,闰玉华,王友法,李世普.磷酸钙纤维的制备方法及其材料研究 进展.硅酸盐通报,3,2000:36-39
    [179]L.Vaz,B.Lopes,M.Almeida.Porosity control of hydroxyapatite implant.Journal of Materials Science:Materials in Medicine,10,1999:239-242
    [180]B.Flautre,M.Descamps,C.Delecourt,M.C.Blary,P.Hardouin.Porous HA ceramic for bone replacement:role of the pores and interconnections-experimental study in the rabbit.Journal of Materials Science:Materials in Medicine,12(8),2001:679-682
    [181]E.Tsuruga,H.Takita,H.Itoh,Y.Wakisaka,Y.Kuboki.Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis.Journal of Biochemistry,121(2),1997:317-324
    [182]T.M.Chu,D.G.Orton,S.J.Hollister,S.E.Feinberg,J.W.Halloran.Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures.Biomaterials,23(5),2002:1283-1293
    [183]E.Kon,A.Muraglia,A.Corsi,P.Bianco,M.Marcacci,I.Martin,A.Boyde.Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones.Journal of Biomedical Materials Research,49(3),2000:328-237
    [184]J.E.Dalton,S.D.Cook,K.A.Thomas,J.F.Kay.The effect of operative fit and hydroxyapatite coating on the mechanical and biological response to porous implants.The Journal of Bone and Joint Surgery(American volume),77(1),1995:97-110
    [185]U.Heise,J.F.Osborn,F.Duwe.Hydroxyapatite ceramic as a bone substitute.International Orthopaedics,14,1990:329-338
    [186]朱新文,江东亮.有机泡沫浸渍工艺-一种经济实用的多孔陶瓷制备工艺.硅酸盐通报,3,2000:45-51
    [187]K.de Groot.Bioceramics consisting of calcium phosphate salts.Biomaterials,1(1),1980:47-50
    [188]K.A.Hing,S.M.Best,K.E.Tanner,W.Bonfield,P.A.Revell.Biomechanical assessment of bone ingrowth in porous hydroxyapatite.Journal of Materials Science:Materials in Medicine,8(12),1997:731-736
    [189]张琳,田杰谟.多孔HA人工骨的研究.透析与人工器官,13(2),2002:5-10
    [190]D.M.Liu.Influence of solid loading and particle size distribution on the porosity development of green alumina ceramic mouldings.Ceramics International,23,1997:135-139
    [191]郑岳华,侯小妹,杨兆雄.多孔羟基磷灰石生物陶瓷的进展.硅酸盐通报,1995.3:20-24
    [192]李威,组织工程在骨修复中的应用.中国矫形外科杂志,21,2003:5941-5942
    [193]朱时珍,赵振波,刘庆国.多孔陶瓷材料的制备技术.材料科学与工程,14(3),1996:33-39
    [194]李世普.特种陶瓷工艺学.武汉工业大学出版社.1990
    [195]衷鸿宾.生物降解吸收型钙磷陶瓷材料.中国矫形外科杂志,11(3),1996:220-222
    [196]C.M.Agrawal,K.A.Athanasiou,J.D.Heckman.Biodegradable PLA-PGA polymers for tissue engineering in orthopedics.Materials Science Forum,250,1997:115-129
    [197]L.G.Cima,J.Vaeanti,C.Vaeanti.Tissue engineering by cell transplantation using degradable polymer substrates.Journal of Biomechanical Engineering,113(5),1991:143-151
    [198]F.Y.Hsu,S.C.Chueh,Y.J.Wang.Microspheres of hydroxyapatite/reconstituted collagen as supports for osteoblast cell growth.Biomaterials,20(20),1999:1931-1936
    [199]D.Bako(?),M.Sold(?)n,I.H.Fuentes.Hydroxyapatite-collagen-hyaluronic acid composite.Biomaterials,20(2),1999:191-195
    [200]H.R.Ramay,M.Zhang.Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods.Biomaterials,24(19),2003:3293-3202
    [201]Z.Zyman,J.Weng,X.Liu,X.Li,X.Zhang.Phase and structural changes in hydroxyapatite coatings under heat treatment.Biomaterials,15,1994:151-155
    [202]陈永楠,马楚凡,赵康.孔结构不同的两种网状羟基磷灰石陶瓷的性能比较研究.硅酸盐通报,1,2006:66-80
    [203]T.Fujikawa.Hot isostatic pressing(HIP) of ceramics and HIP equipment for ceramics.Japan Fine Ceramics,985,1998:44-53
    [204]M.Nanko,K.Ishizaki,T.Fujiawa.Porous ceramic filters produced by hot isostatic pressing.Journal of the American Ceramic Society,77,1994:2437-2442
    [205]M.Jarcho,C.H.Bolen,M.B.Thomas,J.Bobick,J.F.Kay.Hydroxylapatite synthesis and characterization in dense polycrystalline form.Journal of Materials Science,11,1976:2027-2035
    [206] Qian LM, Li M, Zhou ZR, Yang H, Shi XY. Comparison of nano-indentation hardness to microhardness. Surface and Coatings Technology, 195, 2005:264-271
    
    [207] A. L. Boskey, E. Paschalis. Matrix proteins and biomineralization in bone engineering. Editors. J. E. Davies. 44-61
    
    [208] M. Navarro, M. P. Ginebra, J. A. Planell, C. C. Barrias, M. A. Barbosa. In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass. Acta Biomaterialia, 1, 2005: 411-419
    
    [209] D. Rohner, D. W. Hutmacher, P. See, K. C. Tan, V. Yeow, S. Y. Tan, S. T. Lee,B. Hammer. Individually CAD-CAM technique designed, bioresorbable 3-dimensional polycaprolactone framework for experimental reconstruction of craniofacial defects in the pig. Mund Kiefer Gesichtschir, 6(3), 2002: 162-167
    
    [210] D. Rohner, A. Tay, C. S. Meng, D. W. Hutmacher, B. Hammer. The sphenozygomatic suture as a key site for soteosynthesis of the orbitozygomatic complex in panfacial fractues: a biomechanical study in human cadavers based on clinical practice. Plastic and Reconstructive Surgery, 110(6), 2002:1463-1471
    
    [211] A. G. A.Coombes, S. C. Rizzi, M. Williamson, J. E. Barralet, S. Downes, W.A .Wallace. Precipitation casting of Polycaprolactone for allpications in tissue engineering and drug delivery. Biomaterials, 25(2), 2004: 315-325
    
    [212] R. Dell'Erba, G. Groeninckx, G. Maglio, M. Malinconico, A. Migliozzi.Immiscible polymer blends of semicrystalline biocompatible components:thermal properties and phase morphology analysis of PLLA/PCL blends.Polymer, 42(18), 2001: 7831-7840
    
    [213] M. Hiljanen-Vainio, T. Karjalainen, J. Sepp(?)l(?). Biodegradable lactone copolymers. I. Characterization and mechanical behavior of ε-caprolactone and lactide copolymers. Journal of Applied Polymer Science, 59(8), 1996:1281-1288
    
    [214] M. Penco, L. Sartore, F. Bignotti, S. D. Antone, L. D. Landro. Thermal properties of a new class of block copolymers based on segments of poly(d,1-lactic-glycolic acid) and poly(s-caprolactone). European Polymer Journal,236(5), 2000:901-908
    
    [215] H. W. Kim, E. J. Lee, H. E. Kim, V. Salih, J. C. Knowles. Effect of fluoridation of hydroxyapatite in hydroxyapatite-polycaprolactone composites on osteoblast activity. Biomaterials, 26(21), 2005: 4395-4404
    
    [216] H. W. Kim, J. C. Knowles, H. E. Kim. Hydroxyapatite/poly(s-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials, 25(7-8), 2004: 1279-1287
    [217] 美国专利. 1976,3297033
    [218] B. C. Benicewicz, P. K. Hopper. Polymers for absorbable surgical sutures. Journal of Bioactive and Compatible Polymers, 6, 1991: 64-70
    [219] D. H. Lewis. Biodegradable Polymer as drug delivery systems. New York.1990:203-208
    [220] R. L. Dunn. Polymeric drugs and drug delivery systems. American Chemical Soeiety. Washington DC. 1991: 291-297
    [221] J. Viljanen, J. Kinnunen, S. Bondestam, A. Majola, P. Rokkanen, P. T(?)rm(?)l(?).Bone changes after experimental osteotomies fixed with absorbable self-reinforced poly-L-lactide screws or metallic screws studied by plain radiographs, quantitative computed tomography and magnetic resonance imaging. Biomateials, 16(17), 1995: 1353-1358
    [222] S. Yolles, J. E. Eldridge. New biodegradable drug delivery system. Polymer News, 1,1970:9
    [223] H. Tamai, K. Igaki, E. Kyo, K. Kosuga, A. Kawashima, S. Matsui, H. Komori,T. Tsuji, S. Motohara, H. Uehata. Initial and 6-month results of biodegradable poly-1-lactic acid coronary stents in humans. Circulation, 102, 2000: 399-404
    [224] V. Karageorgiou, D. Kaplan. Porosity of 3D biomaterials scaffolds and osteogenesis. Biomaterials, 26, 2005: 5474-5491
    [225] M. Svehla, P. Morberg, B. Zicat, W. Bruce, D. Sonnabend, W. R. Walsh.Morphometric and mechanical evaluation of titanium implant integration:comparison of five surface structures. Journal of Biomedical Materials Research, 51(1), 2000: 15-22
    [226] F. S. Kaplan, W. C. Hayes, T. M. Keaveny, A. Boskey, T. A. Einhorn, J. P.Iannotti. Form and function of bone. Orthopedic Basic Science, 1994: 128-184
    [227] X. G. Miao, D. M. F. Tan, J. Li, Y. Xiao, R. Crawford. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Acta Biomaterialia, 4 (3), 2008: 638-645
    [228] Q. Z. Chen, I. D. Thompson, A. R. Boccaccini. 45S5 Bioglasss?-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials, 27, 2006:2414-2425
    [229] J. R. Jones, L. L. Hench. Regeneration of trabecular bone using porous ceramics. Current opinion in solid state & materials science, 7, 2003: 301-317
    [230] L. J. Gibson, M. F. Ashby. Cellular solids: structure and properties. Oxford: Pergamon,1999:117-118,209-212
    [231]M.Peroglio,L.Gremillard,J.Chevalier,L.Chazeau,C.Gauthier,T.Hamaide.Toughening of bio-ceramics scaffolds by polymer coating.Journal of the European Ceramic Society,27,2007:2679-2685
    [232]Y.Tian,D.L.Jiang,J.X.Zhang,Q.L.Lin.Fabrication of bioactive composite by developing PLLA onto the framework of sintered HA scaffold.Materials Science and Engineering C 28,2008:51-56
    [233]杨帮成.四川大学硕士学位论文.磷酸钙陶瓷-聚乳酸-骨形念发生蛋白骨复合材料研究,1994.
    [234]#12
    [235]C.E.Wen,Y.Yamada,K.Shimojima,Y.Chino,H.Hosokawa,M.Mabuchi.Novel titanium foam for bone tissue engineering.Journal of Materials Research,17(10),2002:2633-2637
    [236]D.C.Dunand.Processing of titanium foams.Advanced Engineering Materials,2004;6(6):369-376
    [237]章媛媛,陶杰,庞迎春,王玲,王炜.电化学沉积法制备钛基HA涂层.稀有金属材料与工程,35(3),2006:459-462
    [238]J.Weng,X.Liu,X.Zhang,Z.Ma,X.Ji,Z.Zyman.Further studies of the plasma-sprayed amorphous phase in hydroxyapatite coatings and its deamorphization.Biomaterials,14(8),1993:578-582
    [239]S.Jalota,S.B.Bhaduri,A.C.Tas.Osteoblast proliferation on neat and apatite-like calcium phosphate-coated titanium foam scaffolds.Materials Science and Engineering C,27(3),2007:432-440
    [240]X.Lu,Z.Zhao,Y.Leng.Calcium phosphate crystal growth under controlled atmosphere in electrochemical deposition.Journal of Crystal Growth,284(3-4)2005:506-516
    [241]Q.Zhang,Y.Leng,R.Xin.A comparative study of electrochemical deposition and biomimetic deposition of calcium phosphate on porous titanium.Biomaterials,26(16),2005:2857-2965
    [242]R.Z.LeGeros,R.Kijkowska,J.P.LeGeros.Formation and transformation of octacalcium phosphate,OCP:a preliminary report.Scanning Electron Microscopy,4,1984:1771-1777
    [243]R.Z.LeGeros,G.Daculsi,I.Orly,T.Abergas,W.Tortes.Solution-mediated transformation of octacalcium phosphate(OCP) to apatite.Scanning Microscopy,3(1),1989:129-137
    [244]P.Habibovic,C.M.van der Valk,C.A.van Blitterswijk,K.de Groot,G.Meijer.Influence of octacalcium phosphate coating on osteoinductive properties of biomaterials.Journal of Materials Science:Materials in Medicine,15(4),2004:373-380
    [245]F.Barrere,C.M.van der Valk,R.A.J.Dalmeijer,G.Meijer,C.A.van Blitterswijk,K.de Groot,P.Layrolle.Osteogenecity of octacalcium phosphate coatings applied on porous metal implants.Journal of Biomedical Materials Research A,66(4),2003:779-788
    [246]Q.Z.Chen,A.R.Boccaccini.Poly(D,L-lactic acid) coated 45S5Bioglass-based scaffolds:processing and characterization.Journal of Biomedical Materials Research A,77(3),2006:445-457
    [247]E.D.Eanes,I.H.Gillessen,A.S.Posner.Intermediate states in the precipitation of hydroxyapatite.Nature,208(5008),1965:365-367
    [248]Y.Ndkdmura,M.Neo,T.Kokubo.Bone boding of biomaterials and apatite formation on biomaterials:in Mineralization,in natural and synthetic biomaterials.Editor.P.Li.Published by MRS,2000:15-26
    [249]A.C.Jayasuriya,M.Assad,A.H.Jayatissa,N.A.Ebraheim.Dissolution behavior of biomimetic minerals on 3D PLGA scaffold.Surface and Coatings Technology,200,2006:6336-6339
    [250]W.L.Murphy,S.Hsiong,T.P.Richardson,C.A.Simmons,D.J.Mooney.Effects of a bone-like mineral film on phenotype of adult human mesenchymal stem cells in vitro.Biomaterials,26,2005:303-310
    [251]K.C.Baker,M.A.Anderson,S.A.Oehlke,A.I.Astasheina,D.C.Haikio,J.Drelich,S.W.Donahue.Growth,characterization and biocompatibility of bone-like calcium phosphate layers biomimetically deposited on metallic substrata.Materials Science and Engineering C,26,2006:1351-1360
    [252]M.Glimcher.Molecular Biology of Mineralized Tissues with Particular Reference to Bone.Reviews of Modern Physics,31,1959:359-393
    [253]A.E.Sobel.Local factors in the mechanism of calcification.Annals of the New York Academy of Sciences,60(5),1955:713-732
    [254]马克吕,冯坤,朱太咏等.骨生理学.河南医科大学出版社,2000,第一版
    [255]段有容.四川大学博士学位论文.2001
    [256]J.S.Li,A.F.T.Mak.Fabrication of inhomogeneous biodegradable polymer scaffold.The 7th World Biomaterials Congress,2004
    [257]H.Lin,H.Xu,K.de Groot.Tensile strength of the interface between hydroxyapatite and bone.Journal of Biomedical Materials Research,26(1),1992:7-18
    [258]梁列峰,翁杰.甲壳素纤维制造工艺初探.四川纺织科技,2,2004:1-3
    [259]吴常生,尹玉姬,杨悦,姚康德.骨组织工程中大孔支架材料制备的研究中国临床康复,8(5),2004:929-931
    [260]叶大年,韩成,曾荣.等大球任意堆积,科学通报,12,(1986):920-924
    [261]T.Miyoshi,M.Itoh,S.Akiyama,A.Kitahara.ALPORAS Aluminum foam:production process,properties,and applications.Advanced Engineering Materials,2,2000:179-183