改性L-聚乳酸的静电纺丝及其纤维膜的结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组织工程支架材料是当前的热点研究方向,尤其是采用静电纺丝技术制备的纤维膜在组织工程领域得到广泛的应用。本学位论文以可生物降解的L-聚乳酸(PLLA)为研究对象,采用共聚、共混、复合的方法对PLLA进行改性,研究其静电纺丝工艺及其纤维膜的结构与性能,并在纤维膜表面进行硫酸软骨素、壳聚糖的静电自组装以提高纤维膜的亲水性、扩大其在生物医学等领域的应用。论文的研究内容和主要结果如下:
     (1)通过偶联反应,以羟基封端的L-聚乳酸(PLLA-diols)为硬段、聚己内酯(PCL)或聚乙二醇(PEG)为软段合成了PLLA-b-PCL、PLLA-b-PEG嵌段共聚物,采用静电纺丝技术制备了共聚物纤维膜。研究了共聚组分对PLLA结晶性能、电纺纤维的形貌、纤维膜力学性能的影响。结果表明在共聚物中结晶相主要是PLLA相,且共聚物中PLLA的结晶度随着PLLA含量增加而增加;共聚物电纺纤维的直径随着PCL、PEG组分含量的增加及溶液浓度的降低而减小;在保持较高强度和杨氏模量的同时,PCL和PEG提高了共聚物纤维膜的断裂伸长率。
     (2)采用溶液静电纺丝工艺制备了PLLA/PCL共混物纤维膜,考察了影响纤维形貌的因素,研究了纤维膜的孔隙率、结晶性、力学性能和生物相容性。在PLLA/PCL质量比1/1、溶液浓度为10wt%、电压为20kV、接收距离为15cm的条件下得到最佳形貌的纤维;随着PCL含量增加,共混纤维膜的模量和拉伸强度逐渐降低、而断裂伸长率增加,高的孔隙率和良好的力学性能使其具备成为组织工程支架的条件。倒置相差显微镜(IPCM)和SEM结果表明脂肪源干细胞(ADSCs)在PLLA/PCL纤维膜支架上生长的数量随着种植时间的增加而增加,形成沿着支架三维网络方向生长的结构。MTT实验结果证明共混纤维膜支架有利于ADSCs的粘附和生长,且ADSCs在支架上分别向成骨细胞和脂肪细胞诱导分化成功,进一步说明PLLA/PCL纤维膜支架可以在组织工程中替代原生ECM。
     (3)采用静电纺丝工艺制备了高度取向的PLLA/PCL/F-MWNT复合纤维膜。研究了F-MWNT对纤维的形貌、孔隙率、热稳定性、结晶性、降解速率、力学性能和生物相容性的影响。结果表明F-MWNTs在纤维中沿着轴向分布,随着F-MWNTs含量增加,电纺纤维直径由于电纺溶液的电导率增加而变得更细;F-MWNTs显著提高了复合纤维膜的热稳定性和降解速率。虽然在电纺过程中,F-MWNTs妨碍了PLLA/PCL的结晶,但在冷结晶过程中,F-MWNTs起到晶核的作用促进PLLA相的结晶。1.25wt%含量的F-MWNTs对取向复合纤维同时起到增强增韧的作用。MTT实验证明PLLA/PCL/F-MWNT复合纤维膜支架有利于ADSCs的粘附,具有良好的细胞相容性。
     (4)采用静电自组装技术在PLLA/PCL、PLLA/PCL/F-MWNT复合纤维膜表面组装硫酸软骨素(CS)/壳聚糖(CHS)复合膜。研究纤维膜表面修饰前后的形貌、结构和亲水性能。实验结果证实1,6-己二胺与PLLA发生胺化反应,且CS和CHS通过静电作用力吸附到纤维膜表面。随着CS/CHS组装层数的增加,纤维膜表面的亲水性也逐步得到改善。
Tissue engineering scaffolds material is the current research hotspot, especially the electrospun fibrous membranes are expected to have wide applications in tissue engineering field. In this dissertation, the biodegradable poly(L-lactide) (PLLA)was used as the research object, and it was modified with copolymerization, blending and composite. The electrospinning process, the structure and properties of the fibrous membranes were investigated. In order to improve the hydrophilic of the fibrous membranes, chondroitin sulfate (CS) and chitosan (CHS) were selected as the polyelectrolyte to deposit on the fibrous membranes substrate via the electrostatic assemble technique, which will expand their application in biomedical fields. The main contents and resuluts of this dissertation are as follows:
     (1)PLLA/PCL, PLLA/PEG multiblock copolymers were synthesized from diol-terminated PLLA (PLLA-diols), as hard segments and PCL, as soft segments. The PLLA/PCL fibrous membranes were fabricated by electrospinning. The crystalline of PLLA, the morphology of the fibers and mechanical properties of the fibrous membranes were investigated. The results showed that the crystalline phase is mainly PLLA phase in these block copolymers, and high crystallinity in all copolymers with the higher PLLA ratios. The fiber diameter of copolymers decreased with decreasing solution concentration and increasing PCL, PEG content. Comparing with the electrospun PLLA membrane, the electrospun fibrous membranes of the copolymers demonstrated an enhanced elongation with still high tensile strength and Young's modulus.
     (2) The electrospun PLLA/PCL blend fibers could be optimally prepared with a 1/1 ratio of PLLA/PCL blend under a solution concentration of 10 wt%, an applied voltage of 20 kV and a TCD of 15cm. The porosity, crystalline, mechanical properties and biocompatibility of the fibrous membranes were investigated. The results showed that with increasing the content of PCL, the tensile strength and Young's modulus decreased gradually but the elongation at break increased. The high porosity and large ductility characteristics of the electrospun PLLA/PCL (1/1) blend fibrous membrane have made it a strong candidate for use as tissue scaffolds. The morphology and interactions between ADSCs and PLLA/PCL blend fibrous scaffolds were examined by using IPCM and SEM. With increasing seeding time, an increasing number of cells grow along the fiber orientation direction, forming a three-dimensional network with a fibrous pattern. The results of MTT assay demonstrated that the electrospun PLLA/PCL blend fibrous scaffolds provide ADSCs with a supportive interface to survive. Furthermore, the multi-lineage differentiation of ADSCs on such scaffold indicated the prospect to replace the native ECM for tissue engineering.
     (3) Aligned PLLA/PCL/F-MWNT composite fibrous membranes were fabricated with strong-acid oxidized MWNTs by electrospinning. The morphology, structure, porosity, crystalline, thermal stability, bio-degradation, mechanical properties and biocompatibility of the fibrous membranes were investigated. The results showed that F-MWNTs are oriented along the fiber axis. With the incorporation of F-MWNTs, the PLLA/PCL/F-MWNT composite fibers become thinner due to the increment in conductivity. PLLA/PCL/F-MWNT composite fibrous membranes show good thermal stability and bio-degradation. During electrospinning, F-MWNTs hinder the crystallization of PLLA/PCL blend, but during cold crystallization, the F-MWNTs act as nucleation sites to enhance the crystallization of PLLA. Moreover, the 1.25 wt% F-MWNTs toughen the electrospun PLLA/PCL blend fibrous membrane. MTT assay indicates that the electrospun PLLA/PCL/F-MWNT composite fibrous scaffolds have no toxic effect on proliferation of ADSCs.
     (4) CS/CHS multiplayer were selected as the polyelectrolyte to deposit on the PLLA/PCL, PLLA/PCL/F-MWNT fibrous membranes via the electrostatic assemble technique. The results verified the chemical reaction between 1,6-diaminohexane and PLLA, and more CS/CHS adsorption on the fibrous membranes. As CS/CHS multiplayers increase, the hydrophilic of the membranes increase gradually.
引文
[1]Carothers W H, Dorough G L, Van Natta F J. Studies of polymerization and ring formation. X. The reversible polymerization of six-membered cyclic ester. J Am Chem Soc,1932,54:761-772
    [2]Lowe C E. Preparation of high molecular weight polyhydroxyacetic ester. US Patent, 2668162,1954
    [3]章思规.精细有机化学品技术手册(第一版).北京:科学出版社,1993,1187-1188
    [4]Suji H, Ikada H. Stereocomplex formation between enantiomeric poly(lactic acid)s. XI. Mechanical properties and morphology. Polymer,1999,40:6699-6708
    [5]Sawyer DJ. Bioprocessing-no longer a field of dreams. Macromol Symp,2003,201: 271-281
    [6]Janorkar AV, Metters AT, Hirt DE. Modification of poly(lactic acid) films:enhanced wettability from surface-confined photografting and increased degradation rate due to an artifact of the photografting process. Macromolecules,2004,37:9151-9159
    [7]Rasal RM, Janorkarc AV, Hirta DE. Poly(lactic acid) modifications. Prog Polym Sci, 2010,35:338-356
    [8]Fukuzaki H, Yoshidat M, Asano M, et al. Synthesis of low-molecular-weight copoly(1-lactic acid/e-caprolactone) by direct copolycondensation in the absence of catalysts, and enzymatic degradation of the polymers. Polymer,1990,31:2006-14
    [9]Hiltunen K, Harkonen M, Seppala JV, et al. Synthesis and characterization of lactic acid based telechelic prepolymers. Macromolecules,1996,29:8677-8682
    [10]Hiltunen K, Seppala JV, Harkonen M. Lactic acid based poly(esterurethanes):use of hydroxyl terminated prepolymer in urethane synthesis. J Appl Polym Sci,1997,63: 1091-1100
    [11]Tuominen J, Seppala JV. Synthesis and characterization of lactic acid based poly(ester-amide). Macromolecules,2000,33:3530-3535
    [12]Grijpma DW, Pennings AJ. (Co)polymers of L-lactide.1. Synthesis, thermal properties and hydrolytic degradation. Macromol Chem Phys,1994,195:1633-1647
    [13]Grijpma DW, Pennings AJ. (Co)polymers of L-lactide.2. Mechanical properties. Macromol Chem Phys,1994,195:1649-1663
    [14]Cai Q, Bei J, Wang S. Synthesis and degradation of a tricomponent copolymer derived from glycolide, L-lactide, and epsilon-caprolactone. J Biomater Sci Polym Ed, 2000,11:273-288
    [15]Tasaka F, Miyazaki H, Ohya Y, et al. Synthesis of comb-type biodegradable polylactide through depsipeptide-lactide copolymer containing serine residues. Macromolecules,1999,32:6386-6389
    [16]Frick EM, Zalusky AS, Hillmyer MA. Characterization of polylactide-b-polyisoprene-b-polylactide thermoplastic elastomers. Biomacromolecules,2003,4: 216-23
    [17]Wang S, Cui W, Bei J. Bulk and surface modifications of polylactide. Anal Bioanal Chem,2005,381:547-556
    [18]Lee SH, Kim SH, Han YK, et al. Synthesis and characterization of poly(ethylene oxide)/polylactide/poly(ethylene oxide) triblock copolymer. J Polym Sci Polym Chem, 2002,40:2545-2555
    [19]Luo WJ, Li SM, Bei JZ, et al. Synthesis and characterization of poly (L-lactide)-poly(ethylene glycol) multiblock copolymers. J Appl Polym Sci,2002,84: 1729-1736
    [20]Sinclair RG. The case for polylactic acid as a commodity packaging plastic. J Macromol Sci Pure Appl Chem,1996, A33:585-597
    [21]Jacobsen S, Fritz HG. Plasticizing polylactide—the effect of different plasticizers on the mechanical properties. Polym Eng Sci,1999,39:1303-1310
    [22]Martin O, Averous L. Poly(lactic acid):plasticization and properties of biodegradable multiphase system. Polymer,2001,42:6209-6219
    [23]Pillin I, Montrelay N, Grohens Y. Thermo-mechanical characterization of plasticized PLA:is the miscibility the only significant factor. Polymer,2006,47:4676-4682
    [24]Kulinski Z, Piorkowska E, Gadzinowska K, et al. Plasticization of poly(L-lactide) with poly(propylene glycol). Biomacromolecules,2006,7:2128-2135
    [25]Kim KS, Chin IJ, Yoon JS, et al. Crystallization behavior and mechanical properties of poly(ethylene oxide)/poly(L-lactide)/poly(vinyl acetate) blends. J Appl Polym Sci, 2001,82:3618-3626
    [26]Sheth M, Kumar RA, Dave V, et al. Biodegradable polymer blends of poly(lactic acid) and polyethylene glycol). J Appl Polym Sci,1997,66:1495-1505
    [27]Ogata N, Jimenez G, Kawai H, et al. Structure and thermal/mechanical properties of poly(L-lactide)-clay blend. J Polym Sci Part B Polym Phys,1997,35:389-396
    [28]Kasuga T, Fujikawa H, Abe Y. Preparation of polylactic acid composites containingβ-Ca(PO3)2 fibers. J Mater Res,1999,14:418-424
    [29]Kasuga T, Ota Y, Nogami M, et al. Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers. Biomaterials,2001,22: 19-23
    [30]McManus AJ, Doremus R, Siegel R, et al. Evaluation of cytocompatibility and bending modulus of nanoceramic/polymer composites. J Biomed Mater Res,2005, 72A:98-106
    [31]Durucan C, Brown PW. Low temperature formation of calciumdeficient hydroxyapatite-PLA/PLGA composites. J Biomed Mater Res,2000,51:717-725
    [32]Hiroi R, Ray SS, Okamoto M, et al. Organically modified layered titanate:a new nanofiller to improve the performance of biodegradable polylactide. Macromol Rapid Commun,2004,25:1359-1364
    [33]Urayama H, Ma C, Kimura Y. Mechanical and thermal properties of poly(L-lactide) incorporating various inorganic fillers with particle and whisker shapes. Macromol Mater Eng,2003,288:562-568
    [34]Jiang L, Zhang G, Wolcott MP. Comparison of polylactide/nanosized calcium carbonate and polylactide/montmorillonite composites:reinforcing effects and toughening mechanisms. Polymer,2007,48:7632-7644
    [35]Broz ME, VanderHart DL, Washburn NR. Structure and mechanical properties of poly (D,L-lactic acid)/poly(e-caprolactone) blends. Biomaterials,2003,24:4181-1490
    [36]Maglio G, Migliozzi A, Palumbo R, et al. Compatibilized poly(1-caprolactone)/poly (L-lactide) blends for biomedical uses. Macromol Rapid Commun,1999,20:236-238
    [37]Hiljanen-Vainio M, Varpomaa P, Seppala J, et al. Modification of poly(L-lactides) by blending:mechanical and hydrolytic behavior. Macromol Chem Phys,1996,197: 1503-1523
    [38]Wang L, Ma W, Gross RA, et al. Reactive compatibilization of biodegradable blends of poly(lactic acid) and poly(e-caprolactone). Polym Degrad Stab,1998,59:161-168
    [39]Suyatma NE, Copinet A, Tighzert L, et al. Mechanical and barrier properties of biodegradable films made from chitosan and poly(lactic acid) blends. J Polym Environ,2004,12:1-6
    [40]Peesan M, Rujiravnit R, Supaphol P. Electrospinning of hexanoyl chitosan/polylactide blends. J Biomater Sci Polym Ed,2006,17:547-565
    [41]Yang X, Yuan M, Li W, et al. Synthesis and properties of collagen/polylactic acid blends. J Appl Polym Sci,2004,94:1670-1675
    [42]Ke T, Sun SX, Seib P. Blending of poly(lactic acid) and starches containing varying amylose content. J Appl Polym Sci,2003,89:3639-3646
    [43]Garlotta D, Doane W, Shogren R, et al. Mechanical and thermal properties of starch-filled poly(D,L-lactic acid)/poly(hydroxy ester ether) biodegradable blends. J Appl Polym Sci,2003,88:1775-1786
    [44]Chen Y, Mak AFT, Wang M, et al. PLLA scaffolds with biomimetic apatite coating and biomimetic apatite/collagen composite coating to enhance osteoblast-like cells attachment and activity. Surf Coat Technol,2006,201:575-580
    [45]Atthof B, Hilborn J. Protein adsorption onto polyester surfaces:is there a need for surface activation. J Biomed Mater Res Part B Appl Biomater,2007,80B:121-130
    [46]Eid K, Chen E, Griffith L, et al. Effect of RGD coating on osteocompatibility of PLGA-polymer disks in a rat tibial wound. J Biomed Mater Res,2001,57:224-231
    [47]Kubies D, Machova L, Brynda E, et al. Functionalized surfaces of polylactide modified by Langmuir-Blodgett films of amphiphilic block copolymers. J Mater Sci Mater Med,2003,14:143-149
    [48]Yang J, Shi GX, Wang SG, et al. Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture. J Biomed Mater Res,2002,62: 438-446
    [49]Ximing X, Gengenbach TR, Griesser HJ. Changes in wettability with time of plasma modified perfluorinated polymers. J Adhes Sci Technol,1992,6:1411-1431
    [50]Occhiello E, Morra M, Morini G, et al. Oxygenplasma-treated polypropylene interfaces with air, water, and epoxy resins. Part Ⅰ. Air and water. J Appl Polym Sci, 1991,42:551-559
    [51]Safinia L, Datan N, Hohse M, et al. Towards a methodology for the effective surface modification of porous polymer scaffolds. Biomaterials,2005,26:7537-7547
    [52]Yang J, Bei JZ, Wang SG. ImProving cell affinity of Poly(D, L-lactide) film modified by anhydrous ammonia plasma treatment. Polym Adv Technol,2002,13:220-226
    [53]Wan YQ, Qu X, Lu J, et al. Characterization of surface Property of poly(lactide-co-glycolide) after oxygen Plasma treatment. Biomaterials,2005,24: 4777-4783
    [54]Wan Y, Tu C, Yang J, et al. Influences of ammonia plasma treatment on modifying depth and degradation of poly(L-lactide) scaffolds. Biomaterials,2006,27:2699-2704
    [55]Luo N, Stewart MJ, Hirt DE, et al. Surface modification of ethylene-co-acrylic acid copolymer films:addition of amide groups by covalently bonded amino acid intermediates. J Appl Polym Sci,2004,92:1688-1694
    [56]Zhang P, He C, Craven RD, et al. Subsurface formation of amide in polyethylene-co-acrylic acid film:a potentially useful reaction for tethering biomolecules to a solid support. Macromolecules,1999,32:2149-2155
    [57]Janorkar AV, Luo N, Hirt DE. Surface modification of an ethyleneacrylic acid copolymer film:grafting amine-terminated linear and branched architectures. Langmuir,2003,20:7151-7158
    [58]Cai K, Yao K, Cui Y, et al. Surface modification of poly(D,L-lactic acid) with chitosan and its effects on the culture of osteoblasts in vitro. J Biomed Mater Res, 2002,60:398-404
    [59]Zhu YB, Gao CY, Liu XY, et al. Immobilization of biomacromolecules onto aminolyzed poly(1-lactic acid) toward acceleration of endothelium regeneration. Tissue Eng,2004,10:53-61
    [60]Ma H, Davis RH, Bowman CN. A novel sequential photoinduced living graft polymerization. Macromolecules,2000,33:331-335
    [61]Guan JJ, Gao CY, Feng LX, et al. Surface Photo grafting of Polyurethane with 2-hydroxyethyl acrylate for promotion of human endothelial cell adhesion and growth. J.Biomat. Sci,2000,11:523-536
    [62]Zhu Y, Gao CY, Shen JC. Surface modification of Polycaprolactone with Poly(methacrylic acid) and gelatin covalent immobilization for Promoting its cytocompatibility. Biomaterials,2002,23:4889-4895
    [63]Hsu SH, Chen WC. Improved cell adhesion by plasma-induced grafting of L-Iactide onto polyurethane surface. Biomaterials,2000,21:359-367
    [64]Zhao B, Brittain WJ. Polymer brushes:surface-immobilized macromolecules. Prog Polym Sci,2000,25:677-710
    [65]Bhardwaj N, Kundu SC, Electrospinning:A fascinating fiber fabrication technique. Biotechnol Adv,2010,28:325-347
    [66]Baji A, Mai Y-W, Wong S-C, et al. Electrospinning of polymer nanofibers:Effects on oriented morphology, structures and tensile properties. Compo Sci Technol,2010,70: 703-718
    [67]Zeleny J. The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Phys Rev,1914,3:69-91
    [68]Formhals, A. Process and apparatus for preparing artificial threads. U.S. Patent No.1, 975,504,1934
    [69]Huang ZM, Zhang YZ, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol,2003, 63:2223-2253
    [70]Li D, Xia Y. Electrospinning of nanofibers:reinventing the wheel. Adv Mater,2004, 16:1151-1170
    [71]Lee SJ, Liu J, Oh S H, et al. Development of a composite vascular scaffolding system that with stands physiological vascular conditions. Biomaterials,2008,29:2891-2898
    [72]Bini TB, Gao SJ, Tan TC, et al. Electrospun poly (L-lactide-co-glyco-lide) biodegradable polymer nanofibre tubes for peripheral nerve regeneration. Nanotechnology,2004,15:1459-1464
    [73]Koh HS, Yong T, Chan CK, et al. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin [J]. Biomaterials,2008,29:3574-3582
    [74]Bian YZ, Wang Y, Aibaidoula G, et al. Evaluation of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials, 2009,30:217-225
    [75]Kim DH, Martin DC. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials,2006,27: 3031-3037
    [76]Aussawasathien D, Dong JH, Dai L. Electrospun polymer nanofiber sensors. Synth Metals,2005,154:37-40
    [77]Yoon J, Chae SK, Kim JM. Colorimetric sensors for volatile organic compounds (VOCs) based on conjugated polymer-embedded electrospun fibers. J Am Chem Soc, 2007,129:3038-3039
    [78]Liu YY, Yang DY, Yu T, et al. Incorporation of electrospun nanofibrous PVDF membranes into a micro-fluidic chip assembled by PDMS and scotch tape for immunoassays. Electrophoresis,2009,30:3269-3275
    [79]Lee KH, Kim DJ, Min BG, et al. Polymeric nanofiber web-based artificial renal microfluidic chip. Biomed Microdevices,2007,9:435-442
    [80]Yang DY, Niu X, Gu X, Wang Y, et al. Electrospun nanofibrous membrane:a novel solid substrate for microfluidic immunoassays for HIV. Adv Mater,2008,20: 4770-4775
    [81]何铁石,周正发,任凤梅等.聚合物静电纺丝技术在催化材料制备中的应用研究进展.高分子材料科学与工程,2009,25(6):150—153.
    [82]Yan CY, Zhang T, Lee PS. Flow assisted synthesis of highly ordered silica nanowire arrays. Appl Phys A:Mater Sci,2009,94(4):763-766
    [83]Formo E, Lee E, Campbell D, et al. Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications. Nano Lett,2008,8: 668-672
    [84]Yang DY, Lil X, Jin Y, et al. Electrospinning of Poly (dimethylsiloxane)/Poly (methy-lmethacrylate) Nanofibrous Membrane:Fabrication and Application in Protein Microarrays. Biomacromolecules,2009,10:3335-3340
    [85]Reneker DH, Yarin AL, Fong H, et al. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys,2000,87:4531-4547
    [86]Shin YM, Hohman MM, Brenner MP, et al. Experimental characterization of electrospinning:the electrically forced jet and instabilities. Polymer,2001,42: 9955-9967
    [87]Shin YM, Hohman MM, Brenner MP, et al. Electrospinning:a whipping fluid jet generates submicron polymer fibers. Appl Phys Lett,2001,78:1149-1151
    [88]Taylor GI. Disintegration of water drops in an electric field. Proc Roy Soc Lond Ser A, 1969,313:453
    [89]Taylor GI. Electrically driven jets. Proc Roy Soc Lond Ser A,1966,291:145.
    [90]Hohman MM, Shin M, Rutledge G. Electrospinning and electrically forced jets. I. Stability theory. Phys Fluids,2001,13:2201-2220
    [91]Deitzel JM, Kleinmeyer J, Harris D, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer,2001,42:261-272
    [92]Liu HQ, Hsieh YL. Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci B Polym Phys,2002,40:2119-2129
    [93]Ryu YJ, Kim HY, Lee KH, et al. Transport properties of electrospun nylon 6 non-woven mats. Eur Polym J,2003,39:1883-1889
    [94]Mckee MG, Wilkes GL, Colby RH, et al. Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules,2004, 37:1760-1767
    [95]Ki CS, Baek DH, Gang KD, et al. Characterization of gelatin nanofiber prepared from gelatin-formic acid solution. Polymer,2005,46:5094-5102
    [96]Haghi AK, Akbari M. Trends in electrospinning of natural nanofibers. Phys Status Solidi,2007,204:1830-1834
    [97]Tan SH, Inai R, Kotaki M, et al. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer,2005,46:6128-6134
    [98]Gupta P, Elkins C, Long TE, et al. Electrospinning of linear homopolymers of poly (methylmethacrylate):exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer,2005,46:4799-4810
    [99]Larrondo L, Manley RSJ. Electrostatic fiber spinning from polymer melts. I. experimental observations on fiber formation and properties. J Polym Sci, Polym Phys Ed,1981,19:909-920
    [100]Baumgarten PK. Electrostatic spinning of acrylic microfibers. J Colloid Interface Sci, 1971,36:71-79
    [101]Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electrost,1995,35:151-156
    [102]Deitzel JM, Kosik W, McKnight SH, et al. Electrospinning of polymer nanofibers with specific surface chemistry. Polymer,2002,43:1025-1029
    [103]Buchko CJ, Chen LC, Shen Y, et al. Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer,1999,40:7397-7407
    [104]Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer,1999,40:4585-4592
    [105]Kim KH, Jeong L, Park HN, et al. Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotechnol,2005,120:327-339
    [106]Huang L, Nagapudi K, Apkarian RP, et al. Engineered collagen-PEO nainofibers and fabrics. J Biomater Sci Polym Ed,2001,12:979-993
    [107]SonWK, Youk JH, Lee TS, et al. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly (ethylene oxide) fibers. Polymer, 2004,45:2959-2966.
    [108]Ding B, Kim HY, Lee SC, et al. Preparation and characterization of a nanoscale poly (vinyl alcohol) fiber aggregate produced by an electrospinning method. J Polym Sci B Polym Phys,2002,40:1261-1268
    [109]Koski A, Yim K, Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater Lett,2004,58:493-497
    [110]Lee JS, Choi KH, Ghim HD, et al. Role of molecular weight of a tactic poly (vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. J Appl Polym Sci,2004,93:1638-1646
    [111]Zhang C, Yuan X, Wu L, et al. Study on morphology of electrospun poly (vinyl alcohol) mats. Eur Polym J,2005,41:423-432
    [112]Jarusuwannapoom T, Hongroijanawiwat W, Jitjaicham S, et al. Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur Polym J,2005,41:409-421
    [113]Jun Z, Hou H, Schaper A, et al. Poly-L-lactide nanofibers by electrospinning-influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. e-Polym,2003,9:1-9
    [114]Jiang HL, Fang DF, Hsiao BS, et al. Optimization and characterization of dextran membranes prepared by electrospinning. Biomacromolecules,2004,5:326-333
    [115]Hohman MM, Shin M, Rutledge G, et al. Electrospinning and electrically forced jets. Ⅱ. Applications. Phys Fluids,2001,13:2221-2236
    [116]Zong X, Kim K, Fang D, et al. Structure and process relationship of electrospun bioadsorbable nanofiber membrane. Polymer,2002,439:4403-4412
    [117]Kim B, Park H, Lee SH, et al. Poly (acrylic acid) nanofibers by electrospinning. Mater Lett,2005,59:829-832
    [118]Mit-uppatham C, Nithitanakul M, Supaphol P. Ultrafine electrospun polyamide-6 fibers:effect of solution conditions on morphology and average fiber diameter. Macromol Chem Phys,2004,205:2327-2338
    [119]Reneker DH, Chun L. Nanometre diameters of polymer, produced by electrospinning. Nanotechnology,1996,7:216-223
    [120]Demir MM, Yilgor I, Yilgor E, Erman B. Electrospinning of polyurethane fibers. Polymer,2002,43:3303-3309
    [121]Megelski S, Stephens JS, Chase DB, et al. Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules,2002,35:8456-8466
    [122]Mo XM, Xu CY, Kotaki M, et al. Electrospun P (LLA-CL) nanofiber:a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials,2004,25:1883-1890
    [123]Katti DS, Robinson KW, Ko FK, et al. Bioresorbable nanofiber-based systems for wound healing and drug delivery:optimization of fabrication parameters. J Biomed Mater Res,2004,70B:286-296
    [124]Pawlowski KJ, Barnes CP, Boland ED, et al. Biomedical nanoscience:electrospinning basic concepts, applications, and classroom demonstration. Mater Res Soc Symp Proc, 2004,827:17-28
    [125]Yuan XY, Zhang YY, Dong CH, et al. Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polym Int,2004,53:1704-1710
    [126]Wannatong L, Sirivat A, Supaphol P. Effects of solvents on electrospun polymeric fibers:preliminary study on polystyrene. Polym Int,2004,53:1851-1859
    [127]Dai H-Q, Gong J, Kim H, et al. A novel method for preparing ultra-fine alumina-borate oxide fibers via an electrospinning technique. Nanotechnology,2002, 13:674-677
    [128]Zuo WW, Zhu MF, Yang W, et al. Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polym Eng Sci, 2005,45:704-709
    [129]Geng X, Kwon OH, Jang J. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials,2005,26:5427-5432
    [130]Pham QP, Sharma U, Mikos AG. Electrospun poly (ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds:characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules,2006,7:2796-2805
    [131]Casper CL, Stephens JS, Tassi NG, et al. Controlling surface morphology of electrospun polystyrene fibers:effect of humidity andmolecular weight in the electrospinning process. Macromolecules,2004,37:573-578
    [132]Li M, Mondrinos MJ, Gandhi MR, et al. Electrospun protein fibers as matrices for tissue engineering. Biomaterials,2005,26:5999-6008
    [133]Lyons J, Ko F. Melt electrospinning of polymers:a review. Polym News,2005,30: 1-9
    [134]Moses M, Hohman MM, Shin YM, et al. Electrospinning and electrically forced jets. I. Stability theory. Phys Fluids,2001,13:2201-2220
    [135]Fridrikh SV, Yu JH, Brenner MP, et al. Controlling the fiber diameter during electrospinning. Phys Rev Lett,2003,90:144502-144504
    [136]Subbiah T, Bhat GS, Tock RW, et al. Electrospinning of nanofibers. J Appl Polym Sci, 2005,96:557-569
    [137]Zussman E, Yarin AL, Weihs D. A micro-aerodynamic decelerator based on permeable surfaces of nanofiber mats. Exp Fluids,2002,33:315-320
    [138]Li WJ, Laurencin CT, Caterson EJ, et al. Electrospun nanofibrous structure:a novel scaffold for tissue engineering. J Biomed Mater Res,2002,60:613-621
    [139]Schreuder-Gibson HL, Gibson P, Senecal K, et al. Protective textile materials based on electrospun nanofibers. J Adv Mater,2002,34:44-55
    [140]Lee YH, Lee JH, An IG, et al. Electrospun dual-porosity structure and biodegradation morphology of montmorillonite reinforced PLLA nanocomposite scaffold's. Biomaterials,2005,26:3165-3172
    [141]Zhao C, Tao J, Masuda H, et al. Structural characterization and artificial fiber formation of Bombyx mori silk fibroin in hexafluoro-iso-propanol solvent system. Biopolymers,2003,69:253-259
    [142]Yang DY, Lu B, Zhao Y, et al. Fabrication of aligned fibrous arrays by magnetic electrospinning. Adv Mater,2007,19:3702-3706
    [143]Li D, Wang YL, Xia YN. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett,2003,3:1167-1171
    [144]Wu ZD, Sun DH. Electrospun aligned polyethylene oxide nanofibers. Chinese Journal of sensor and actuators,2006,19(5):1803-1806
    [145]Kakade MV, Givens S, Gardner K, et al. Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers. J Am Chem Soc, 2007,129(10):2777-2782
    [146]Katta P, Alessandro M, Ramsier RD, et al. Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Lett,2004,4:2215-2218
    [147]Deitzel JM, Kleinmeyer JD, Hirvonen JK. Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer,2001,42:8163-8170
    [148]Dalton PD, Klee D, Moller M. Electrospinning with dual collection rings. Polymer, 2005,46:611-614
    [149]Carnell LS, Siochi EJ, Holloway NM, et al. Aligned mats from electrospun single fibers. Macromolecules,2008,41:5345-5349
    [150]Lee HJ, Yoon H, Kim GH. Highly oriented electrospun polycaprolactone micro/nanofibers prepared by a field-controllable electrode and rotating collector. Appl Phys A:Mater Sci,2009,97:559-565
    [151]Pan H, Li L M, Hu L, et al. Continuous aligned polymer fibers produced by a modified electrospinning method. Polymer,2006,47:4901-4904
    [152]Theron A, Zussman E, Yarin AL. Electrostatic field assisted alignment of electrospun nanofiber. Nanotechnology,2001,12:384-390
    [153]Hu W, Huang ZM, Meng SY, et al. Fabrication and characterization of chitosan coated braided PLLA wire using aligned electrospun fibers. J Mater Sci:Mater Med,2009, 20:2275-2284
    [154]Li W, Mauck R, Copper J, et al. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue Engineering. J Biomech,2007,40:1686-1693
    [155]Yang F, Murugan R, Wang S, et al. Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials,2005, 26:2603-2610
    [156]Schnell E, Klinkhammer K, Balzer S, et al. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend. Biomaterials,2007,28:3012-3025
    [157]Gupta D, Venugopal J, Prabharan MP, et al. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomaterials,2009,5:2560-2569
    [158]Chew SY, Mi R, Hoke A, et al. The effect of the alignments of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials,2008,29:653-661
    [159]Xie JW, Willerth SM, Li XR, et al. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials,2009,30:354-362
    [160]Hwang NS, Varghese S, Elisseeff J. Controlled differentiation of stem cells. Adv. Drug Deliv Rev,2008,60:199-214
    [161]Silva GA, Czeisler C, Niece KL. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science,2004,303:1352-1355
    [162]Dawson E, Mapili G, Erickson K, et al. Biomaterials for stem cell differentiation. Adv. Drug Deliv Rev,2008,60:215-228
    [163]Xu CY, Inai R, Kotaki M, et al. Aligned biodegradable nanofibrous structure:a potential scaffold for blood vessel engineering. Biomaterials,2004,25:877-886
    [164]Baker S C, Atkin N, Gunning PA, et al. Characterization of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials,2006,27: 3136-3146
    [165]Lu HJ, Feng ZQ, Gu ZZ, et al. Growth of outgrowth endothelial cells on aligned PLLA nanofibrous scaffolds. J Mater Sci:Mater Med,2009,20:1937-1944
    [166]Jose MV, Thomas V, Johnson KT, et al. Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering. Acta Biomaterials,2009,5: 305-315
    [167]Liao IC, Liu JB, Bursac N, et al. Effect of electromechanical stimulation on the maturation of myotubes on aligned electrospun fibers.Cell Mol Bioeng,2008,1: 133-145
    [168]Wise JK, Yarin AL, Cho M, et al. Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds:engineering the superficial zone of articular cartilage. Tissue Eng:Part A,2009,15:913-921
    [169]Poole AR. What type of cartilage repair are we attempting to attain. J Bone Joint Surg, 2003,85A:40-44
    [170]Xin X, Hussain M, Mao JJ. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials,2007,28:2335-2357
    [171]Wang JH, Jia FY, Gilbert TW, et al. Cell orientation determines the alignment of cell-produced collagenous matrix. J Biomech,2003,36:97-102
    [172]Lee KH, Kim HY, Khil MS, et al. Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning. Polymer,2003,44: 1287-1294
    [173]Huang MH, Li SM, Vert M. Synthesis and degradation of PLA-PCL-PLA triblock copolymer prepared by successive polymerization of ε-caprolactone and DL-lactide. Polymer,2004,45(26):8675-8681
    [174]Cohn D, Salomon AH. Designing biodegradable multiblock PCL/PLA thermoplastic elastomers. Biomaterials,2005,26:2297-2305
    [175]Garkhal K, Verma S, Jonnalagadda S, et al. Fast degradable poly(L-lactide-co-e-caprolactone) microspheres for tissue engineering:synthesis, characterization, and degradation behavior. J Polym Sci A,2007,45:2755-2764
    [176]Jeong SI, Kim BS, Lee YM, et al. Morphology of elastic poly(L-lactide-co-E-caprolactone) copolymers and in vitro and in vivo degradation behavior of their Scaffolds. Biomacromolecules,2004,5:1303-1309
    [177]Vaz CM, Tuijl SV, Bouten CVC, et al. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomaterialia, 2005,1:575-582
    [178]Rezgui F, Swistek M, Hiver JM, et al. Deformation and damage upon stretching of degradable polymers (PLA and PCL) Polymer,2005,46:7370-7385
    [179]Chen H, Snyder JD, Elabd YA. Electrospinning and solution properties of nafion and poly(acrylic acid). Macromolecules,2008,41:128-135
    [180]Sill TJ, Von Recum HA. Electrospinning:applications in drug delivery and tissue engineering. Biomaterials,2008,29(13):1989-2006
    [181]Ozkoc G, Kemaloglu S, Quaedflieg M. Production of poly(lactic acid)/organoclay nanocomposite scaffolds by microcompounding and polymer/particle leaching. Polym Compos,2010,31:674-683
    [182]Cerrai P, Tricoli M. Block copolymers from L-lactide and polyethylene glycol through a non-catalyzed route. Makromol Chem Rapid Commun,1993,9:529-538
    [183]Jedlins Z, Kurcok P, Walach W, et al. Polymerization of lactones.17. Synthesis of ethylene glycol-L-lactide block copolymers. Makromol Chem,1993,194:1681-1689
    [184]Zhu ZX, Xiong CD, Zhang LL, et al. Preparaton of biodegradable polylactide-co-poly(ethylene glycol)copolymer by lactide reacted poly(ethylene glycol). Eur Polym J,1999,35:1821-1828
    [185]Kang MH, You HB. Synthesis and characterization of poly(ethylene glycol)/poly(L-lactic acid)alternating multiblock copolymer. Polymer,1999,40: 6147-6155
    [186]You HB, Kang MH, Kim Y, et al. Biodegradable amphiphilic multiblock copolymers and their implications for biomedical applications. J Controlled Release,2000,64: 3-13
    [187]陈文娜,杨建,王身国等.聚丙交酯-聚乙二醇嵌段共聚物的合成及其性能.高分子学报,2002,5:695-698.
    [188]Wan YQ, Chen WN, Yang J, et al. Biodegradable poly(L-lactide)-poly(ethylene glycol)multiblock copolymer:synthesis and evaluation of cell affinity. Biomaterials, 2003,24:2195-2203
    [189]Bhattarai S R, Bhattarai N, et al. Hydrophilic nanofibrous structure ofpolylactide; fabrication and cell affinity. J Biomed Mater Res A,2006,78A(2):247-257
    [190]孙敬茹,庄秀丽,陈学思等.聚乙二醇-聚L-丙交酯嵌段共聚物结晶形貌研究.高等学校化学学报,2005,26:956-959
    [191]Na YH, He Y, Shuai X, et al. Compatibilization effect of poly(ε-caprolactone)-b-poly(ethylene glycol) block copolymers and phase morphology analysis in immiscible poly(lactide)/poly(ε-caprolactone) blends. Biomacromolecules,2002,3: 1179-1186
    [192]Ajami-Henriquez D, Rodriguez M, Sabino M, et al. Evaluation of cell affinity on poly(L-lactide) and poly(ε-caprolactone) blends and on PLLA-b-PCL diblock copolymer surfaces. J Biomed Mater Res A,2008,87:405-417
    [193]Calandrelli L, Calarco A, Laurienzo P, et al. Compatibilized polymer blends based on PDLLA and PCL for application in bioartificial liver, Biomacromolecules,2008,9: 1527-1534
    [194]Desai K, Kit K, Li JJ, et al. Morphological and surface properties of electrospun chitosan nanofibers. Biomacromolecules,2008,9:1000-1006
    [195]Aluigi A, Vineis C, Varesano A, et al. Structure and properties of keratin/PEO blend nanofibres. Eur Polym J,2008,44:2465-2475
    [196]Rohman G, Pettit JJ, Isaure F, et al. Influence of the physical properties of two-dimensional polyester substrates on the growth of normal human urothelial and urinary smooth muscle cells in vitro. Biomaterials,2007,28:2264-2274
    [197]Baker SC, Rohman G, Southgate J, et al. The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering. Biomaterials,2009,30:1321-1328
    [198]Li WJ, Tuli R, Okafor C, et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials,2005,26: 599-609
    [199]Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res,2007,100:1249-1260
    [200]Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell,2002,13:4279-4295
    [201]Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng,2001,7:211-228
    [202]Wang Y, Bian YZ, Wu Q, et al. Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrateco-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials,2008,29:2858-2868
    [203]Gimble J, Guilak F. Adipose-derived adult stem cells:isolation, characterization, and differentiation potential. Cytotherapy,2003,5:362-369
    [204]Chen H, Snyder JD, Elabd YA. Electrospinning and solution properties of Nafion and poly(acrylic acid). Macromolecules,2008,41:128-135
    [205]仰大勇,王洋,张东舟等.聚碳酸酯静电纺丝微纳结构的形貌控制.科学通报,2009,54:1161~1166
    [206]Garkhal K, Verma S, Jonnalagadda S, et al. Fast degradable poly (L-lactide-co-ε-caprolactone) microspheres for tissue engineering:Synthesis, characterization, and degradation behavior. J Polym Sci Part A Polym Chem,2007,45:2755-2764
    [207]Rezgui F, Swistek M, Hiver JM, et al. Deformation and damage upon stretching of degradable polymers (PLAand PCL). Polymer,2005,46:7370-7385
    [208]Zhou HJ, Green TB, Joo YL. The thermal effects on electrospinning of polylactic acid melts. Polymer 2006,47:7497-7505.
    [209]Lopez-Rodriguez N, Lopez-Arraiza A, Meaurio E, Sarasua JR. Crystallization, morphology, and mechanical behavior of polylactide/poly(ε-caprolactone) blends. Polym Eng Sci,2006,46:1299-1308.
    [210]Sarasua JR., Lopez-Arraiza A, Balerdi P, Maiza I. Crystallinity and mechanical properties of optically pure polylactides and their blends. Polym Eng Sci,2005,45: 745-753.
    [211]Zhu HG, Ji J, Tan QG, et al. Engineering of Poly(DL-lactide) via electrostatic self-assembly of extracellular matrix-like molecules. Biomacromolecules,2003,4: 378-386
    [212]Fu JH, Ji J, Yuan WY, et al. Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan Biomaterials,2005,26: 6684-6692
    [213]Schiffman JD, Stulga LA, Schauer CL. Chitin and Chitosan:Transformations due to the electrospinning process. Polym Eng Sci,2009,49:1918-1928
    [214]Tsukruk VV, Blizznyuk VN, Visser D. Electrostaticde posotion of polyioniemo-nolayerson ehargedsurface. Macromoleeules,1997,30:6615-6625.
    [215]肖秀峰,何丹,刘芳等.硫酸软骨素模板诱导片状纳米羟基磷灰石的仿生合成.人工晶体学报,2008,37:388-393
    [216]李婉,林炜,朱清时等.纤维素硫酸盐与壳聚糖自组装有序超薄膜的制备和AFM研究.高等学校化学学报,2002,(23):1450-1452
    [217]Lowaek K, Helm CA. Molecular mechanisms controlling the self-assembly process of polyelectrolyte multiayers. Maeromolecules,1998,31:823-833
    [218]Xie XL, Mai YW, Zhou XP. Dispersion and alignment of carbon nanotubes in polymer matrix:A review. Mater Sci Eng R,2005,49:89-112
    [219]Zhou W, Wu Y, Wei F, et al. Elastic deformation of multiwalled carbon nanotubes in electrospun MWCNTs-PEO and MWCNTs-PVA nanofibers. Polymer,2005, 46:12689-12695
    [220]Salalha W, Dror Y, Khalfin RL, et al. Single-walled carbon nanotubes embedded in oriented polymeric nanofibers by electrospinning. Langmuir,2004,20:9852-9855
    [221]Dror Y, Salalha W, Khalfin RL, et al. Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir,2003,19:7012-7020
    [222]Sung JH, Kim HS, Jin H-J, et al. Nanofibrous membranes prepared by multiwalled carbon nanotube/poly(methyl methacrylate) composites. Macromolecules,2004,37: 9899-9902
    [223]Sundaray B, Subramanian V, Natarajan TS, et al. Electrical conductivity of a single electrospun fiber of poly(methyl methacrylate) and multiwalled carbon nanotube nanocomposite. Appli Phys Lett,2006,88:143114
    [224]Liu LQ, Tasis D, Prato M, et al. Tensile mechanics of electrospun multiwalled nanotube/poly(methyl methacrylate) Nanofibers. Adv Mater,2007,19:228-1233
    [225]Ge JJ, Hou H, Li Q, et al. Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments:electrospun composite nanofiber sheets. J Am Chem Soc,2004,126:15754-15761
    [226]Hou H, Ge JJ, Zeng J, et al. Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Mater Chem,2005, 17:967-973
    [227]Ra EJ, An KH, Kim KK, et al. Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper. Chem Phys Lett,2005,413:188-193
    [228]Allaoui A, Bai S, Cheng HM, et al. Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol,2002,62:1993-1998
    [229]Jose MV, Steinert BW, Thomas V, et al. Morphology and mechanical properties of nylon 6/MWNT nanofibers. Polymer,2007,48:1096-1104
    [230]Kim GM, Michler GH, Potschk P. Deformation processes of ultrahigh porous multiwalled carbon nanotubes/polycarbonate composite fibers prepared by electrospinning. Polymer,2005,46:7346-7351
    [231]Sen R, Zhao B, Perea D, et al. Preparation of single-walled carbon nanotube reinforced polystyrene and poly-urethane nano-fibers and membranes by electrospinning. Nano Lett,2004,4:459-464
    [232]Meng J, Kong H, Han ZZ, et al. Enhancement of nanofibrous scaffold of multiwalled carbon nanotubes/polyurethane composite to the fibroblasts growth and biosynthesis. J Biomed Mater Res,2009,88A:105-116
    [233]Mazinani S, Ajji A, Dubois C, Morphology, structure and properties of conductive PS/CNT nanocomposite electrospun mat. Polymer,2009,50:3329-3342
    [234]Chen D, Liu TX, Zhou XP, et al. Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes. J Phys Chem B,2009,113:9741-9748
    [235]Sill TJ, von Recum HA. Electrospinning:Applications in drug delivery and tissue engineering. Biomaterials,2008,29:1989-2006
    [236]Saeed K, Park SY, Lee HJ, et al. Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite. Polymer,2006,47:8019-8025
    [237]Mei F, Zhong JS, Yang XP, et al. Improved biological characteristics of poly(L-Lactic Acid) electrospun membrane by incorporation of multiwalled carbon nanotubes/hydroxyapatite nanoparticles. Biomacromolecules,2007,8:3729-3735
    [238]Liu FJ, Guo R, Shen MW, et al. Effect of Processing Variables on the Morphology of Electrospun Poly[(lactic acid)-co-(glycolic acid)] Nanofibers. Macromol. Mater Eng, 2009,294:666-672
    [239]Eitan A, Jiang K, Dukes D, et al. Surface modification of multiwalled carbon nanotubes:toward the tailoring of the interface in polymer composites. Mater Chem, 2003,15:3198-3201
    [240]Guadagno L, Vertuccio L, Sorrentino A, et al. Mechanical and barrier properties of epoxy resin filled with multi-walled carbon nanotubes. Carbon,2009,47:2419-2430
    [241]Wang Y, Gomez-Ribelles JL, Salmeron-Sanchez M, et al. Morphological contributions to glass transition in poly(L-lactic acid). Macromolecules,2005,38: 4712-4718
    [242]Ragupathy D, Gopalan Al, Lee KP, Synergistic contributions of multiwall carbon nanotubes and gold nanoparticles in a chitosan-ionic liquid matrix towards improved performance for a glucose sensor. Electrochem Commun,2009,11:397-401
    [243]Chen SH, Yuan R, Chai YQ, et al. Multilayer assembly of hemoglobin and colloidal gold nanoparticles on multiwall carbon nanotubes/chitosan composite for detecting hydrogen peroxide. Electroanalysis,2008,20:2141-2147