近红外光谱法用于鉴别透明质酸、肝素和硫酸软骨素的模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖胺聚糖(glucosaminoglycan, GAG)是一类生物大分子多糖,其生物活性与本身的物化特性和生化特性有关,多数无毒。随着生物可降解材料、结构分子生物学和天然药物食品的兴起、发展,糖胺聚糖在药理学、分子生物学及临床应用等方面取得了很大的进展。近些年开发的透明质酸(HA)、肝素(Hep)和硫酸软骨素(CS)这三种药物均属于糖胺聚糖类药物,临床应用都比较理想。肝素作为抗凝血和抗血栓药物,已有90多年历史的临床应用,在血渗析和体外血循环中能防止血液凝固,防止血栓的生成。透明质酸可增加关节间的润滑性,在剧烈运动时起减震作用,使关节免受伤害。硫酸软骨素具有特殊免疫抑制的药理作用,可有效地防止动脉粥状硬化,且在临床上对于治疗关节炎、风湿痛、神经痛及腰痛都有较好的效果。
     透明质酸、肝素、硫酸软骨素这三种物质的化学结构非常相似,表观上又都是白色的粉末,从外观性状上很难区分开来。由于市场价格和制剂问题等诸多原因,这三种物质在应用过程中屡有掺假或混用的现象发生。为了严格把握药物中有效成分的组成及含量,保证患者用药的安全性和有效性,对药物中的杂质、相似物质等进行准确确认和测定显得尤为重要。然而常规的定性方法存在诸多不利因素,如:抽样有损检测,消耗试剂,样品预处理过程繁琐,并造成一定的污染等等。因此,在生产及原料采购过程中寻找简便、快速有效的鉴别、分析测定方法显得尤为重要。
     近红外分析技术是一种绿色分析技术,其优点是分析速度快,可对多种成分同时分析,无污染,样品不需要预处理,不使用有毒、有害试剂,不对样品造成损害,而且可以进行在线分析和远距离测定,操作简单,分析成本低,现已被广泛应用于石油化工业、农业、食品业、制药业、临床医学等领域。
     本实验利用近红外光谱仪对透明质酸、肝素和硫酸软骨素分别采集图谱后,建立相应的数学模型,先通过无监督识别中系统聚类分析法(HCA)、K-均值聚类法分别对上述三种样品进行成分上的分类,效果很明显,图形显示三种样品可以很清晰的分开。接着利用主成分分析(PCA)结合有监督识别中的SIMCA识别模式鉴别上述这三种样品,通过考察不同光谱预处理方法(5点平滑、一阶微分5点平滑、SNV)、样品集不同的划分方式以及建模波段的选取对建模的影响,结果证明采用5点平滑预处理方法、总取样量为25、全光谱区段内建立的数学模型的预测效果最好,可将三者快速鉴别分离。本实验的结论可以为近红外光谱鉴别其他性状外观相似的药物奠定基础。
Glycosaminoglycan is a kind of Biological Macromolecule. It's bioactivity is tightly related to the physicochemical property, and the majority of it is non-toxic. With the development of biodegradable polymer, natural medicine and structural molecular biology, the glycosaminoglycan has been made great progress in the area of Pharmacology, Molecular biology and clinical application. In the last few years, Hyaluronic acid(HA), heparin(Hep), chondroitin sulfate(CS) are glycosaminoglycans, and they are ideal drugs in clinical application. As the anticoagulant and antithrombotic drugs heparin has been used in blood dialysis and in the blood circulation in vitro to prevent blood coagulation and thrombus formation over 90 years of clinical application. Hyaluronic acid increases the lubrication between the joints, damps the effect of strenuous exercise, and avoids the joints harm. Chondroitin sulfate has a special role in the pharmacological immunosuppression, it can prevent atherosclerosis, and has good results in clinical treatment for arthritis, rheumatic pain, neuralgia and low back pain.
     The chemical structure of HA, Hep and CS are similar, and they are all white powder, so it is difficult to identify them. Because of the price and preparation in medicine, it is narmal to falsify the glycosaminoglycans. In order to completely eradicate the fake and inferior drugs to get better economic efficiency, it's quite important to identify impurity and different glycosaminoglycans in raw materal and preparation. However, the routine analysis method is destructive, and it needs pretreatment and organic reagent and it nees long time most of all. Therefore, it's quite necessary to use an undestructive, rapid and non-pollution method.
     Near infrared spectroscopy techonology (NIRS) is a green method without specail pretreatment, pollution and destructive. It can be used in inline and remote analysis, and it has been widely used in chemical, agriculture, food and pharmaceutical.
     In the experiment we collected the spectrums of HA, Hep, and CS with near infrared spectroscopy instrument, then we used nonsupervised and supervised classification methods to identify the three differernt types of glycosaminoglycans. We used hierarchical clustering analysis (HCA) and K-means method to separate the three types, and we got good results. In the supervised classification we used soft independent modeling of class analogy (SIMCA) to identify three different types of glycosaminoglycans with different pretreatment including smoothing with 5 points, SNV, and first derivative with smoothing of 5 points. Meanwhile we investigated the effect of different wave range and different sample number to the mathematical model. It is proved that the mathematical model with the preteatment of smoothing with 5 points,25 samples and whole wave range was good enough to separate the three glycosaminoglycans rapidly and accurately. The conclution of the thesis lay foundations to identify drugs with similar aspect.
引文
[1]Kishimoto TK, Viswanathan K, Ganguly T, et al Contaminated heparin associated with adverse clinical events and activation of the contact system [J]. NEngl J Med, 2008,358(23):2457-2467
    [2]http://www.fda.gov/cder/drug/infopage/heparin/heparin_CE_method
    [3]http://www.fda.gov/cder/drug/infopage/heparin/Heparin_NMR_method
    [4]Bairstow S, McKee J, Nordhaus M, et al. Identification of a simple, sensitive microplate method for the detection of over-sulfated chondroitin sulfate in heparin products [J].Anal Biochem,2009,388(2):317-321
    [5]周鹏,谢明勇,傅博强.多糖的结构研究[J].南昌大学学报(理科版),2001,25(2):197-204
    [6]http://www.baike.baidu.com
    [7]孙春晓,臧恒昌,董芹,等.肝素钠中多硫酸软骨素的测定技术进展[J].药物分析杂志Chin. J. Pharm. Anal.2010,30 (2):352-355.
    [8]Longstaff C, Whitton CM, Stebbings R, et al. How do we assure the quality of biological medicines.Drug Discov Today,2009,14(1-2):50.
    [9]Meyer K, Palmer JW. J Biol chem,1934,107:629-634.
    [10]凌沛学.透明质酸[M].北京:中国轻工业出版社,2000
    [11]凌沛学,王凤山.生物药物研究进展[M].北京:人民卫生出版社,2004
    [12]http://www.doctor.51 daifu. com
    [13]Liu Haifeng,Yin Yuli,Yao Kangde, et al. Influence of the concentrations of hyaluronic acid on the properties and biocompatibility of Cs-Gel-HA membranes[J]. Biomaterials,2004,25:3523-3530.
    [14]Gibbs D A, Merrill E W, Smith K A. The rheology of hyaluronic acid[J]. Biopolymers,1968,6:777-779.
    [15]Sanya Hokputsa, Kornelia Jumel, Catherine Alexander, et al. Hydrodynamic characterization of chemically degraded hyaluronic acid[J]. Carbohydrate Polymers,2003,52:111-117.
    [16]东营市源聚生物制品有限公司.利用微生物代谢调控改变细胞膜通透性生产透明质酸新工艺[P].ZL200510104626.8,2005-12-29
    [17]http://www.Novozymes.com.cn[OL].
    [18]Longstaff C, Whitton CM, Stebbings R, et al. How do we assure the quality of biological medicines.Drug Discov Today,2009,14(1-2):50
    [19]Kishimoto TK, Viswanathan K, Ganguly T, et al. Contaminated heparin associated with adverse clinical events and activation of the contact system. N Engl J Med,2008,358(23):2457
    [20]http://www. fda. gov/cder/drug/infopage/heparin/heparin_CE_method
    [21]http://www. fda. gov/cder/drug/infopage/heparin/Heparin_NM_method
    [22]Bairstow S, McKee J, Nordhaus M, et al. Identification of a simple, sensitive microplate method for the detection of over-sulfated chondroitin sulfate in heparin products. Anal Biochem,2009,388(2):317
    [23]Longstaff C, Whitton CM, Stebbings R, et al. How do we assure the quality of biological medicines [J]. Drug Discov Today,2009,14(1-2):50-55
    [24]Volpi N, Maccari F. Electrophoretic approaches to the analysis of complex polysaccharides [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2006, 834(1-2):1-13
    [25]Domanig R, Jobstl W, Gruber S, et al. One-dimensional cellulose acetate plate electrophoresis-A feasible method for analysis of dermatan sulfate and other glycosaminoglycan impurities in pharmaceutical heparin [J]. J Pharm Biomed Anal,2009,49(1):151-155
    [26]Simonet BM, Rios A, Grases F, et al. Determination of myo-inositol phosphates in food samples by flow injection-capillary zone electrophoresis [J]. Electrophoresis,2003,24(12-13):2092-2098
    [27]Volpi N, Maccari F, Linhardt RJ. Capillary electrophoresis of complex natural polysaccharides [J]. Electrophoresis,2008,29(15):3095-3106
    [28]Volpi N, Maccari F, Linhardt RJ. Quantitative capillary electrophoresis determination of oversulfated chondroitin sulfate as a contaminant in heparin preparations [J]. Anal Biochem,2009,388(1):140-145
    [29]Norwig J, Beyer T, Brinz D, et al. Prediction of the oversulphated chondroitin sulphate contamination of unfractionated heparin by ATR-IR spectrophotometry [J]. Pharmeur Sci Notes,2009,1:17-24
    [30]Toida T, Huang Y, Washio Y, et al. Chemical microdetermination of heparin in plasma [J]. Anal Biochem,1997,251(2):219-226
    [31]Sugahara K, Tsuda H, Yoshida K, et al. Structure determination of the octa- and decasaccharide sequences isolated from the carbohydrate-protein linkage region of porcine intestinal heparin [J]. J Biol Chem,1995,270(39):22914-22923
    [32]Walenga JM, Hoppensteadt DA. Monitoring the new antithrombotic drugs [J]. Semin Thromb Hemost,2004,30(6):683-695
    [33]Trehy ML, Reepmeyer JC, Kolinski RE, et al. Analysis of heparin sodium by SAX/HPLC for contaminants and impurities [J]. J Pharm Biomed Anal,2009, 49(3):670-673
    [34]李南.硫酸软骨素的开发及生产工艺的控制[J].上海水产大学学报.1998,7(1):38-43
    [35]朱瑞芬,童兴龙,李颖.硫酸软骨素的研制[J].中国医药工业杂志,2001,31(6):255-256.
    [36]于兹东,高华,刘坤.硫酸软骨素钙制备研究[J].青岛大学学报,2003,18(3):50-52
    [37]宋国胜,曹珍年.硫酸软骨素的提取及分析鉴定[J].现代科学仪器,2003,3:60-61
    [38]中华人民共和国卫生部药典委员会编.中华人民共和国卫生部药品标准二部第六册(生化药品第一分册)[S].1998,138-139
    [39]Bitter T, Muir HM. Amodified uronic acid reaction. Anal Biochem,1962,4: 330-334
    [40]肖英,贺艳丽,王旻,等.糖胺聚糖酶解衍生物的制备和液相色谱分析[J].中国生化药物杂志,2004,25(3):181-183
    [41]姬胜利,崔慧斐,谢清义,等.硫酸软骨素钠的比浊法测定[J].中国医药工业杂志,2001,32(2):63-64.
    [42]Han L K, Sumiyoshi M, Takeda T, et al. Inhibitory effects of chondroitin sulfate prepared from salmon nasal cartilage on fat storage in mice fed a high-fat diet[J]. Int J Obes Relat Metab Disord,2000,24(9):1131-1138.
    [43]Tapon-Bretaudiere J, Drouet B, Matou S, et al. Modulation of vascular human endothelial and rat smooth muscle cell growth by a fucosylated chondroitin sulfate from echinoderm[J]. Thromb Haemost,2000,84(2):332-337.
    [41]Vakhrusheva T, Panasenko O. Chondroitin 6-sulfate and dextran sulfate promote hypochlorite-induced peroxidation of phosphatidylcholine liposomes[J]. Chem Phys Lipids,2006,140(1-2):18-27.
    [45]Pacheco R G, Vicente C P, Zancan P, et al. Different antithrombotic mechanisms among glycosaminoglycans revealed with a new fucosylated chondroitin sulfate from an echinoderm[J]. Blood Coagul Fibrinolysis,2000,11(6):563-573.
    [46]Chou M M, Vergnolle N, McDougall J J, et al. Effects of chondroitin and glucosamine sulfate in a dietary bar formulation on inflammation, interleukin-lbeta, matrixmetalloprotease-9, and cartilage damage in arthritis[J]. Exp Biol Med (Maywood),2005,230(4):255-262.
    [47]Nishimoto S, Takagi M, Wakitani S, et al. Effect of chondroitin sulfate and hyaluronic acid on gene expression in a three-dimensional culture of chondrocytes[J]. J Biosci Bioeng,2005,100(1):123-126.
    [48]Lee J Y, Lee S H, Kim H J, et al. The preventive inhibition of chondroitin sulfate against the CC14-induced oxidativestressof subcellular level[J]. Arch Pharm Res, 2004,27(3):340-345.
    [49]李东霞,李德良,张双全.鲨鱼软骨多糖的理化性质及其与DNA分子相互作用的研究[J].海洋科学,2000,24(5):40-43.
    [50]Bergefall K, Trybala E, Johansson M, et al. Chondroitin sulfate characterized by the E-disaccharide unit is a potent inhibitor of herpes simplex virus infectivity and provides the virus binding sites on gro2C cells[J]. J Biol Chem,2005, 16;280(37):32193-32199.
    [51]Monfort J, Nacher M, Montell E, et al. Chondroitin sulfate and hyaluronic acid (500-730kda) inhibit stromelysin-1 synthesis in human osteoarthritic chondrocytes[J]. Drugs Exp Clin Res,2005,31(2):71-76.
    [52]Angermann P. Glucosamine and chondroitin sulfate in the treatment of arthritis[J]. Ugeskr Laeger,2003,165(5):451-454.
    [53]Harthun S, Matischak K, Friedl P. Determination of Recombinant Protein in Animal Cel Culture Supernatant by Near-Infrared Spectroscopy [J]. Anal Biochem, 1997,251(1):73-78
    [54]Clark M, Hoppensteadt D, Walenga J, et al. Molecular profiling of heparinase-I resistant glycosaminoglycans in contaminated heparins.Comparative studies with uncontaminated heparin and porcine oversulfated chondroitin sulfate [J]. Int Angiol,2008,27(5):370-376
    [55]http://www.fda.gov/cder/drug/infopage/heparin/Heparin_NMR_method
    [56]Chtioui Y. Chemom Intel Lab Sys,1996,35:127
    [57]褚小立,袁洪福,陆婉珍.近年来我国近红外光谱分析技术的研究与应用进展[J].分析仪器,2006,(2):1-10.
    [58]陆婉珍.现代近红外光谱分析技术(第二版)[M].中国石化出版社,2007,35-176
    [59]安登魁主编.现代药物分析选论[M].中国医药科技出版社,2001,202-232
    [60]陆婉珍,楮小立.近红外光谱(NIR)和过程分析技术(PAT)[J].现代科学仪器,2007,4,13-17
    [61]瞿海斌,杨海雷,程翼宇.近红外漫反射光谱法快速无损鉴别阿胶真伪[J].光谱学与光谱分析,2006,26(1):60-62.
    [62]虞科,胡楚楚,程翼宇.近红外光谱法测定复方丹参滴丸中的3种有效成分[J].中国中药杂志,2006,41(3):226-229.
    [63]王钢力,石岩,林瑞超,等.近红外光谱鉴别冬虫夏草道地药材[J].中草药,2006,37(10):1569-1571.
    [64]冯军勤,周誉昌,吕华,等.运用近红外漫反射光谱技术测定中药水分含量[J].大众科技,2006,(2):46-47.
    [65]史春香,祝国光,杨悦武,等.近红外技术鉴别黄芪产地[J].天津药学,2006,18(1):19-21.
    [66]孙国明,刘国林.近红外光谱技术在独活属药用植物分类中的应用[J].中国中药杂志,2006,31(23):1996-1998.
    [67]Dreassi E, et al. Near-infrared reflectance spectrometry in the determination of the physical state of primary materials in pharmaceutical production. Analyst, 1995,120:1005-1008
    [68]Dempster MA, et al. A Near-infrared reflectanc analysis method for the nonivasive of filmcoated and non-film-coated,blister-packed tables. Anal Chim Acta,1995,310:43-51
    [69]黄安丽.近红外光谱分析技术在假药接受中的应用[J].中国药业,2008,17(2):17
    [70]Sekulic SS, et al. On-line monitoring of powder blend homogeneity by near-infrared spectroscopy. Anal Chem,1996,68:509-513
    [71]http://www.jnlaotf.com/html/news/293.html
    [72]王晶娟,张贵君,周群,等.近红外光谱和聚类分析法无损快速鉴别小儿抽风散[J].分析实验室,2008,28(2):327-330.
    [73]刘雪松,施朝晟,程翼宇,等.基于自组织映射神经网络的中药注射剂质量快速鉴别方法[J].分析化学研究简报,2007,35(10):1483-1486.
    [74]郭晔,曲楠,王彬,等.短波近红外光谱法对蛇床子SFE萃取产物的定量分析[J].分析实验室,2007,26(11):49-52.
    [75]王天志,叶利明,陈聪,等.近红外漫反射光谱法测定川产黄柏中小檗碱含量[J].光谱学与光谱分析2008,27(8):1527-1530.
    [76]王东,王玲.近红外光谱法测定黄芩药材中黄芩甙的含量[J].中医研究,2007,20(2):20-22.
    [77]乔延江,马群.近红外光谱法结合支持向量机测定天然牛黄粉中人工牛黄的含量[J].光谱学与光谱分析,2006,26(10):629-632.
    [78]芦永军,曲艳玲,宋敏,等.人参总糖的近红外光谱定量分析[J].光谱学与光谱分析,2006,26(8):1457-1459.
    [79]倪力军,史晓浩,高秀蛟,等.NIR在线检测、分析技术在丹参水提取过程质量控制中的应用[J].中国药学杂志,2004,39(8):628-630.
    [80]朱向荣,张卓勇,李娜,等.近红外光谱与组合的间隔偏最小二乘法测定清开灵四混液中总氮和栀子苷的含量[J].高等学校化学报,2008,29(5):906-911.
    [81]臧恒昌,孙春晓.近红外光谱分析技术用于糖胺聚糖分析的展望[J].中国药学会全国多糖类药物研究与应用研讨会论文集,2008年,37-42.
    [82]张卉,宋妍,冷静等.近红外光谱分析技术[J].光谱实验室,2007,24(3).