“3S”技术在冕宁—盐源矿带金矿床预测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,我国国民经济高速发展的客观需求和矿产勘查成果之间出现了很大差距。随着经济的高速发展,对矿物原料的需求量将迅速上升,加之区域性、地方性经济和地勘队伍自身发展所需求的矿产资源迅速增加,更加大了它们之间的差距。因此,如何快速、准确的进行矿产预测显得尤其重要。
     遥感与GIS相结合用于成矿预测中可大大提高预测工作的效率和可靠性。通过对研究区的遥感图像处理和地质、构造、地层、岩石、矿化蚀变等有关信息的特征提取、遥感、地质数据和物化探数据的综合与复合分析,在一定成矿理论和数学模型指导下,建立GIS综合找矿模型。在此基础上,发展这一方法及理论并建立完善的预测体系,不仅对研究程度较低的新区矿床预测有用,而且对研究程度较高的老区寻找新类型和点状大型、超大型矿床都具有重要理论意义和实际意义。同时,对研究和发展矿床定量预测理论也有重要的科学意义和实用价值。本文在遥感与GIS支持下,通过图像处理、信息提取及基于数学模型的多元信息叠加,预测了冕宁—盐源地区金矿成矿有利区。并取得了以下成果:
     (1)通过遥感图像数字处理,制作完成了实验区的高精度遥感影像地图及遥感解译图,建立了冕宁-盐源-西昌一带空间数据库,包括基础数据(行政区、地名、水系等)和专题数据(断裂、地层、地质体等),为该区进一步工作提供了科学依据;
     (2)根据各个多元信息成矿预测模型的优缺点,分析了不同预测模型的适用条件和范围,确定了研究区采用的数学模型。实践表明,代数叠加法比较适合于地质研究程度较低的地区;
     (3)研究基于GIS的多元信息成矿预测模型,探讨基于不同数学模型之上的成矿预测适用条件和范围,解决了以往传统方法中仅通过纸质地图进行简单分析的不精确性;
     (4)通过对研究区成矿有利区预测成果的级别划分,提出用结果分布统计图辅助分段的方法对结果值进行分段。这种划分方法不同于传统的等间距、不等间距划分方法,避免了划分的主观性,更有利于对预测结果高值区域的划分;
     (5)根据预测因子的级别分数和权重,通过GIS叠加分析操作,生成一系列的成矿预测系列图件,根据预测图件,在研究区圈定6个成矿有利区。
At present, there is a great disparity between the economic high speed developmental demands of our country and mineral resource. With the high-speed development of economy, the demands for mineral materials will increase rapidly. In addition, the demands of mineral resource will also increase quickly due to local economic development and other reasons. So, it is important for us to find out more mineral resources in a short time.
    The efficiency and reliability of minerogenetic prediction can be improved by combining RS with GIS .We processed RS images ,extracted the geological information related to mineralizing , such as geology, structures , stratam , rocks, etc, synthetically analysed remote sensing , the geological data and geo-chemistry, under the guidance of the theory and mathematic model , set up GIS mineralize model .On this condition, to develop this method and its theory, and to establish a system of perfect prediction, it is not only useful in studied degree area but also favorable for looking for new type and some form large-scale deposits in old studied area , and it has a great theoretical meaning. Meanwhile ,it has an important scientific meaning and practical value for studying and developing the quantitative prediction theory of mineral deposits . Supported by remote sensing and CIS, through image processing, information extracting and based on mathematic models of plural information , in this paper, some favorable
    gold areas in Mian-ning and Yan-yuan area have been predicted , and it achieved the following results:
    (l)Through remote sensing image digital processing , we made high accuracy remote sensing images and image interpretion maps .constructed a geodatabase of Mianning - Yanyuan- Xichang area, including basic data(district .drainage ,etc.) and thematic data (rupture, stratum , magmatic rock, etc.). This will provide scientific evidences for work of this area in the future.
    (2)According to the advantages and disadvantages of plural information , the author analysed suited conditions and ranges of different predictable models .confirmed the mathematic model to be adopted in the studied areas. Practice indicating: algebraic method can be used in those area where study degree is very lower.
    (3)Author studied the mineralize prediction model of plural information based on CIS, discussed the applications of different mathematic models, and also solved inaccurate which analysed only by normal maps in the past.
    (4)Through level division of the predict result which favorable for mineralize district in the studied areas .We put up a graduate method which is used to divide graduations of statistical result .This kind of dividing method is different from traditional interval or non-interval graduate method, it can avoid a subjectivity for level division and is favorable to divide the high value of the result.
    (5)In the light of rank points and weight of the predicting factors, minerogenetic prediction map had been made .On the basis of the map , six favorable districts to mineralize
    
    
    had been determined.
引文
[1]杨武年,朱章森.遥感技术在构造地质研究及成矿预测中的应用[J].物探化探计算技术.1994,16(4)
    [2]杨武年.黔西六枝一朗岱地区构造格局及其应力场遥感图像解析[J].国土资源遥感.1996,28(2).
    [3]杨武年,李永颐,易显志等.遥感信息量化处理在西昌地区构造解析及油气远景预测中的应用[J].国土资源遥感.1994,21(3).
    [4]朱章森、杨武年.遥感信息场“分层”解析与无模型预测法[J].物探化探计算技术.1994,16(4):328-337.
    [5]朱章森、朱磊.矿床定量预测理论与方法体系[J].成都理工学院学报.1998,25(3):1-7.
    [6]唐永成、何义权、王永敏等.GIS应用于安徽东部地区金矿资源评价研究[M].北京:地质出版社.2000.
    [7]郭华东.新疆北部地质矿产遥感[M].北京:科学出版社.1995.
    [8]赵文吉,赵文军,巩慧,等.遥感与地理信息系统的关系[J].世界地质.1998,17(2):79-85.
    [9]杨武年.川南区域构造变形及应力场遥感图像定量解析[J].遥感学报.2001,5(1):62-68.
    [10]陈毓川.当代矿产资源勘察评价的理论与方法[M].地震出版社.1998.
    [11]何政伟.求同理论指导下的无模型预测[J].成都理工学院学报.1998,25:28-31.
    [12]何政伟、孙传敏、朱章森.搜索法—一种无模型矿产预测的方法[J].矿物岩石.2000,20(3):81-84.
    [13]喻安光、郭建强.扬子地台西缘构造格局[J].中国区域地质.1998,17(3):255-261.
    [14]喻安光.论石棉一冕宁地区新构造运动[J].四川地质学报.1998,18(3):173-178.
    [15]王振荣.四川攀西拼贴构造[J].成都理工学院学报.1996,23(1):78-84.
    [16]郑威、陈述彭.资源遥感纲要[M].北京:中国科学技术出版社.1995.
    [17]杨武年,丁纯勤,王大可,等.TM正射遥感影像地图在四川南江地区区调研究及成矿预测中的应用[J].地球科学-中国地质大学学报.1998,23(2):188-192
    [18]杨武年,廖崇高,濮国梁,等.数字区调新技术新方法—遥感图像地质解译三维可视化及影像动态分析[J].地质通报.2003,(1).
    [19]杨武年,朱章森.成矿环境遥感信息场分层解析与无模型法及其意义[J].理工科技新进展.成都:四川科学技术出版社.1996,252-255.
    [20]杨武年 乐光禹.金佛山菱形构造格局区域变形场和应力场遥感图像解析[J].成都理工学院学报.1994,21(1):99-106.
    [21]杨武年,朱章森.遥感信息场分层解析与构造应力场定量研究[J].地质学报.1997,71(1):86-96.
    [22]杨武年,濮国梁,郑平元.长江三峡库区SPOT、ERS-SAR、RADARSAT和LANDSAT TM多时相遥感图像数字处理和地质灾害信息提取[A].《第三届海峡两岸山地灾害与环境保护研讨会》大会报告[C].台湾大学,2001.
    [23]陈智梁、陈世瑜.扬子地台西缘地质构造演化[M].重庆:重庆出版社.1987.
    [24]程裕淇.中国区域地质概论[M].北京:地质出版社.1994.
    [25]管海冥、王学佑.塔里木盆地遥感地质[M].北京:地质出版社.1997.
    [26]从柏林.攀西古裂谷的形成和演化[M].北京:科学出版社.1988.
    [27]陈尚迪、赵昌龙、曹殿春等.新疆沙尔布拉克金矿与找矿[M].成都:成都科技大学出版社.1996.
    [28]何绍勋、段嘉瑞、刘继顺等.韧性剪切带与成矿[M].北京:地质出版社.1996.
    [29]吴美德、芮仲清.含金剪切带型金矿床[M].北京:地质矿产部情报研究所.1989.
    [30]杨敏之.金矿床新类型、金矿床地球化学、金矿床成矿预测原理[M].天津:冶金部天津地质研究院.1989.
    
    
    [31]卢作祥、范永香、刘辅臣.成矿规律和成矿预测学[M].北京:中国地质大学出版社.1988.
    [32]陈毓川.中国主要成矿区带矿产资源远景评价[M].北京:地质出版社.1999.
    [33]罗音、舒宁.基于信息量确定遥感图像主要波段的方法[J].城市勘测.2002,28—33.
    [34]喻安光.川西石棉地区含金剪切带的地球化学标志及矿物组合[J].地质地球化学.1999,27(4),55—61.
    [35]杨大宏.四川菜子地金矿地质特征及找矿前景探讨[J].四川地质学报.2000,20(2),110—114.
    [36]曾广策、肖玉永.四川冕宁茶铺子火山岩及其含矿性[J].华南地质与矿产.1998,12—20.
    [37]胡明安、章传玲.四川石棉田湾金矿床韧性剪切构造带地球化学障的成矿意义[J].地质科技情报.2000,19(2),33—37.
    [38]吴香尧、骆耀南.四川石棉田湾磨西剪切带的变形特征及其运动学分祈[J].成都理工学院学报.1998,25(4),511—517.
    [39]喻安光、郭建强.扬子地台西缘韧性剪切带对金矿的控制特征[J].四川地质学报.1997,17(4),262—268.
    [40]傅英祺、杨季楷.地史学简明教程[M].北京:地质出版社.1987.
    [41]四川省地质矿产局.四川省区域地质志[M].北京:地质出版社.1982.
    [42]陈德超,周海波,陈中原,等.TM与SPOT影像融合算法比较研究[J].遥感技术与应用,2001,16(2):110-115.
    [43]边馥苓,著.地理信息系统原理和方法[M].北京:测绘出版社.1996,172-175.
    [44]曹瑜,胡光道.地理信息系统在国内外应用现状[J].计算机与现代化.1999,61(3):1-4.
    [45]戴昌达,胡德永.TM数据的信息特征[J].遥感信息.1987,(2):25-30.
    [46]戴昌达,雷莉萍.TM图像的光谱信息量特征与最佳波段组合[J].环境遥感.1989,4(4):282-292.
    [47]单新建,叶洪,陈国光,等.数字遥感图像的多源数据融合方法在地质学中的一些应用[J].地震地质.1999,21(4):465-472
    [48]傅肃性.地理信息系统与遥感的一体化[J].国土资源遥感.1995,(3):9-12.
    [49]葛榜军.我国遥感地质工作展望[J].中国地质.1996,(11):25-26
    [50]龚健雅,夏宗国.地理信息系统的发展趋势与前景[J].地理信息世界.1996,(3):1-7.
    [51]龚健雅主编.当代GIS的若干理论与技术[M].武汉:武汉测绘科技大学出版社.1999
    [52]巩慧,赵文吉.GIS的发展方向[J].1999,18(1):60—63.
    [53]何国金,李克鲁,胡德永,等.多卫星遥感数据的信息融合:理论、方法与实践[J].中国图象图形学报.1999,4A(9):744-750.
    [54]贾永红,李德仁,孙家柄.多源遥感影像数据融合[J].遥感技术与应用.2001,15(1):41-44
    [55]李德仁.论GPS、DPS、RS、GIS和ES的结合[A].见:RS、GIS、GPS的集成和应用[M].北京:测绘出版社.1995:200-209
    [56]李德熊.TM合成图像波段组合的选择[J].遥感信息.1989,(4):68-70..
    [57]李静.遥感技术发展的新趋势分析[A].北京:遥感信息定量化文集[C].2000,28-35.
    [58]李强,王正志.遥感图像数字处理系统的发展综述[J].遥感技术与应用.1998,13(4):54-58.
    [59]陆灯盛,游先祥.TM图像的信息量分析及特征信息提取的研究[J].环境遥感.1991,6(4):267-274.
    [60]马荣华,黄杏元,蒲英霞.数字地球时代3S集成的发展[J].地理科学进展.2001,20(1):89-96.
    [61]赵文武,东野光亮,张银辉,等.3S技术集成及其应用研究进展[J].山东农业大学学报(自然科学版).2001,32(2):234-238.
    [62]阎积惠,康慧.甘肃北山TM合成图像的波段组合模式与解释[J].遥感信息.1989,(1):25-27.
    [63]Huadong Guo. Remote sensing in China: Techniques and applications. International Geoscience and Remote Sensing Symposium (IGARSS), 1997(4):1978-1980
    
    
    [64]Yang W N, Zhu Z S. The theory and method of phase-separation analysis od remote sensing infomation field of metallogenetic envioroment and nonmodel ore-deposit prediction[A]. In: proceedings of the 30th International Geological Congress[C]. VSP, International Science Publishers, The Netherlands (in press).
    [65]Astaras, T. Present state of the remote sensing applications to geological sciences in Greece. (Univ of Thessaloniki) Source: International Journal of Remote Sensing, 1994(15): 1251-1258
    [66]Kruse. Fred ARemote sensing and geographic information systems. Geological mapping, mineral exploration, and mining (Christopher A. Legg). Economic Geology and the Bulletin of the Society of Economic Geologists,, 1993(88):1289
    [67]Agar, R. A, Coughlin, T,J. Gold and base metal exploration project generation using Landsat TM data and spectral angle mapping for specific alteration styles in the Peruvian Andes. International Geoscience and Remote Sensing Symposium (IGARSS),2001(6):2498-2500
    [68]Hornsby. John K, Harris. J.R. Application of remotely sensed data to geologic exploration using image analysis and geographic information systems. Source: ASTM Special Technical Publication, 1992(1126):155-171
    [69]Zhang Shengyuan, Cheng Qiuming, Fuzzy weights of evidence method implemented in GeoDAS GIS for information extraction and integration for prediction of point eventsInternational Geoscience and Remote Sensing Symposium (IGARSS),2002(5): 2933-2935
    [70]Tong Qingxi, Zhen Lanfen, Xue Yongqi. Development and application of hyperspectral remote sensing in China. Proceedings of SPIE-The International Society for Optical Engineering, , 1998 (3501): 34-41
    [71]Schetselaar E M. Fusion by the IHS Transform: Should We Use Cylindrical or Spherical Coordinates. INT. J. Remote Sensing. 1998, 19(4): 759-765.
    [72]Chavez P S, Guptill S C and Bawell J A. Image processing Techniques for Thematics Mapper Data[C]. Technical Papers. 50th Annual meeting of the American Society of Photogrammetry. 1984, (2): 728-742
    [73]Yang Wenjiu, Liu Xxinji. Integration of multi-geoscience data for mineral resources prediction using GIS methodology. Computers, Environment and Urban Systems, 1992(16): 367-374
    [74]Hall D and Linn R. A Taxonmoy of Multi-sensor Data Fusion Techniques[A]. Jion Service Data Fusion Symposium[C]. 1990, 1(1): 593-610.
    [75]JIANG Xiao-yu, GAO Zhu-yun, ZHOU Li-wei. The Application of Wavelet Transform on Merging Multi-spectral Image[J]. Journal of Electronics, 1997, (8):65-71
    [76]Pratt W K. Digital Image Processing[M]. John Wiley & Sons. Inc, 1978: 56-75.
    [77]R. M. Hord , Remote Sensing Methods and Application , John Wiley & Sons, 1986, 139-147.
    [78]Wunian YANG, Zhengquan CUI, F. CAUNEAU, T. RANCHIN, J.P. PARIS, Guoliang PU, 1999: Digitalprocessing and information extraction of the remote sensing images in the Yangtze Three Gorges Project region, China[A]. Towards Digital Earth, Proceedings of the International Symposium on Digital Earth[C]. Beijing, Science Press, pp. 1008-1020
    [79]SUN Jia-bing, LIU Ji-ling, LI Jun. The fusion of Multi-spectral Image[J]. Journal of Remote sensing. 1997, (1):54-58.
    [80]Wald L, Ranchin T, Mangolini M. Fusion of Satellite Images of Different Spatial Resolutions: Assessing the Quality of Resulting Images. PE&RS. 1997.
    [81]YANG Wunian, Cauneau F., Paris J.-P., and Ranchin T., 2000. Fusion of SAR and SPOT images for the detectionof geological features over the Three Gorges Dam site, China[A]. In Proceedings of the third conference Fusion of Earth data: merging point measurements, raster maps and remotely sensed images, Sophia Antipolis[C]. France, January 26-28, 2000, T. Ranchin and L. Wald Editors, published by SEE/URISCA, Nice, France: 137-142.