用于Z箍缩等离子体诊断的多幅M-Z干涉仪
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文介绍了自行研制的一套多幅M-Z激光干涉仪。该干涉仪在小型喷气式Z箍缩装置上进行了实验,在一次等离子体内爆过程中拍摄到时间间隔为13纳秒的三幅干涉图。
    多幅M-Z激光干涉仪由激光器、空间分光延时系统,M-Z干涉仪和CCD成像系统构成。所用激光器为Nd:YAG脉冲激光器,采用了调Q和二倍频技术,波长为0.532、脉冲宽度为7ns、相干长度为2cm,能量为35mJ。空间分光延时系统由三对全反镜和部分反射镜构成,根据实验平台大小和实际需要调整镜片之间的距离,使相邻光束之间的光程差为390cm。激光器发出的光束经过分光系统被分成时间间隔13ns的三束光,它们于不同的时刻先后到达M-Z干涉仪,每一束激光脉冲可以记录下等离子的一个状态,从而可以得到三幅不同时刻的干涉图。成像系统由凸透镜(焦距约为40cm)、光楔(楔角为)、成像屏和CCD相机(SONY F707)构成。由干涉仪射出的三束光经凸透镜会聚于空间位置不同的点,把光楔放置在这些点上可使三束光在空间上彼此分开,利用CCD相机可记录下三幅干涉图。
    该套干涉仪在小型喷气式Z箍缩装置上进行了实验, Z装置的工作电压23kV、峰值电流210kA、电流上升时间约2。根据干涉图条纹的移动数,可以计算出等离子体的电子密度和运动速度。在箍缩早期平均电子密度为,运动速度为;聚焦附近,等离子体的平均电子密度约为,运动速度,最小箍缩半径0.49mm;崩溃阶段,等离子体的崩溃速度为。此系统属国内首创,实验结果达国际先进水平。
This paper describes a multi-frame Mach-Zehnder (M-Z) interferometer (MFMZI) developed by ourselves. MFMZI was conducted on a small gas-puff Z-Pinch device, and three interferograms with an interpulse delay of 13 ns were obtained in one shot of Z-Pinch.
    MFMZI consists of a Nd:YAG laser, a beam-splitter, a M-Z interferometer and a image system. With double-frequency technique and Q switch technique the laser delivers a laser pulse of 532-nm in wavelength, 5-ns in pulse width, 35-mJ in energy and 2-cm in coherent length. The beam-splitter comprises three pairs of fully reflecting planar mirrors and partially reflecting planar mirrors. According to the workspace size and experimental requirement, they were placed with a distance of 195-cm between two mirrors. When passed through the beam-splitter, a pulsed laser beam was split into 3 beams with an interpulse delay of 13 ns. These 3 separated laser pulses reach the M-Z interferometer at different time and each laser pulse gave a snapshot of the implosion state. Thus three different-time interferograms can be obtained in one shot of Z-Pinch. The image system includes a positive lens with 40-cm focal distance, a prism with a angle,a receiving board and a CCD camera with 5.02 million pixels. The laser beams from M-Z interferometer will focus on three different dots after going through the positive lens, and the prisms were placed on these dots. Owing to the deviation of these prisms, three interferograms will be separated each other when they reach the image board. Then these separated interferograms can be recorded by CCD camera
    The experiments with the multi-frame interferometer was carried out on a small gas-puff z-pinch device with 23 kV working voltage and 210 kA peak current and about 2 risetime, and good results were obtained. According to the fringe shift of the interferograms, electron density and implosion velocity can be obtained. In the early period of plasma imploding,the averaged electron density is ,
    
    and the averaged implosion velocity is up to; Near the final focus, the smallest radium of plasma shell is about 0.49 mm, and the electron density was estimated to be more than, and the averaged implosion velocity is about ; In the collapsing period, the averaged collapsing velocity is about .
引文
[1] L.F.Thomposon, C.G.Willson, and M.J.Bowden. Introduction to Microlithography. ACS, 1986
    [2] B.J.Lin. Fine Line Lithography. North-Holland Publishing Company, 1980
    [3] J.S.Pearlman, et al. Radiat.Phys.Chem.25, 1985, 709
    [4] 建议开展X射线显微术的研究. 清华大学电机工程系,1987
    [5] T.W.Sigmon, et al. Appl. Phys. Lett., 41, 1982, 452
    [6] Davis J., Clark R., Apruzese J.P., and Kepple P.C. IEEE Trans. Plasma Sci. 16, 1988, 482.
    [7] 李成榕. 喷气式Z箍缩等离子体运动的实验研究: [博士学位论文]. 北京: 清华大学电机工程系, 1989
    [8] J.Shiloh, A.Fisher, and N.Rostoker. Phys.Rev.Lett.40, 1978, 515
    [9] 陈砚桥. Z箍缩及其相关脉冲功率和诊断技术的研究: [博士后出站报告] 北京: 清华大学电机工程系, 2002
    [10] 杨津基. 高温度高密度磁化等离子体. 北京: 科学出版社, 2000
    [11] M.A.Liberman, et al. 高密度Z箍缩等离子体物理学(孙承伟译). 北京: 国防工业出版社, 2003.1
    [12] D.L.Hanson, Measurement of Radiation Symmetry in Z-pinch-driven Hohlraums. Physics of Plasmas Vol.9, No.5, May 2000.
    [13] Fusion and the Z-pinch, Scientific American, 1998.8
    [14] 国家自然科学基金委员会. 等离子体物理学. 北京: 科学出版社, 1994
    [15] Wolfgang Merzkirch. Flow Visualization. Academic Press, 1987
    [16] B.Burckle. Stuttgart Universiturt, IPF-81.1
    [17] Holographic Plasma Diagnostics. LA-3968-MS, 1968
    [18] J.Meyer, H.Houtman. Multiframe Interferometric Study of a Laser Irradiated Plasma in The Presence of The Two Plasma Decay Instability. Physics of Fluids
    
    B3(3), p745-750, 1991
    [19] L.Soto, H.Chuaqui, M.Skowronek. Eight-frame Holographic Interferometry System for Transient Plasma Diagnostics. Applied Optics, Vol. 34, No.34, p7831-7833, 1995
    [20] Niansheng Qi, Jochen Schein, et al. Z Pinch Imploding Plasma Density Profile Measurements Using a Two-Frame Laser Shearing Interferometer. IEEE Trans. on Plasma Science, Vol.30, No.1 February 2002, 227-236
    [21] 赵凯华, 鈡锡华. 光学(上册). 北京:北京大学出版社,1985
    [22] 母国光, 战元令. 光学. 北京:人民教育出版社,1979
    [23] 张三慧, 史田兰. 大学物理. 第四册. 北京:清华大学出版社,1991.4
    [24] 项志遴, 俞昌旋. 高温等离子体诊断技术(下册). 上海: 上海科学技术出版社,1982.6
    [25] 蔡圣善,朱耘等. 电动力学. 北京: 高等教育出版社, 2002.7
    [26] 虞福春,郑春开. 电动力学. 北京: 高等教育出版社, 1992.10
    [27] Ralph. H, Lovlecry. Methods of Experimental Physics Plasma Physics. Vol9. Part B, 1970
    [28] 朱德忠. 热物理激光测试技术. 北京: 科学出版社, 1990
    [29] Niansheng Qi. Space and Time Resolved Electron Density and Current Measurements in a Dense Plasma Focus Z-Pinch. IEEE Trans. on Plasma Science, Vol.26, No.4, 1998
    [30] 蓝信钜等. 激光技术. 科学出版社,2000年8月
    [31] 邱元武. 激光技术和应用. 同济大学出版社, 1996
    [32] 姚启钧. 光学教程. 北京:高等教育出版社, 1991
    [33] J.S.Pearlman and J.C.Riordan. Bright Discharge Plasma Source for X-ray Lithography. Proc. SPIE, 1985