光聚合收缩的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光聚合具有聚合速度快和聚合条件温和两个突出的优势。为此在过去的几十年间,得到迅速发展,并获得了广泛的应用。但是对于光聚合,尤其是广泛应用的自由基光聚合,聚合所产生的收缩一直是制约光聚合技术发展的一个最主要的问题。
     由于的缺少研究光聚合体系收缩过程的实时表征方法,为此,本文建立了光聚合实时收缩的研究手段。进一步,研究了单体结构和光聚合组分对收缩过程的影响。在此基础上,发展了降低聚合收缩的新方法。具体来说,实现了快速的(甲基)丙烯酸酯单体的固态光聚合,并发现固态光聚合可以降低聚合收缩;也实现了硫醇-环氧/硫醇-丙烯酸酯的杂化光聚合,并证明了这种杂化光聚合在降低单纯丙烯酸酯体系收缩的有效性。主要工作如下:
     1.建立了激光测量法,通过激光测量传感器可以实时监测光聚合的收缩过程,并证明了该方法的准确性,可重复性,并且可以广泛应用于各种粘度光聚合体系收缩的表征。由于可以有效的对各种光聚合体系的收缩过程加以表征,为此,该方法作为贯穿全文的实时收缩研究手段。
     建立了同时表征光聚合收缩和模量变化的研究手段,通过带有光固化附件的动态热机械分析仪(Photo-DMA)可以同时检测光聚合过程中收缩的变化和储能模量的变化。该方法可以适用于高度粘稠的牙科复合材料的光聚合过程的检测。
     2.研究了多种丙烯酸单体的光聚合收缩过程,发现双键浓度和双键转化率是影响收缩的重要因素。并且计算得到了丙烯酸酯体系双键的收缩因子为23.98mL/mol,即每摩尔双键聚合会产生23.98mL的收缩。研究了单体结构对收缩的影响,发现随着乙氧化程度提高,单体分子链长度增长,分子量提高,收缩速率和收缩率得到有效的降低,且双键转化率提高。而单纯降低官能度,并不一定能有效的降低双键浓度,因此,收缩率和收缩速率也并不一定能得到降低。另外,相对于丙烯酸酯官能团,甲基丙烯酸酯官能团具有更低的收缩率和收缩速率,但会降低双键转化率。
     考察了丙烯酸酯光聚合体系各个组分包括低聚物,单体,引发剂对收缩过程的影响。光聚合体系的收缩率可以由各个组分的收缩率进行计算。由于低聚物分子量较大,具有较低的双键浓度,提高低聚物的含量可以有效降低聚合收缩和收缩速率。相较于低聚物,单体是光聚合体系产生收缩的重要来源,通过改变单体的结构,如采用乙氧化的单体可以降低整体的收缩。引发剂通过影响双键转化过程来影响收缩过程。
     3.首次实现了丙烯酸十八酯(ODA)快速的固态固态条件下的自由基光聚合,与液态光聚合不同,固态条件下的自由基光聚合具有较好的抗氧气阻聚的性质。更为重要的是,由于固态条件下单体分子具有更紧密的排列,因此固态光聚合产生的收缩显著的低于液态条件下的光聚合。
     首次实现了甲基丙烯酸十八酯(ODMA)快速的固态条件下的自由基光聚合。发现固态条件下(5oC和15oC)甚至具有远高于液态条件下(25oC和35oC)的双键转化率和聚合速率;且单官能ODMA单体固态光聚合的双键转化率和聚合速率超过了用来对比的一些常用单官能和双官能的液态甲基丙烯酸酯单体。这是因为单体的六方堆积方式提高了聚合活性。固态光聚合形成了侧链结晶的聚合物,且结晶侧链也为六方堆积方式;并且固态光聚合制得的聚合物的仍具有较高的分子量和更窄的分子量分布。更为重要的是,相较于直接进行液态光聚合,固态光聚合可以明显的降低收缩。
     4.通过ITX增感的光产碱剂TBD HBPh4实现了长波长(320-500nm),快速的光引发的硫醇和环氧的点击化学反应。在此研究基础上,首次研究了ITX/TBD HBPh4引发的硫醇-环氧/硫醇-丙烯酸酯的杂化光聚合。由于结合了环氧和硫醇在降低收缩方面的优势,发现硫醇-环氧/硫醇-丙烯酸酯杂化体系的收缩远低于单纯丙烯酸酯体系的收缩。研究表明硫醇-环氧的收缩因子低于硫醇-丙烯酸酯的收缩因子,因此随着环氧-硫醇组分含量的提高,光聚合杂化体系的收缩得到了进一步降低。同时,随环氧-硫醇组分的提高,杂化体系中硫醇的转化率得到明显提高。此外,由于引入了刚性结构的环氧以及硫醇转化率的提高,杂化体系的热力学性能(包括储能模量,硬度,玻璃化转变温度)均随硫醇-环氧组分含量的提高而得到提升。
Photopolymerization has been widely accepted and is still growingdue to enormous advantages including high reaction rate and mildpolymerization condition, and temporal and spatial control of initiation.However, polymerization shrinkage is a major drawback for currentfree-radical photopolymerizable systems. Polymerization shrinkageinduces many problems and limitates the application of photocurablematerials. Herein, the new real-time method is developed to monitor theshrinkage process. The shrinkage process associated withphotopolymerization has been systematically investigated. In addition, forthe aim of decreasing the shrinkage, the novel solid-statephotopolymerization and hybrid photopolymerization has been relized,and we have proved these novel photopolymerization with low shrinkage.The main work is showed as the following.
     1. The laser reflection method is developed to measure the real-timeshrinkage. The accuracy, repeatability of this method has been wellproved. This method could be widely used for different photo-curablesystem.
     The photo-DMA method is developed to simultaneously measure thereal-time shrinkage and modulus development. This method could beused for the photo-curable dental composites.
     2. Various acrylate monomers are used to investigate thephotopolymerization shrinkage process. The concentration of doublebonds and degree of double bond conversion are key factors to infleuncethe shrinkage process. The shrinkage factor of acrylate, which iscalculated from the curve of maximum shrinkage versus theconcentration of double bonds, is23.98ml/mol, which means15.72mL of shrinkage produced by every mole of double bond polymerized. Theinfluence of chemical structure on the shrinkage process has beenevaluated. With increase of the molecular length by rising the degree ofethoxylation, the shrinkage rate and percentage shrinkage has beendecreased. Decrease of the functionality accompanied with the reducingof the molecular weight, the concentration of double bonds may be notdecreased, so percentage shrinkage may be not reduced by decreasing thefunctionality. Methacrylate could decrease the shrinkage rate andpercentage shrinkage, but unfortunately reduced the degree of conversion.
     The compositional effect on shrinkage process of phtocurableformulation has been evaluated. The final shrinkage of fomulation can becalculated according to the contribution of monomers and oligomers.Because the oligomer has the higher molecular weight than monomer,shrinkage rate and final shrinkage could be easily decreased by increasingthe weight percentage of oligomers. Using ethoxylated monomers candecrease the shrinkage rate and percentage shrinkage. Photo-initiator candecrease the percentage shrinkage and shrinkage rate when lowconcentration of photo-initiator is used. It is due to the decrease ofconversion, and concentration of photo-initiator has no significantinfluence on the maximum shrinkage.
     3. The free-radical solid-state photopolymerization of octadecylacrylate has been achieved without polymerization kinetics beendeteriorative influenced by mobility restriction. The XRD, DSC, andreal-time FTIR proved that similarity of hexagonal packing between themonomers and polymers facilitates the photopolymerization in the solidstate. Unlike the normal liquid-state photopolymerization, the solid-statephotopolymerization is insensitive to the oxygen due to the fact that thediffusion of oxygen into the sample has been slow down. Moreimportantly, due to the more compact packing of monomers, theshrinkage of solid-state photopolymerization is obviously low (1%).
     The rapid free-radical solid-state photopolymerization of octadecylmethacrylate has been achieved with the increasing the polymerizationreactivity of methacrylate. The polymerization rate and double bondconversion in the solid state (5oC and15oC) is higher than those in the liquid state (25oC and35oC). The polymerization rate of crystallineoctadecyl methacrylate significantly exceeds that of highly functionaldimethacrylates (EGDAB and DEGDMA). Based on DSC, XRD andreal-time FTIR results, octadecyl methacrylate polymerized in the solidstate without destroying the hexagonal packing of crystalline long alkylchains, and the the hexagonal packing of long alkyl chains are preservedas the hexagonal packing of long alkyl side-chains of polymers. GPCshows that the molecular weight of polymers is still high, and themolecular weight distribution is significantly decreased by solid-statephotopolymerization. We inferred that the crystalline structure, in whichmethacrylic double bonds are concentrated, facilitated rapid minimallyactivated propagation and suppressed bimolecular termination. Moreimportantly, because obvious shrinkage occurs before polymerization dueto crystallization, the shrinkage of solid-state photopolymerizationwithout transition of liquid to solid is obviously low(1%).
     4. The rapid photopolymerization of hybrid thiol-epoxy/thiol-acylatesystem has been achieved. ITX/TBD HBPh4photoinitiating system thatgenerated both free radical and strong base (TBD) upon UV exposure(320-500nm), could induced the relatively fast and essentiallyquantitative thiol-epoxy click reaction, radical-mediated thiol-acrylatereaction and thiol-acrylate Micheal addition reaction. The results showthat hybrid systems have much lower polymerization shrinkage comparedwith single acrylate system, and polymerization shrinkage decreases withincreasing the percentage weight of thiol-epoxy. Besides, the mechanicalproperty and hardness of thiol-acylate system has been improved bythiol-epoxy reaction. With rising the percentage weight of thiol-epoxy,the store modulus, the glass transition temperature, and hardness hassignificantly increased.
引文
[1] Yagci Y, Jockusch S, Turro N J. Photoinitiated Polymerization: Advances, Challenges, andOpportunities [J]. Macromolecules,2010,43:6245-6260.
    [2] Decker C. The use of UV irradiation in polymerization [J]. Polym. Int.,1998,45:133-141.
    [3] Decker C. Photoinitiated crosslinking polymerisation [J]. Prog. Polym. Sci.,1996,21:593-650.
    [4] Schnabel W. Polymers and light: fundamentals and technical applications [M].Wiley-VCH Weinheim, Germany,2007.
    [5] Decker C. Photopolymerization and Ultraviolet Curing of Multifunctional Monomers [M].Mater. Sci. Technol.; Wiley-VCH Verlag GmbH&Co. KGaA.2006.
    [6] Cook W D. Thermal aspects of the kinetics of dimethacrylate photopolymerization [J].Polymer,1992,33:2152-2161.
    [7] Anseth K S, Wang C M, Bowman C N. Kinetic evidence of reaction diffusion during thepolymerization of multi(meth)acrylate monomers [J]. Macromolecules,1994,27:650-655.
    [8] Zhu S, Tian Y, Hamielec A E, Eaton D R. Radical trapping and termination in free-radicalpolymerization of methyl methacrylate [J]. Macromolecules,1990,23:1144-1150.
    [9] Lovell L G, Stansbury J W, Syrpes D C, Bowman C N. Effects of Composition andReactivity on the Reaction Kinetics of Dimethacrylate/Dimethacrylate Copolymerizations[J]. Macromolecules,1999,32:3913-3921.
    [10] Lee T Y, Guymon C A, J nsson E S, Hoyle C E. The effect of monomer structure onoxygen inhibition of (meth)acrylates photopolymerization [J]. Polymer,2004,45:6155-6162.
    [11] Xu F, Yang J L, Gong Y S, Ma G P, Nie J. A Fluorinated Photoinitiator for Surface OxygenInhibition Resistance [J]. Macromolecules,2012,
    [12] Balta D K, Arsu N, Yagci Y, Jockusch S, Turro N J. Thioxanthone-anthracene: a newphotoinitiator for free radical polymerization in the presence of oxygen [J].Macromolecules,2007,40:4138-4141.
    [13] Lalevée J, Allonas X, Fouassier J P. Tris(trimethylsilyl)silane (TTMSS)-Derived RadicalReactivity toward Alkenes: ACombined Quantum Mechanical and Laser Flash PhotolysisStudy [J]. The Journal of Organic Chemistry,2007,72:6434-6439.
    [14] Lalevée J, Allonas X, Jradi S, Fouassier J P. Role of the medium on the reactivity ofcleavable photoinitiators in photopolymerization reactions [J]. Macromolecules,2006,39:1872-1879.
    [15] Laleve e J, Blanchard N, El-Roz M, Graff B, Allonas X, Fouassier J P. New PhotoinitiatorsBased on the Silyl Radical Chemistry: Polymerization Ability, ESR Spin Trapping, andLaser Flash Photolysis Investigation [J]. Macromolecules,2008,41:4180-4186.
    [16] Lalevée J, Dirani A, El‐Roz M, Allonas X, Fouassier J P. Germanes as efficientcoinitiators in radical and cationic photopolymerizations [J]. J. Polym. Sci., Part A: Polym.Chem.,2008,46:3042-3047.
    [17] Lalevee J, Blanchard N, Chany A, El-Roz M, Souane R, Graff B, Allonas X, Fouassier J.Silyl Radical Chemistry and Conventional Photoinitiators: A Route for the Design ofEfficient Systems [J]. Macromolecules,2009,42:6031-6037.
    [18] Lalevee J, Dirani A, El-Roz M, Allonas X, Fouassier J. Silanes as new highly efficientco-initiators for radical polymerization in aerated media [J]. Macromolecules,2008,41:2003-2010.
    [19] Laleve e J, Tehfe M A, Gigmes D, Fouassier J P. On the Favorable Interaction of MetalCentered Radicals with Hydroperoxides for an Enhancement of the PhotopolymerizationEfficiency Under Air [J]. Macromolecules,2010,
    [20] Lalevée J, Fouassier J P. Recent advances in sunlight induced polymerization: role of newphotoinitiating systems based on the silyl radical chemistry [J]. Polym. Chem.,2011,2:1107-1113.
    [21] Ali Tehfe M, El-Roz M, Lalevée J, Morlet-Savary F, Graff B, Fouassier J P. Bifunctionalco-initiators: A new strategy for the design of efficient systems in radicalphotopolymerization reactions under air [J]. Eur. Polym. J.,2012,
    [22] Chang T, Chen Y, Ho S, Chiu Y. The effect of silicon and phosphorus on the degradationof poly (methyl methacrylate)[J]. Polymer,1996,37:2963-2968.
    [23] Lalevée J, El-Roz M, Morlet-Savary F, Graff B, Allonas X, Fouassier J P. New HighlyEfficient Radical Photoinitiators Based on Si Si Bond Cleavage [J]. Macromolecules,2007,40:8527-8530.
    [24] Li C, Zhou C, Zheng H, Yin X, Zuo Z, Liu H, Li Y. Synthesis of a novelpoly(para-phenylene ethynylene) for highly selective and sensitive sensing mercury (II)ions [J]. J. Polym. Sci., Part A: Polym. Chem.,2008,46:1998-2007.
    [25] Chen H B, Chang T C, Chiu Y S, Ho S Y. Photopolymerization of styrene,p-chlorostyrene, methyl methacrylate, and butyl methacrylate withpolymethylphenylsilane as photoinitiator [J]. J. Polym. Sci., Part A: Polym. Chem.,1996,34:679-685.
    [26] Nason C, Roper T, Hoyle C, Pojman J A. UV-induced frontal polymerization ofmultifunctional (meth) acrylates [J]. Macromolecules,2005,38:5506-5512.
    [27] Ten Brummelhuis N, Diehl C, Schlaad H. Thiol Ene Modification of1,2-PolybutadieneUsing UV Light or Sunlight [J]. Macromolecules,2008,41:9946-9947.
    [28] Tarlov M J, Burgess Jr D R F, Gillen G. UV photopatterning of alkanethiolate monolayersself-assembled on gold and silver [J]. J. Am. Chem. Soc.,1993,115:5305-5306.
    [29] Chiou B S, Khan S A. Real-time FTIR and in situ rheological studies on the UV curingkinetics of thiol-ene polymers [J]. Macromolecules,1997,30:7322-7328.
    [30] Kwisnek L, Nazarenko S, Hoyle C E. Oxygen Transport Properties of Thiol EneNetworks [J]. Macromolecules,2009,42:7031-7041.
    [31] Crivello J V, Kong S. Long-wavelength-absorbing dialkylphenacylsulfonium saltphotoinitiators: Synthesis and photoinduced cationic polymerization [J]. J. Polym. Sci.,Part A: Polym. Chem.,2000,38:1433-1442.
    [32] Crivello J V, Kong S. Synthesis and Characterization of Second-GenerationDialkylphenacylsulfonium Salt Photoinitiators [J]. Macromolecules,2000,33:825-832.
    [33] Crivello J V, Lam J H W. Diaryliodonium Salts. A New Class of Photoinitiators forCationic Polymerization [J]. Macromolecules,1977,10:1307-1315.
    [34] Crivello J V, Lam J H W. Dye-sensitized photoinitiated cationic polymerization [J].Journal of Polymer Science: Polymer Chemistry Edition,1978,16:2441-2451.
    [35] Crivello J V, Lam J H W. Photoinitiated cationic polymerization with triarylsulfoniumsalts [J]. Journal of Polymer Science: Polymer Chemistry Edition,1979,17:977-999.
    [36] Ya ci Y, Kornowski A, Schnabel W. N-alkoxy-pyridinium and N-alkoxy-quinolinium saltsas initiators for cationic photopolymerizations [J]. J. Polym. Sci., Part A: Polym. Chem.,1992,30:1987-1991.
    [37] Kasapoglu F, Onen A, Bicak N, Yagci Y. Photoinitiated cationic polymerization using anovel phenacyl anilinium salt [J]. Polymer,2002,43:2575-2579.
    [38] Kutal C, Grutsch P A, Yang D B. A novel strategy for photoinitiated anionicpolymerization [J]. Macromolecules,1991,24:6872-6873.
    [39] Fukuchi Y, Takahashi T, Noguchi H, Saburi M, Uchida Y. Photoinitiated anioniccoordination polymerization of epoxides, a novel polymerization process [J].Macromolecules,1987,20:2316-2317.
    [40] Palmer B J, Kutal C, Billing R, Hennig H. A New Photoinitiator for AnionicPolymerization [J]. Macromolecules,1995,28:1328-1329.
    [41] Arsu N, nen A, Ya cí Y. Photoinitiated Zwitterionic Polymerization of AlkylCyanoacrylates by Pyridinium Salts [J]. Macromolecules,1996,29:8973-8974.
    [42] Tanabe M, Manners I. Photolytic Living Anionic Ring-Opening Polymerization (ROP) ofSilicon-Bridged [1]Ferrocenophanes via an Iron-Cyclopentadienyl Bond CleavageMechanism [J]. J. Am. Chem. Soc.,2004,126:11434-11435.
    [43] Szwarc M. Living'polymers [J]. Nature,1956,178:1168-1169.
    [44] Hadjichristidis N, Iatrou H, Pitsikalis M, Mays J. Macromolecular architectures by livingand controlled/living polymerizations [J]. Prog. Polym. Sci.,2006,31:1068-1132.
    [45] Tasdelen M A, Durmaz Y Y, Karagoz B, Bicak N, Yagci Y. A new photoiniferter/RAFTagent for ambient temperature rapid and well-controlled radical polymerization [J]. J.Polym. Sci., Part A: Polym. Chem.,2008,46:3387-3395.
    [46] Otsu T. Iniferter concept and living radical polymerization [J]. J. Polym. Sci., Part A:Polym. Chem.,2000,38:2121-2136.
    [47] Scaiano J, Connolly T J, Mohtat N, Pliva C N. Exploratory study of the quenching ofphotosensitizers by initiators of free radical" living" polymerization [J]. Can. J. Chem.,1997,75:92-97.
    [48] Yoshida E. Photo-living radical polymerization of methyl methacrylate by a nitroxidemediator [J]. Colloid&Polymer Science,2008,286:1663-1666.
    [49] Yoshida E. Photo-living radical polymerization of methyl methacrylate by2,2,6,6-tetramethylpiperidine-1-oxyl in the presence of a photo-acid generator [J]. Colloid&Polymer Science,2009,287:767-772.
    [50] Yoshida E. Synthesis of poly (methyl methacrylate)-block-poly (tetrahydrofuran) byphoto-living radical polymerization using a2,2,6,6-tetramethylpiperidine-1-oxylmacromediator [J]. Colloid&Polymer Science,2009,287:1417-1424.
    [51] Yoshida E. Nitroxide-mediated photo-living radical polymerization of vinyl acetate [J].Colloid&Polymer Science,2010,288:73-78.
    [52] Yoshida E. Photo-living radical polymerization of methyl methacrylate using alkoxyamineas an initiator [J]. Colloid&Polymer Science,2010,288:7-13.
    [53] Goto A, Scaiano J C, Maretti L. Photolysis of an alkoxyamine using intramolecular energytransfer from a quinoline antenna-towards photo-induced living radical polymerization [J].Photochemical&Photobiological Sciences,2007,6:833-835.
    [54] Guillaneuf Y, Bertin D, Gigmes D, Versace D-L, Laleve e J, Fouassier J-P. TowardNitroxide-Mediated Photopolymerization [J]. Macromolecules,2010,43:2204-2212.
    [55] Kwon S, Lee Y, Jeon H, Han K, Mah S. Living cationic polymerization of isobutyl vinylether (II): Photoinduced living cationic polymerization in a mixed solvent of toluene anddiethyl ether [J]. J. Appl. Polym. Sci.,2006,101:3581-3586.
    [56] Kahveci M U, Tasdelen M A, Yagci Y. Photochemically initiated free radical promotedliving cationic polymerization of isobutyl vinyl ether [J]. Polymer,2007,48:2199-2202.
    [57] Papaspyrides C D, Vouyiouka S N, MyiLibrary. Solid state polymerization [M]. WileyOnline Library,2009.
    [58] Wegner G. Solid-state polymerization mechanisms [J]. Pure Appl. Chem,1977,49:443-454.
    [59] Hasegawa M. Photopolymerization of diolefin crystals [J]. Chem. Rev.,1983,83:507-518.
    [60] Nakanishi H, Jones W, Thomas J, Hasegawa M, Rees W. Topochemically controlledsolid-state polymerization [J]. Proceedings of the Royal Society of London. A.Mathematical and Physical Sciences,1980,369:307-325.
    [61] B ssler H. Photopolymerization of diacetylenes [J]. Polydiacetylenes,1984,1-48.
    [62] Enkelmann V. Structural aspects of the topochemical polymerization of diacetylenes [J].Polydiacetylenes,1984,91-136.
    [63] Okawa Y, Aono M. Materials science: nanoscale control of chain polymerization [J].Nature,2001,409:683-684.
    [64] Kim J M, Ji E K, Woo S, Lee H, Ahn D J. Immobilized polydiacetylene vesicles on solidsubstrates for use as chemosensors [J]. Adv. Mater.,2003,15:1118-1121.
    [65] Jahnke E, Lieberwirth I, Severin N, Rabe J P, Frauenrath H. Topochemical Polymerizationin Supramolecular Polymers of Oligopeptide‐Functionalized Diacetylenes [J]. Angew.Chem. Int. Ed.,2006,45:5383-5386.
    [66] Ouyang X, Fowler F W, Lauher J W. Single-crystal-to-single-crystal topochemicalpolymerizations of a terminal diacetylene: Two remarkable transformations give the sameconjugated polymer [J]. J. Am. Chem. Soc.,2003,125:12400-12401.
    [67] Matsumoto A, Matsumura T, Aoki S. Stereospecific Polymerization of Dialkyl Muconatesthrough Free Radical Polymerization: Isotropic Polymerization and TopochemicalPolymerization [J]. Macromolecules,1996,29:423-432.
    [68] Odani T, Matsumoto A, Sada K, Miyata M. One-way EZ-isomerization of bis(n-butylammonium)(Z, Z)-muconate under photoirradiation in the crystalline state [J].Chem. Commun.,2001,2004-2005.
    [69] Matsumoto A, Furukawa D, Nakazawa H. Stereocontrol of diene polymers bytopochemical polymerization of substituted benzyl muconates and their crystallizationproperties [J]. J. Polym. Sci., Part A: Polym. Chem.,2006,44:4952-4965.
    [70] Matsumoto A, Oshita S, Fujioka D. A Novel Organic Intercalation System with LayeredPolymer Crystals as the Host Compounds Derived from1,3-Diene Carboxylic Acids [J]. J.Am. Chem. Soc.,2002,124:13749-13756.
    [71] Matsumoto A, Odani T, Sada K, Miyata M, Tashiro K. Intercalation of alkylamines into anorganic polymer crystal [J]. Nature,2000,405:328-330.
    [72] Nakamoto S, Tashiro K, Matsumoto A. Vibrational Spectroscopic Study on the MolecularDeformation Mechanism of a Poly(trans-1,4-diethyl muconate) Single Crystal Subjectedto Tensile Stress [J]. Macromolecules,2003,36:109-117.
    [73] Furukawa D, Kobatake S, Matsumoto A. Direct observation of change in the molecularstructure of benzyl (Z, Z)-muconate during photoisomerization in the solid state [J].Chem. Commun.,2008,55-57.
    [74] Nagahama S, Tanaka T, Matsumoto A. Supramolecular Control over the Stereochemistryof Diene Polymers [J]. Angew. Chem. Int. Ed.,2004,43:3811-3814.
    [75] Matsumoto A, Tanaka T, Tsubouchi T, Tashiro K, Saragai S, Nakamoto S. CrystalEngineering for Topochemical Polymerization of Muconic Esters Using Halogen Halogenand CH/π Interactions as Weak Intermolecular Interactions [J]. J. Am. Chem. Soc.,2002,124:8891-8902.
    [76] Satoh K, Kamigaito M. Stereospecific Living Radical Polymerization: Dual Control ofChain Length and Tacticity for Precision Polymer Synthesis [J]. Chem. Rev.,2009,109:5120-5156.
    [77] Matsumoto A, Yokoi K. Control of molecular weight of the polymers produced during thecrystalline‐state photopolymerization of diethyl cis, cis‐muconate as studied by gelpermeation chromatography and scanning electron micrography [J]. J. Polym. Sci., Part A:Polym. Chem.,1998,36:3147-3155.
    [78] Soldatov A V, Roth G, Dzyabchenko A, Johnels D, Lebedkin S, Meingast C, Sundqvist B,Haluska M, Kuzmany H. Topochemical polymerization of C70controlled by monomercrystal packing [J]. Science,2001,293:680.
    [79] Zhang W, Dong H, Zhang T, Guo J, Wei J. The effect of monomer structures onphotopolymerization kinetics and volume shrinkage behavior for plasma display panelbarrier rib [J]. J. Appl. Polym. Sci.,2012,125:77-87.
    [80] Wen M, Scriven L, McCormick A V. Differential scanning calorimetry and cantileverdeflection studies of polymerization kinetics and stress in ultraviolet curing ofmultifunctional (meth) acrylate coatings [J]. Macromolecules,2002,35:112-120.
    [81] Yu H, Mhaisalkar S G, Wong E H. Direct Measurement of Cure Induced Stress inThermosetting Materials by Means of a Dynamic Mechanical Analyzer [J]. Macromol.Rapid Commun.,2006,27:1393-1397.
    [82] Stansbury J W, Trujillo-Lemon M, Lu H, Ding X, Lin Y, Ge J. Conversion-dependentshrinkage stress and strain in dental resins and composites [J]. Dent. Mater.,2005,21:56-67.
    [83] Alster D, Venhoven B, Feilzer A, Davidson C. Influence of compliance of the substratematerials on polymerization contraction stress in thin resin composite layers [J].Biomaterials,1997,18:337-341.
    [84] Laughlin G A, Williams J L, Eick J D. The influence of system compliance and samplegeometry on composite polymerization shrinkage stress [J]. Journal of biomedicalmaterials research,2002,63:671-678.
    [85] Shah D U, Schubel P J. Evaluation of cure shrinkage measurement techniques forthermosetting resins [J]. Polym. Test.,2010,29:629-639.
    [86] Schoch K F, Panackal P A, Frank P P. Real-time measurement of resin shrinkage duringcure [J]. Thermochim. Acta,2004,417:115-118.
    [87] Yu H, Mhaisalkar S G, Wong E H. Observations of Gelation and Vitrification of aThermosetting Resin during the Evolution of Polymerization Shrinkage [J]. Macromol.Rapid Commun.,2005,26:1483-1487.
    [88] Yim M J, Li Y, Moon K, Paik K W, Wong C. Review of recent advances in electricallyconductive adhesive materials and technologies in electronic packaging [J]. J. Adhes. Sci.Technol.,2008,22:1593-1630.
    [89] Yu H, Mhaisalkar S, Wong E, Khoo G. Time–temperature transformation (TTT) curediagram of a fast cure non-conductive adhesive [J]. Thin Solid Films,2006,504:331-335.
    [90] Yu H, Mhaisalkar S, Wong E. Effect of temperature on the cure shrinkage measurement ofnon-conductive adhesives for flip chip interconnects [J]. J. Mater. Res.,2005,20:1324-1329.
    [91] Ramis X, Salla J M, Mas C, Mantecón A, Serra A. Kinetic study by FTIR, TMA, and DSCof the curing of a mixture of DGEBA resin and γ‐butyrolactone catalyzed by ytterbiumtriflate [J]. J. Appl. Polym. Sci.,2004,92:381-393.
    [92] Silikas N, Al-Kheraif A, Watts D C. Influence of P/L ratio and peroxide/amineconcentrations on shrinkage-strain kinetics during setting of PMMA/MMA biomaterialformulations [J]. Biomaterials,2005,26:197-204.
    [93] Atai M, Watts D C, Atai Z. Shrinkage strain-rates of dental resin-monomer and compositesystems [J]. Biomaterials,2005,26:5015-5020.
    [94] Watts D C, Cash A J. Determination of polymerization shrinkage kinetics invisible-light-cured materials: methods development [J]. Dent. Mater.,1991,7:281-287.
    [95] Lee I, Cho B, Son H, Um C. A new method to measure the polymerization shrinkagekinetics of light cured composites [J]. Journal of oral rehabilitation,2005,32:304-314.
    [96] Lee I B, Cho B H, Son H H, Um C M, Lim B S. The effect of consistency, specimengeometry and adhesion on the axial polymerization shrinkage measurement of light curedcomposites [J]. Dent. Mater.,2006,22:1071-1079.
    [97] Fano V, Ortalli I, Pizzi S, Bonanini M. Polymerization shrinkage of microfilledcomposites determined by laser beam scanning [J]. Biomaterials,1997,18:467-470.
    [98] Sharp L J, Choi I B, Lee T E, Sy A, Suh B I. Volumetric shrinkage of composites usingvideo-imaging [J]. Journal of dentistry,2003,31:97-103.
    [99] Tiba A, Charlton D G, Vandewalle K S, Ragain Jr J C. Comparison of two video-imaginginstruments for measuring volumetric shrinkage of dental resin composites [J]. Journal ofdentistry,2005,33:757-763.
    [100] Fogleman E, Kelly M, Grubbs W. Laser interferometric method for measuring linearpolymerization shrinkage in light cured dental restoratives [J]. Dent. Mater.,2002,18:324-330.
    [101] Lu B, Xiao P, Sun M, Nie J. Reducing volume shrinkage by low-temperaturephotopolymerization [J]. J. Appl. Polym. Sci.,2007,104:1126-1130.
    [102] Uyama S, Irokawa A, Iwasa M, Tonegawa M, Shibuya Y, Tsubota K, Takamizawa T,Miyazaki M. Influence of irradiation time on volumetric shrinkage and flexural propertiesof flowable resins [J]. Dental materials journal,2007,26:892-897.
    [103] Silikas N, Eliades G, Watts D. Light intensity effects on resin-composite degree ofconversion and shrinkage strain [J]. Dent. Mater.,2000,16:292-296.
    [104] Kloosterboer J, Van de Hei G, Gossink R, Dortant G. The effects of volume relaxation andthermal mobilization of trapped radicals on the final conversion of photopolymerizeddiacrylates [J]. Polymer communications,1984,25:322-325.
    [105] Yap A, Ng S, Siow K. Soft-start polymerization: Influence on effectiveness of cure andpost-gel shrinkage [J]. Operative dentistry,2001,26:260.
    [106] Yap A, Soh M, Siow K. Post-gel shrinkage with pulse activation and soft-startpolymerization [J]. Operative dentistry,2002,27:81.
    [107] Hofmann N, Denner W, Hugo B, Klaiber B. The influence of plasma arc vs. halogenstandard or soft-start irradiation on polymerization shrinkage kinetics of polymer matrixcomposites [J]. Journal of dentistry,2003,31:383-393.
    [108] Watts D, Hindi A A. Intrinsic soft-start‘polymerisation shrinkage-kinetics in anacrylate-based resin-composite [J]. Dent. Mater.,1999,15:39-45.
    [109] Spinell T, Schedle A, Watts D C. Polymerization shrinkage kinetics of dimethacrylateresin-cements [J]. Dent. Mater.,2009,25:1058-1066.
    [110] Satterthwaite J D, Vogel K, Watts D C. Effect of resin-composite filler particle size andshape on shrinkage–strain [J]. Dent. Mater.,2009,25:1612-1615.
    [111] Geiser V, Leterrier Y, M nson J-A E. Conversion and shrinkage analysis of acrylatedhyperbranched polymer nanocomposites [J]. J. Appl. Polym. Sci.,2009,114:1954-1963.
    [112] Decker C. Surface protection of poly(vinyl chloride) by photografting of epoxy–acrylatecoatings [J]. J. Appl. Polym. Sci.,1983,28:97-107.
    [113] Kaczmarek H, Decker C. Interpenetrating polymer networks. I. Photopolymerization ofmultiacrylate systems [J]. J. Appl. Polym. Sci.,1994,54:2147-2156.
    [114] Moussa K, Decker C. Semi‐interpenetrating polymer networks synthesis byphotocrosslinking of acrylic monomers in a polymer matrix [J]. J. Polym. Sci., Part A:Polym. Chem.,2003,31:2633-2642.
    [115] Cheng X, Guo L J, Fu P F. Room‐Temperature, Low‐Pressure Nanoimprinting Basedon Cationic Photopolymerization of Novel Epoxysilicone Monomers [J]. Adv. Mater.,2005,17:1419-1424.
    [116] Eick J D, Kostoryz E L, Rozzi S M, Jacobs D W, Oxman J D, Chappelow C C, Glaros AG, Yourtee D M. In vitro biocompatibility of oxirane/polyol dental composites withpromising physical properties [J]. Dent. Mater.,2002,18:413-421.
    [117] Sangermano M, Ortiz R A, Urbina B A P, Duarte L B, Valdez A E G, Santos R G. Synthesisof an epoxy functionalized spiroorthocarbonate used as low shrinkage additive in cationicUV curing of an epoxy resin [J]. Eur. Polym. J.,2008,44:1046-1052.
    [118] Nagai D, Nishida M, Nagasawa T, Ochiai B, Miyazaki K, Endo T. Non-ShrinkingNetworked Materials from the Cross-Linking Copolymerization of Spiroorthocarbonatewith Bifunctional Oxetane [J]. Macromol. Rapid Commun.,2006,27:921-925.
    [119] Bailey W. Ring-opening polymerization [J]. Pergamon Press plc, Comprehensive PolymerScience: the Synthesis, Characterization, Reactions&Applications of Polymers.,1989,3:283-320.
    [120] Bolln C, Frey H, Mülhaupt R. Synthesis and Photoinitiated Cationic Polymerization of2-Methylene-7-phenyl-1,4,6,9-tetraoxaspiro[4.4]nonane [J]. Macromolecules,1996,29:3111-3116.
    [121] Ge J, Trujillo-Lemon M, Stansbury J W. A Mechanistic and Kinetic Study of thePhotoinitiated Cationic Double Ring-Opening Polymerization of2-Methylene-7-phenyl-1,4,6,9-tetraoxa-spiro[4.4]nonane [J]. Macromolecules,2006,39:8968-8976.
    [122] Moon E J, Lee J Y, Kim C K, Cho B H. Dental restorative composites containing2,2-bis-[4-(2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane derivatives and spiroorthocarbonates [J]. Journal of Biomedical Materials Research Part B: AppliedBiomaterials,2005,73B:338-346.
    [123] Kolb H C, Finn M, Sharpless K B. Click chemistry: diverse chemical function from a fewgood reactions [J]. Angew. Chem. Int. Ed.,2001,40:2004-2021.
    [124] Hoyle C E, Bowman C N. Thiol–ene click chemistry [J]. Angew. Chem. Int. Ed.,2010,49:1540-1573.
    [125] Cramer N B, Bowman C N. Kinetics of thiol–ene and thiol–acrylate photopolymerizationswith real‐time fourier transform infrared [J]. J. Polym. Sci., Part A: Polym. Chem.,2001,39:3311-3319.
    [126] Rydholm A E, Bowman C N, Anseth K S. Degradable thiol-acrylate photopolymers:polymerization and degradation behavior of an in situ forming biomaterial [J].Biomaterials,2005,26:4495-4506.
    [127] O'Brien A K, Cramer N B, Bowman C N. Oxygen inhibition in thiol–acrylatephotopolymerizations [J]. J. Polym. Sci., Part A: Polym. Chem.,2006,44:2007-2014.
    [128] Fairbanks B D, Schwartz M P, Halevi A E, Nuttelman C R, Bowman C N, Anseth K S. AVersatile Synthetic Extracellular Matrix Mimic via Thiol‐NorbornenePhotopolymerization [J]. Adv. Mater.,2009,21:5005-5010.
    [129] Carioscia J A, Schneidewind L, O'Brien C, Ely R, Feeser C, Cramer N, Bowman C N.Thiol–norbornene materials: Approaches to develop high Tg thiol–ene polymers [J]. J.Polym. Sci., Part A: Polym. Chem.,2007,45:5686-5696.
    [130] Khire V S, Harant A W, Watkins A W, Anseth K S, Bowman C N. Ultrathin patternedpolymer films on surfaces using thiol-ene polymerizations [J]. Macromolecules,2006,39:5081-5086.
    [131] Cramer N B, Reddy S K, Lu H, Cross T, Raj R, Bowman C N. Thiol‐enephotopolymerization of polymer‐derived ceramic precursors [J]. J. Polym. Sci., Part A:Polym. Chem.,2004,42:1752-1757.
    [132] Lee T Y, Smith Z, Reddy S K, Cramer N B, Bowman C N. Thiol-allyl ether-methacrylateternary systems. Polymerization mechanism [J]. Macromolecules,2007,40:1466-1472.
    [133] Reddy S K, Cramer N B, Bowman C N. Thiol-vinyl mechanisms.1. Termination andpropagation kinetics in thiol-ene photopolymerizations [J]. Macromolecules,2006,39:3673-3680.
    [134] Harant A W, Khire V S, Thibodaux M S, Bowman C N. Thiol-ene photopolymer grafts onfunctionalized glass and silicon surfaces [J]. Macromolecules,2006,39:1461-1466.
    [135] Reddy S K, Cramer N B, O'Brien A K, Cross T, Raj R, Bowman C N. Rate mechanisms ofa novel thiol‐ene photopolymerization reaction; proceedings of the MacromolecularSymposia, F,2004[C]. Wiley Online Library.
    [136] Lee T Y, Carioscia J, Smith Z, Bowman C N. Thiol-allyl ether-methacrylate ternarysystems. Evolution mechanism of polymerization-induced shrinkage stress andmechanical properties [J]. Macromolecules,2007,40:1473-1479.
    [137] Reddy S K, Cramer N B, Bowman C N. Thiol-vinyl mechanisms.2. Kinetic modeling ofternary thiol-vinyl photopolymerizations [J]. Macromolecules,2006,39:3681-3687.
    [138] Khire V S, Yi Y, Clark N A, Bowman C N. Formation and Surface Modification ofNanopatterned Thiol‐ene Substrates using Step and Flash Imprint Lithography [J]. Adv.Mater.,2008,20:3308-3313.
    [139] Khire V S, Lee T Y, Bowman C N. Synthesis, Characterization and Cleavage ofSurface-Bound Linear Polymers Formed Using Thiol Ene Photopolymerizations [J].Macromolecules,2008,41:7440-7447.
    [140] Matsushima H, Shin J, Bowman C N, Hoyle C E. Thiol‐isocyanate‐acrylate ternarynetworks by selective thiol‐click chemistry [J]. J. Polym. Sci., Part A: Polym. Chem.,2010,48:3255-3264.
    [141] Samuelsson J, Jonsson M, Brinck T, Johansson M. Thiol–ene coupling reaction of fattyacid monomers [J]. J. Polym. Sci., Part A: Polym. Chem.,2004,42:6346-6352.
    [142] Cramer N B, Davies T, O'Brien A K, Bowman C N. Mechanism and modeling of athiol-ene photopolymerization [J]. Macromolecules,2003,36:4631-4636.
    [143] Shin J, Matsushima H, Chan J W, Hoyle C E. Segmented Polythiourethane Elastomersthrough Sequential Thiol Ene and Thiol Isocyanate Reactions [J]. Macromolecules,2009,42:3294-3301.
    [144] Li H, Yu B, Matsushima H, Hoyle C E, Lowe A B. The Thiol Isocyanate Click Reaction:Facile and Quantitative Access to ω-End-Functional Poly (N, N-diethylacrylamide)Synthesized by RAFT Radical Polymerization [J]. Macromolecules,2009,42:6537-6542.
    [145] Yu B, Chan J W, Hoyle C E, Lowe A B. Sequential thiol‐ene/thiol‐ene andthiol‐ene/thiol‐yne reactions as a route to well‐defined mono and bisend‐functionalized poly (N‐isopropylacrylamide)[J]. J. Polym. Sci., Part A: Polym.Chem.,2009,47:3544-3557.
    [146] Hoyle C, Hensel R, Grubb M. Temperature dependence of the laser‐initiatedpolymerization of a thiol‐ene system [J]. Journal of Polymer Science: PolymerChemistry Edition,2003,22:1865-1873.
    [147] Chan J W, Yu B, Hoyle C E, Lowe A B. Convergent synthesis of3-arm star polymers fromRAFT-prepared poly (N, N-diethylacrylamide) via a thiol–ene click reaction [J]. Chem.Commun.,2008,4959-4961.
    [148] Chan J W, Zhou H, Hoyle C E, Lowe A B. Photopolymerization of Thiol-Alkynes:Polysulfide Networks [J]. Chem. Mater.,2009,21:1579-1585.
    [149] Senyurt A F, Wei H, Hoyle C E, Piland S G, Gould T E. Ternary thiol-ene/acrylatephotopolymers: Effect of acrylate structure on mechanical properties [J]. Macromolecules,2007,40:4901-4909.
    [150] Roper T M, Guymon C, J nsson E, Hoyle C. Influence of the alkene structure on themechanism and kinetics of thiol–alkene photopolymerizations with real‐time infraredspectroscopy [J]. J. Polym. Sci., Part A: Polym. Chem.,2004,42:6283-6298.
    [151] Li Q, Zhou H, Wicks D A, Hoyle C E. Thiourethane‐based thiol‐ene high Tg networks:Preparation, thermal, mechanical, and physical properties [J]. J. Polym. Sci., Part A:Polym. Chem.,2007,45:5103-5111.
    [152] Yang Z, Wicks D A, Hoyle C E, Pu H, Yuan J, Wan D, Liu Y. Newly UV-curablepolyurethane coatings prepared by multifunctional thiol-and ene-terminated polyurethaneaqueous dispersions mixtures: Preparation and characterization [J]. Polymer,2009,50:1717-1722.
    [153] Senyurt A F, Warren G, Whitehead Jr J B, Hoyle C E. Matrix physical structure effect onthe electro-optic characteristics of thiol–ene based H-PDLC films [J]. Polymer,2006,47:2741-2749.
    [154] Chan J W, Shin J, Hoyle C E, Bowman C N, Lowe A B. Synthesis, Thiol Yne―Click‖Photopolymerization, and Physical Properties of Networks Derived from NovelMultifunctional Alkynes [J]. Macromolecules,2010,43:4937-4942.
    [155] Chan J W, Hoyle C E, Lowe A B, Bowman M. Nucleophile-initiated thiol-Michaelreactions: effect of organocatalyst, thiol, and ene [J]. Macromolecules,2010,43:6381-6388.
    [156] Li Q, Zhou H, Hoyle C E. The effect of thiol and ene structures on thiol–ene networks:Photopolymerization, physical, mechanical and optical properties [J]. Polymer,2009,50:2237-2245.
    [157] Shin J, Nazarenko S, Hoyle C E. Enthalpy Relaxation of Photopolymerized Thiol EneNetworks: Structural Effects [J]. Macromolecules,2008,41:6741-6746.
    [158] Wei H, Li Q, Ojelade M, Madbouly S, Otaigbe J U, Hoyle C E. Thiol-ene free-radical andvinyl ether cationic hybrid photopolymerization [J]. Macromolecules,2007,40:8788-8793.
    [159] Naik S S, Chan J W, Comer C, Hoyle C E, Savin D A. Thiol–yne click‘chemistry as aroute to functional lipid mimetics [J]. Polymer Chemistry,2011,2:303-305.
    [160] Kade M J, Burke D J, Hawker C J. The power of thiol‐ene chemistry [J]. J. Polym. Sci.,Part A: Polym. Chem.,2010,48:743-750.
    [161] Nason C, Pojman J A, Hoyle C. The effect of a trithiol and inorganic fillers on thephoto‐induced thermal frontal polymerization of a triacrylate [J]. J. Polym. Sci., Part A:Polym. Chem.,2008,46:8091-8096.
    [162] Zhou H, Li Q, Shin J, Hoyle C E. Effects of Monomer Functionality and HydrogenBonding on the Polymerization Kinetics and Properties of Thiol Ene Networks [J].Macromolecules,2009,42:2994-2999.
    [163] Shin J, Matsushima H, Comer C M, Bowman C N, Hoyle C E. Thiol Isocyanate EneTernary Networks by Sequential and Simultaneous Thiol Click Reactions [J]. Chem.Mater.,2010,22:2616-2625.
    [164] Clark T S, Hoyle C E, Nazarenko S. Kinetics analysis and physical properties ofphotocured silicate-based thiol-ene nanocomposites: The effects of vinyl POSS ene on thepolymerization kinetics and physical properties of thiol-triallyl ether networks [J]. Journalof Coatings Technology and Research,2008,5:345-351.
    [165] Flores J D, Shin J, Hoyle C E, McCormick C L. Direct RAFT polymerization of anunprotected isocyanate-containing monomer and subsequent structopendantfunctionalization using―click‖-type reactions [J]. Polymer Chemistry,2010,1:213-220.
    [166] Hoyle C E, Lowe A B, Bowman C N. Thiol-click chemistry: a multifaceted toolbox forsmall molecule and polymer synthesis [J]. Chem. Soc. Rev.,2010,39:1355-1387.
    [167] Cramer N B, Couch C L, Schreck K M, Carioscia J A, Boulden J E, Stansbury J W,Bowman C N. Investigation of thiol-ene and thiol-ene–methacrylate based resins as dentalrestorative materials [J]. Dent. Mater.,2010,26:21-28.
    [168] Cramer N B, Couch C L, Schreck K M, Boulden J E, Wydra R, Stansbury J W, Bowman CN. Properties of methacrylate–thiol–ene formulations as dental restorative materials [J].Dent. Mater.,2010,26:799-806.
    [169] Boulden J E, Cramer N B, Schreck K M, Couch C L, Bracho-Troconis C, Stansbury J W,Bowman C N. Thiol–ene–methacrylate composites as dental restorative materials [J].Dent. Mater.,2011,27:267-272.
    [170] Carioscia J A, Lu H, Stanbury J W, Bowman C N. Thiol-ene oligomers as dentalrestorative materials [J]. Dental materials: official publication of the Academy of DentalMaterials,2005,21:1137.
    [171] Cramer N B, Beckel E R, Harant A W, Davies T, Williamson D L, Bowman C N.Formation of a host nanostructure for ferroelectric liquid crystals using thiol-ene polymers[J]. Liq. Cryst.,2002,29:1291-1296.
    [172] Harant A W, Whipple S G, Douglas K, Bowman C N. Micropatterning organosilaneself-assembled monolayers with plasma etching and backfilling techniques [J]. Journal ofVacuum Science&Technology B: Microelectronics and Nanometer Structures,2005,23:354-358.
    [173] Ashley J F, Cramer N B, Davis R H, Bowman C N. Soft-lithography fabrication ofmicrofluidic features using thiol-ene formulations [J]. Lab on a Chip,2011,11:2772-2778.
    [174] Nair D P, Cramer N B, Scott T F, Bowman C N, Shandas R. Photopolymerized thiol-enesystems as shape memory polymers [J]. Polymer,2010,51:4383-4389.
    [175] Cook W D, Chen F, Nghiem Q D, Scott T F, Bowman C N, Chausson S, Le Pluart L.Photo‐Plasticity in Thiol‐ene Network Polymers–A Review; proceedings of theMacromolecular Symposia, F,2010[C]. Wiley Online Library.
    [176] Kloxin C J, Scott T F, Bowman C N. Stress Relaxation via Addition FragmentationChain Transfer in a Thiol-ene Photopolymerization [J]. Macromolecules,2009,42:2551-2556.
    [177] Cook W D, Chausson S, Chen F, Le Pluart L, Bowman C N, Scott T F.Photopolymerization kinetics, photorheology and photoplasticity of thiol–ene–allylicsulfide networks [J]. Polym. Int.,2007,57:469-478.
    [178] Park H Y, Kloxin C J, Scott T F, Bowman C N. Covalent adaptable networks as dentalrestorative resins: Stress relaxation by addition–fragmentation chain transfer in allylsulfide-containing resins [J]. Dent. Mater.,2010,26:1010-1016.
    [179] Fairbanks B D, Singh S P, Bowman C N, Anseth K S. Photodegradable, photoadaptablehydrogels via radical-mediated disulfide fragmentation reaction [J]. Macromolecules,2011,44:2444.
    [180] Scott T F, Schneider A D, Cook W D, Bowman C N. Photoinduced plasticity incross-linked polymers [J]. Science,2005,308:1615-1617.
    [181] Hensarling R M, Doughty V A, Chan J W, Patton D L.―Clicking‖Polymer Brushes withThiol-yne Chemistry: Indoors and Out [J]. J. Am. Chem. Soc,2009,131:14673-14675.
    [182] Fairbanks B D, Scott T F, Kloxin C J, Anseth K S, Bowman C N. Thiol YnePhotopolymerizations: Novel Mechanism, Kinetics, and Step-Growth Formation ofHighly Cross-Linked Networks [J]. Macromolecules,2009,42:211.
    [183] Park H Y, Kloxin C J, Scott T F, Bowman C N. Stress relaxation byaddition-fragmentation chain transfer in highly crosslinked thiol-yne networks [J].Macromolecules,2010,43:10188.
    [184] Decker C, Nguyen Thi Viet T, Decker D, Weber-Koehl E. UV-radiation curing ofacrylate/epoxide systems [J]. Polymer,2001,42:5531-5541.
    [185] Sangermano M, Carbonaro W, Malucelli G, Priola A. UV‐Cured InterpenetratingAcrylic‐Epoxy Polymer Networks: Preparation and Characterization [J].Macromolecular Materials and Engineering,2008,293:515-520.
    [186] Jiang T, He Y, Jian Y, Nie J. Exploration for decreasing the volume shrinkage forphotopolymerization [J]. Prog. Org. Coat.,2012,
    [187] Schreck K M, Leung D, Bowman C N. Hybrid Organic/Inorganic Thiol–Ene-BasedPhotopolymerized Networks [J]. Macromolecules,2011,44:7520-7529.
    [188] Kim J S, Yang S C, Park H J, Bae B S. Photo-curable siloxane hybrid material fabricatedby a thiol–ene reaction of sol–gel synthesized oligosiloxanes [J]. Chem. Commun.,2011,47:6051-6053.
    [189] Sparks B J, Kuchera T J, Jungman M J, Richardson A D, Savin D A, Hait S, Lichtenhan J,Striegel M F, Patton D L. Cyclic tetravinylsiloxanetetraols as hybrid inorganic–organicthiol-ene networks [J]. J. Mater. Chem.,2012,22:3817-3824.
    [190] Chemtob A, Versace D L, Belon C, Croutxe-Barghorn C, Rigolet S. ConcomitantOrganic Inorganic UV-Curing Catalyzed by Photoacids [J]. Macromolecules,2008,41:7390-7398.
    [191] Versace D L, Oubaha M, Copperwhite R, Croutxé-Barghorn C, MacCraith B. Waveguidefabrication in UV-photocurable sol–gel materials: Influence of the photoinitiating system[J]. Thin Solid Films,2008,516:6448-6457.
    [192] Belon C, Chemtob A, Croutxé‐Barghorn C, Rigolet S, Schmitt M, Bistac S, Le HouérouV, Gauthier C. Nanocomposite coatings via simultaneous organic–inorganicphoto‐induced polymerization: synthesis, structural investigation and mechanicalcharacterization [J]. Polym. Int.,2010,59:1175-1186.
    [1] Scranton A B, Bowman C N, Peiffer R W. Photopolymerization: fundamentals andapplications [M]. An American Chemical Society Publication,1997.
    [2] Schnabel W. Polymers and light: fundamentals and technical applications [M]. Wiley-VCHWeinheim, Germany,2007.
    [3] Oaklands Corporate Center Sartomer Application Bulletin4029.
    [4] Yu H, Mhaisalkar S G, Wong E H. Observations of Gelation and Vitrification of aThermosetting Resin during the Evolution of Polymerization Shrinkage [J]. Macromol.Rapid Commun.,2005,26:1483-1487.
    [5] Zhou W X, Chan-Park M B. Effect of oligomer length on the buckling of long and highaspect ratio microwalls UV embossed from oligomer/monomer mixtures [J]. Sensors andActuators B: Chemical,2007,128:12-22.
    [6] Fano V, Ortalli I, Pizzi S, Bonanini M. Polymerization shrinkage of microfilled compositesdetermined by laser beam scanning [J]. Biomaterials,1997,18:467-470.
    [7] Hudson A, Martin S, Hubert M, Spelt J. Optical measurements of shrinkage in UV-curedadhesives [J]. Journal of Electronic Packaging,2002,124:352.
    [8] Guan Y, Chen Q, Zhang X, Peng Y, Xu J. Investigation of the gelation process by in-situinterferometry [J]. Macromol. Rapid Commun.,2000,21:998-1001.
    [9] Vannoni M, Molesini G. Speckle interferometry experiments with a digital photocamera [J].American journal of physics,2004,72:906.
    [10] Shah D U, Schubel P J. Evaluation of cure shrinkage measurement techniques forthermosetting resins [J]. Polym. Test.,2010,29:629-639.
    [11] Studer K, Decker C, Beck E, Schwalm R. Overcoming oxygen inhibition in UV-curing ofacrylate coatings by carbon dioxide inerting, Part I [J]. Prog. Org. Coat.,2003,48:92-100.
    [12] Silikas N, Al-Kheraif A, Watts D C. Influence of P/L ratio and peroxide/amineconcentrations on shrinkage-strain kinetics during setting of PMMA/MMA biomaterialformulations [J]. Biomaterials,2005,26:197-204.
    [13] Weinmann W, Thalacker C, Guggenberger R. Siloranes in dental composites [J]. Dent.Mater.,2005,21:68-74.
    [14] Wei Y-j, Silikas N, Zhang Z-t, Watts D C. Hygroscopic dimensional changes ofself-adhering and new resin-matrix composites during water sorption/desorption cycles [J].Dent. Mater.,2011,27:259-266.
    [15] Yim M J, Li Y, Moon K, Paik K W, Wong C. Review of recent advances in electricallyconductive adhesive materials and technologies in electronic packaging [J]. J. Adhes. Sci.Technol.,2008,22:1593-1630.
    [16] Yu H, Mhaisalkar S, Wong E, Khoo G. Time–temperature transformation (TTT) curediagram of a fast cure non-conductive adhesive [J]. Thin Solid Films,2006,504:331-335.
    [17] Yu H, Mhaisalkar S, Wong E. Effect of temperature on the cure shrinkage measurement ofnon-conductive adhesives for flip chip interconnects [J]. J. Mater. Res.,2005,20:1324-1329.
    [18] Dickens S H, Stansbury J W, Choi K M, Floyd C J E. Photopolymerization Kinetics ofMethacrylate Dental Resins [J]. Macromolecules,2003,36:6043-6053.
    [19] Abadie M, Novikova O, Voytekunas V Y, Syromyatnikov V, Kolendo A Y. Differentialscanning photocalorimetry studies of1,6-hexanedioldiacrylate photopolymerizationinitiated by some organic azides [J]. J. Appl. Polym. Sci.,2003,90:1096-1101.
    [20] Ghorpade R, Bhosle S, Ponrathnam S, Rajan C, Chavan N, Harikrishna R.Photopolymerization kinetics of2-phenylethyl (meth) acrylates studied by photo DSC [J].Journal of Polymer Research,2012,19:1-8.
    [21] Karasu F, Aydin M, Kaya M A, Balta D K, Arsu N. Determination of photoinitiatedpolymerization of multifunctional acrylates with acetic acid derivatives of thioxanthone byRT-FTIR [J]. Prog. Org. Coat.,2009,64:1-4.
    [22] Wang K, Yang D, Xiao M, Chen X, Lu F, Nie J. Sesamin as a co-initiator for unfilled dentalrestorations [J]. Acta Biomaterialia,2009,5:2508-2517.
    [23] Karata S, Kayaman‐Apohan N, Turun O, Güng r A. Synthesis and characterization ofUV‐curable phosphorus containing hybrid materials prepared by sol–gel technique [J].Polym. Adv. Technol.,2011,22:567-576.
    [24] Kim J W, Kim L U, Kim C K, Cho B H, Kim O Y. Characteristics of Novel DentalComposites Containing2,2-Bis[4-(2-methoxy-3-methacryloyloxy propoxy) phenyl]propane as a Base Resin [J]. Biomacromolecules,2005,7:154-160.
    [25] Kim L U, Kim J W, Kim C K. Effects of Molecular Structure of the Resins on theVolumetric Shrinkage and the Mechanical Strength of Dental Restorative Composites [J].Biomacromolecules,2006,7:2680-2687.
    [26] Kemp R B. Handbook of Thermal Analysis and Calorimetry: Applications to polymers andplastics [M]. Elsevier Science,1998.
    [27] Stansbury J W, Trujillo-Lemon M, Lu H, Ding X, Lin Y, Ge J. Conversion-dependentshrinkage stress and strain in dental resins and composites [J]. Dent. Mater.,2005,21:56-67.
    [28] Lee I B, Cho B H, Son H H, Um C M. Rheological characterization of composites using avertical oscillation rheometer [J]. Dent. Mater.,2007,23:425-432.
    [29] Beun S, Bailly C, Devaux J, Leloup G. Rheological properties of flowable resin compositesand pit and fissure sealants [J]. Dent. Mater.,2008,24:548-555.
    [30] Kim M H, Min S H, Ferracane J, Lee I. Initial dynamic viscoelasticity change ofcomposites during light curing [J]. Dent. Mater.,2010,26:463-470.
    [31] Lee I B, Min S H, Kim S Y, Ferracane J. Slumping tendency and rheological properties offlowable composites [J]. Dent. Mater.,2010,26:443-448.
    [32] Lovell L G, Lu H, Elliott J E, Stansbury J W, Bowman C N. The effect of cure rate on themechanical properties of dental resins [J]. Dent. Mater.,2001,17:504-511.
    [33] Wen M, Scriven L, McCormick A V. Differential scanning calorimetry and cantileverdeflection studies of polymerization kinetics and stress in ultraviolet curing ofmultifunctional (meth) acrylate coatings [J]. Macromolecules,2002,35:112-120.
    [1] Decker C. Photoinitiated crosslinking polymerisation [J]. Prog. Polym. Sci.,1996,21:593-650.
    [2] Decker C. The use of UV irradiation in polymerization [J]. Polym. Int.,1998,45:133-141.
    [3] Yagci Y, Jockusch S, Turro N J. Photoinitiated Polymerization: Advances, Challenges, andOpportunities [J]. Macromolecules,2010,43:6245-6260.
    [4] Masson F, Decker C, Andre S, Andrieu X. UV-curable formulations for UV-transparentoptical fiber coatings: I. Acrylic resins [J]. Prog. Org. Coat.,2004,49:1-12.
    [5] Vink P, Bots T L. Formulation parameters influencing self-stratification of coatings [J].Prog. Org. Coat.,1996,28:173-181.
    [6] Dhoke S K, Sinha T J M, Dutta P, Khanna A S. Formulation and performance study of lowmolecular weight, alkyd-based waterborne anticorrosive coating on mild steel [J]. Prog.Org. Coat.,2008,62:183-192.
    [7] Mishra R S, Khanna A S. Formulation and performance evaluation of hydroxyl terminatedhyperbranched polyesters based poly (ester–urethane–urea) coatings on mild steel [J]. Prog.Org. Coat.,2011,72:769-777.
    [8] Nagai D, Nishida M, Nagasawa T, Ochiai B, Miyazaki K, Endo T. Non-ShrinkingNetworked Materials from the Cross-Linking Copolymerization of Spiroorthocarbonatewith Bifunctional Oxetane [J]. Macromol. Rapid Commun.,2006,27:921-925.
    [9] Yu H, Mhaisalkar S G, Wong E H. Direct Measurement of Cure Induced Stress inThermosetting Materials by Means of a Dynamic Mechanical Analyzer [J]. Macromol.Rapid Commun.,2006,27:1393-1397.
    [10] Wen M, Scriven L, McCormick A V. Differential scanning calorimetry and cantileverdeflection studies of polymerization kinetics and stress in ultraviolet curing ofmultifunctional (meth) acrylate coatings [J]. Macromolecules,2002,35:112-120.
    [11] Scherzer T, Decker U. The effect of temperature on the kinetics of diacrylatephotopolymerizations studied by Real-time FTIR spectroscopy [J]. Polymer,2000,41:7681-7690.
    [12] Wang K, Yang D, Xiao M, Chen X, Lu F, Nie J. Sesamin as a co-initiator for unfilled dentalrestorations [J]. Acta Biomaterialia,2009,5:2508-2517.
    [13] Scott T F, Cook W D, Forsythe J S. Photo-DSC cure kinetics of vinyl ester resins. I.Influence of temperature [J]. Polymer,2002,43:5839-5845.
    [14] Jian Y, He Y, Jiang T, Li C, Yang W, Nie J. Polymerization shrinkage of (meth) acrylatedetermined by reflective laser beam scanning [J]. J. Polym. Sci., Part B: Polym. Phys.,2012,50:923-928.
    [15] O'Brien A K, Bowman C N. Impact of Oxygen on Photopolymerization Kinetics andPolymer Structure [J]. Macromolecules,2006,39:2501-2506.
    [16] Dickens S H, Stansbury J W, Choi K M, Floyd C J E. Photopolymerization Kinetics ofMethacrylate Dental Resins [J]. Macromolecules,2003,36:6043-6053.
    [17] Abadie M, Novikova O, Voytekunas V Y, Syromyatnikov V, Kolendo A Y. Differentialscanning photocalorimetry studies of1,6-hexanedioldiacrylate photopolymerizationinitiated by some organic azides [J]. J. Appl. Polym. Sci.,2003,90:1096-1101.
    [18] Beckel E R, Nie J, Stansbury J W, Bowman C N. Effect of aryl substituents on thereactivity of phenyl carbamate acrylate monomers [J]. Macromolecules,2004,37:4062-4069.
    [19] Bao R, J nsson S. Using a new approach to analyze a depth profile of double bondconversion in model formulations [J]. Prog. Org. Coat.,2008,61:176-180.
    [20] Atai M, Watts D C, Atai Z. Shrinkage strain-rates of dental resin-monomer and compositesystems [J]. Biomaterials,2005,26:5015-5020.
    [21] Silikas N, Al-Kheraif A, Watts D C. Influence of P/L ratio and peroxide/amineconcentrations on shrinkage-strain kinetics during setting of PMMA/MMA biomaterialformulations [J]. Biomaterials,2005,26:197-204.
    [22] Stansbury J W, Trujillo-Lemon M, Lu H, Ding X, Lin Y, Ge J. Conversion-dependentshrinkage stress and strain in dental resins and composites [J]. Dent. Mater.,2005,21:56-67.
    [23] Patel M, Braden M, Davy K. Polymerization shrinkage of methacrylate esters [J].Biomaterials,1987,8:53-56.
    [24] Dietliker K, Hüsler R, Birbaum J L, Ilg S, Villeneuve S, Studer K, Jung T, Benkhoff J, KuraH, Matsumoto A, Oka H. Advancements in photoinitiators—Opening up new applicationsfor radiation curing [J]. Prog. Org. Coat.,2007,58:146-157.
    [25] Rutsch W, Dietliker K, Leppard D, K hler M, Misev L, Kolczak U, Rist G. Recentdevelopments in photoinitiators [J]. Prog. Org. Coat.,1996,27:227-239.
    [26] Fouassier J P, Ruhlmann D, Graff B, Wieder F. New insights inphotosensitizers-photoinitiators interaction [J]. Prog. Org. Coat.,1995,25:169-202.
    [27] Li M, Chen Y, Zhang H, Wang T. A novel ferrocenium salt as visible light photoinitiator forcationic and radical photopolymerization [J]. Prog. Org. Coat.,2010,68:234-239.
    [28] Visconti M, Cattaneo M. A highly efficient photoinitiator for water-borne UV-curablesystems [J]. Prog. Org. Coat.,2000,40:243-251.
    [29] Wang K, Jiang S, Liu J, Nie J, Yu Q. Benzophenone-di-1,3-dioxane as a novel initiator forfree radical photopolymerization [J]. Prog. Org. Coat.,2011,72:517-521.
    [30] Do ruyol Z, Arsu N, Do ruyol S K, Pekcan. Producing critical exponents from gelationfor various photoinitiator concentrations; a photo differential scanning calorimetric study[J]. Prog. Org. Coat.,2012,74:181-185.
    [1] Schnabel W. Polymers and light: fundamentals and technical applications [M]. Wiley-VCHWeinheim, Germany,2007.
    [2] Yagci Y, Jockusch S, Turro N J. Photoinitiated Polymerization: Advances, Challenges, andOpportunities [J]. Macromolecules,2010,43:6245-6260.
    [3] Decker C. The use of UV irradiation in polymerization [J]. Polym. Int.,1998,45:133-141.
    [4] Decker C. Photoinitiated crosslinking polymerisation [J]. Prog. Polym. Sci.,1996,21:593-650.
    [5] Berchtold K A, Hacio lu B, Nie J, Cramer N B, Stansbury J W, Bowman C N. RapidSolid-State Photopolymerization of Cyclic Acetal-Containing Acrylates [J].Macromolecules,2009,42:2433-2437.
    [6] Satoh K, Kamigaito M. Stereospecific Living Radical Polymerization: Dual Control ofChain Length and Tacticity for Precision Polymer Synthesis [J]. Chem. Rev.,2009,109:5120-5156.
    [7] Shibasaki Y. Solid‐state polymerization of long‐chain vinyl compounds. III. Mechanismof γ‐ray‐initiated postpolymerization in layered structures of octadecyl methacrylate andacrylate [J]. Journal of Polymer Science: Polymer Chemistry Edition,1980,18:1693-1709.
    [8] Shibasaki Y, Fukuda K. Solid-state polymerization of long-chain vinyl compounds. II.Effect of molecular arrangement on polymerizability of octadecyl acrylate [J]. Journal ofPolymer Science: Polymer Chemistry Edition,1979,17:2947-2959.
    [9] Shibasaki Y, Fukuda K. Solid-state polymerization of long-chain vinyl compounds. IV.Effects of chain length on the polymorphic behavior and postpolymerization of n-alkylmethacrylates [J]. Journal of Polymer Science: Polymer Chemistry Edition,1980,18:2437-2449.
    [10] Shibasaki Y, Nakahara H, Fukuda K. Solid‐state polymerization of long‐chain vinylcompounds. I. Effect of molecular arrangement on polymerizability of octadecylmethacrylate [J]. Journal of Polymer Science: Polymer Chemistry Edition,1979,17:2387-2400.
    [11] Jian Y, He Y, Jiang T, Li C, Yang W, Nie J. Polymerization shrinkage of (meth) acrylatedetermined by reflective laser beam scanning [J]. J. Polym. Sci., Part B: Polym. Phys.,2012,50:923-928.
    [12] Lovell L G, Lu H, Elliott J E, Stansbury J W, Bowman C N. The effect of cure rate on themechanical properties of dental resins [J]. Dent. Mater.,2001,17:504-511.
    [13] Kathryn Ann Berchtold, A Thesis of the University of Colorado,Doctor of PhilosophyDepartment Of Chemical Engineering November2001
    [14] Kramer N, Lohbauer U, Garc¨aa-Godoy F, Frankenberger R. Light curing of resin-basedcomposites in the LED era [J]. American Journal of Dentistry,2008,
    [15] Decker C, Moussa K. Real-time kinetic study of laser-induced polymerization [J].Macromolecules,1989,22:4455-4462.
    [16] Crivello J V, Lee J L. Structural and mechanistic studies on the photolysis ofdialkylphenacylsulfonium salt cationic photoinitiators [J]. Macromolecules,1983,16:864-870.
    [17] Morosoff N, Morawetz H, Post B. Polymerization in the Crystalline State. VII. ACrystallographic Study of the Radiation-Initiated Polymerization in Single Crystals of VinylStearate1,2[J]. J. Am. Chem. Soc.,1965,87:3035-3040.
    [18] Plate N, Shibaev V. Comb-like polymers. Structure and properties [J]. Journal of PolymerScience: Macromolecular Reviews,1974,8:117-253.
    [19] Orihashi Y, Iwata R, Taniguchi I, Itaya A. Vapor Deposition Photopolymerization ofLong-Chain Vinyl Compounds: Polymerizability and Molecular Orientation of n-OctadecylAcrylate [J]. Chem. Mater.,1995,7:324-332.
    [20] Snyder R G, Strauss H L, Elliger C A. Carbon-hydrogen stretching modes and the structureof n-alkyl chains.1. Long, disordered chains [J]. The Journal of Physical Chemistry,1982,86:5145-5150.
    [21] Wang K, Yang D, Xiao M, Chen X, Lu F, Nie J. Sesamin as a co-initiator for unfilled dentalrestorations [J]. Acta Biomaterialia,2009,5:2508-2517.
    [22] S. Smeets,E. Boerrigter, S.Peeters. Radtech Report November.2004.
    [23] Lee T Y, Guymon C A, J nsson E S, Hoyle C E. The effect of monomer structure onoxygen inhibition of (meth)acrylates photopolymerization [J]. Polymer,2004,45:6155-6162.
    [24] Xu F, Yang J L, Gong Y S, Ma G P, Nie J. A Fluorinated Photoinitiator for Surface OxygenInhibition Resistance [J]. Macromolecules,2012,
    [25] Balta D K, Arsu N, Yagci Y, Jockusch S, Turro N J. Thioxanthone-anthracene: a newphotoinitiator for free radical polymerization in the presence of oxygen [J].Macromolecules,2007,40:4138-4141.
    [26] Lalevée J, Allonas X, Fouassier J P. Tris(trimethylsilyl)silane (TTMSS)-Derived RadicalReactivity toward Alkenes: A Combined Quantum Mechanical and Laser Flash PhotolysisStudy [J]. The Journal of Organic Chemistry,2007,72:6434-6439.
    [27] Lalevée J, Allonas X, Jradi S, Fouassier J P. Role of the medium on the reactivity ofcleavable photoinitiators in photopolymerization reactions [J]. Macromolecules,2006,39:1872-1879.
    [28] Laleve e J, Blanchard N, El-Roz M, Graff B, Allonas X, Fouassier J P. New PhotoinitiatorsBased on the Silyl Radical Chemistry: Polymerization Ability, ESR Spin Trapping, andLaser Flash Photolysis Investigation [J]. Macromolecules,2008,41:4180-4186.
    [29] Lalevée J, Dirani A, El‐Roz M, Allonas X, Fouassier J P. Germanes as efficientcoinitiators in radical and cationic photopolymerizations [J]. J. Polym. Sci., Part A: Polym.Chem.,2008,46:3042-3047.
    [30] Lalevee J, Blanchard N, Chany A, El-Roz M, Souane R, Graff B, Allonas X, Fouassier J.Silyl Radical Chemistry and Conventional Photoinitiators: A Route for the Design ofEfficient Systems [J]. Macromolecules,2009,42:6031-6037.
    [31] Lalevee J, Dirani A, El-Roz M, Allonas X, Fouassier J. Silanes as new highly efficientco-initiators for radical polymerization in aerated media [J]. Macromolecules,2008,41:2003-2010.
    [32] Laleve e J, Tehfe M A, Gigmes D, Fouassier J P. On the Favorable Interaction of MetalCentered Radicals with Hydroperoxides for an Enhancement of the PhotopolymerizationEfficiency Under Air [J]. Macromolecules,2010,
    [33] Lalevée J, Fouassier J P. Recent advances in sunlight induced polymerization: role of newphotoinitiating systems based on the silyl radical chemistry [J]. Polym. Chem.,2011,2:1107-1113.
    [34] Ali Tehfe M, El-Roz M, Lalevée J, Morlet-Savary F, Graff B, Fouassier J P. Bifunctionalco-initiators: A new strategy for the design of efficient systems in radicalphotopolymerization reactions under air [J]. Eur. Polym. J.,2012,
    [35] O'Brien A K, Bowman C N. Impact of Oxygen on Photopolymerization Kinetics andPolymer Structure [J]. Macromolecules,2006,39:2501-2506.
    [36] O'Leary K A, Paul D R. Physical properties of poly(n-alkyl acrylate) copolymers. Part1.Crystalline/crystalline combinations [J]. Polymer,2006,47:1226-1244.
    [37] O'Leary K A, Paul D R. Physical properties of poly(n-alkyl acrylate) copolymers. Part2.Crystalline/non-crystalline combinations [J]. Polymer,2006,47:1245-1258.
    [38] Street G, Illsley D, Holder S. Optimization of the synthesis of poly (octadecyl acrylate) byatom transfer radical polymerization and the preparation of all comblike amphiphilicdiblock copolymers [J]. J. Polym. Sci., Part A: Polym. Chem.,2005,43:1129-1143.
    [39] Sievens-Figueroa L, Allan Guymon C. Aliphatic chain length effects onphotopolymerization kinetics and structural evolution of polymerizable lyotropic liquidcrystals [J]. Polymer,2008,49:2260-2267.
    [40] Odian G G. Principles of polymerization [M]. John Wiley and Sons,2004.
    [41] Moad G, Solomon D H. The chemistry of radical polymerization [M]. Elsevier Science,2006.
    [1] Hoyle C E, Bowman C N. Thiol–ene click chemistry [J]. Angew. Chem. Int. Ed.,2010,49:1540-1573.
    [2] Hoyle C E, Lowe A B, Bowman C N. Thiol-click chemistry: a multifaceted toolbox forsmall molecule and polymer synthesis [J]. Chem. Soc. Rev.,2010,39:1355-1387.
    [3] Lowe A B, Hoyle C E, Bowman C N. Thiol-yne click chemistry: A powerful and versatilemethodology for materials synthesis [J]. J. Mater. Chem.,2010,20:4745-4750.
    [4] Kade M J, Burke D J, Hawker C J. The power of thiol‐ene chemistry [J]. J. Polym. Sci.,Part A: Polym. Chem.,2010,48:743-750.
    [5] Fu R, Fu G D. Polymeric nanomaterials from combined click chemistry and controlledradical polymerization [J]. Polymer Chemistry,2011,2:465-475.
    [6] Lowe A B. Thiol-ene―click‖reactions and recent applications in polymer and materialssynthesis [J]. Polymer Chemistry,2010,1:17-36.
    [7] Nason C, Roper T, Hoyle C, Pojman J A. UV-induced frontal polymerization ofmultifunctional (meth) acrylates [J]. Macromolecules,2005,38:5506-5512.
    [8] Ten Brummelhuis N, Diehl C, Schlaad H. Thiol Ene Modification of1,2-PolybutadieneUsing UV Light or Sunlight [J]. Macromolecules,2008,41:9946-9947.
    [9] Tarlov M J, Burgess Jr D R F, Gillen G. UV photopatterning of alkanethiolate monolayersself-assembled on gold and silver [J]. J. Am. Chem. Soc.,1993,115:5305-5306.
    [10] Chiou B S, Khan S A. Real-time FTIR and in situ rheological studies on the UV curingkinetics of thiol-ene polymers [J]. Macromolecules,1997,30:7322-7328.
    [11] Kloxin C J, Scott T F, Bowman C N. Stress Relaxation via Addition FragmentationChain Transfer in a Thiol-ene Photopolymerization [J]. Macromolecules,2009,42:2551-2556.
    [12] Cook W D, Chausson S, Chen F, Le Pluart L, Bowman C N, Scott T F.Photopolymerization kinetics, photorheology and photoplasticity of thiol–ene–allylicsulfide networks [J]. Polym. Int.,2007,57:469-478.
    [13] Park H Y, Kloxin C J, Scott T F, Bowman C N. Covalent adaptable networks as dentalrestorative resins: Stress relaxation by addition–fragmentation chain transfer in allylsulfide-containing resins [J]. Dent. Mater.,2010,26:1010-1016.
    [14] Fairbanks B D, Singh S P, Bowman C N, Anseth K S. Photodegradable, photoadaptablehydrogels via radical-mediated disulfide fragmentation reaction [J]. Macromolecules,2011,44:2444–2450.
    [15] Park H Y, Kloxin C J, Scott T F, Bowman C N. Stress relaxation byaddition-fragmentation chain transfer in highly crosslinked thiol-yne networks [J].Macromolecules,2010,43:10188-10190.
    [16] Cramer N B, Couch C L, Schreck K M, Carioscia J A, Boulden J E, Stansbury J W,Bowman C N. Investigation of thiol-ene and thiol-ene–methacrylate based resins as dentalrestorative materials [J]. Dent. Mater.,2010,26:21-28.
    [17] Cramer N B, Couch C L, Schreck K M, Boulden J E, Wydra R, Stansbury J W, Bowman CN. Properties of methacrylate–thiol–ene formulations as dental restorative materials [J].Dent. Mater.,2010,26:799-806.
    [18] Boulden J E, Cramer N B, Schreck K M, Couch C L, Bracho-Troconis C, Stansbury J W,Bowman C N. Thiol–ene–methacrylate composites as dental restorative materials [J].Dent. Mater.,2011,27:267-272.
    [19] Carioscia J A, Lu H, Stanbury J W, Bowman C N. Thiol-ene oligomers as dentalrestorative materials [J]. Dental materials: official publication of the Academy of DentalMaterials,2005,21:1137.
    [20] Cramer N B, Bowman C N. Kinetics of thiol–ene and thiol–acrylatephotopolymerizations with real‐time fourier transform infrared [J]. J. Polym. Sci., PartA: Polym. Chem.,2001,39:3311-3319.
    [21] Sangermano M, Cerrone M, Colucci G, Roppolo I, Acosta Ortiz R. Preparation andcharacterization of hybrid thiol‐ene/epoxy UV–thermal dual‐cured systems [J].Polym. Int.,2010,59:1046-1051.
    [22] Matsushima H, Shin J, Bowman C N, Hoyle C E. Thiol‐isocyanate‐acrylate ternarynetworks by selective thiol‐click chemistry [J]. J. Polym. Sci., Part A: Polym. Chem.,2010,48:3255-3264.
    [23] Li H, Yu B, Matsushima H, Hoyle C E, Lowe A B. The Thiol Isocyanate Click Reaction:Facile and Quantitative Access to ω-End-Functional Poly (N, N-diethylacrylamide)Synthesized by RAFT Radical Polymerization [J]. Macromolecules,2009,42:6537-6542.
    [24] Ye S, Cramer N B, Smith I R, Voigt K R, Bowman C N. Reaction Kinetics and ReducedShrinkage Stress of Thiol–Yne–Methacrylate and Thiol–Yne–Acrylate Ternary Systems[J]. Macromolecules,2011,44:9084-9090.
    [25] Lee T Y, Carioscia J, Smith Z, Bowman C N. Thiol Allyl Ether Methacrylate TernarySystems. Evolution Mechanism of Polymerization-Induced Shrinkage Stress andMechanical Properties [J]. Macromolecules,2007,40:1473-1479.
    [26] Lee T Y, Smith Z, Reddy S K, Cramer N B, Bowman C N. Thiol AllylEther Methacrylate Ternary Systems. Polymerization Mechanism [J]. Macromolecules,2007,40:1466-1472.
    [27] Senyurt A F, Wei H, Hoyle C E, Piland S G, Gould T E. Ternary thiol-ene/acrylatephotopolymers: Effect of acrylate structure on mechanical properties [J]. Macromolecules,2007,40:4901-4909.
    [28] Jian Y, He Y, Jiang T, Li C, Yang W, Nie J. Polymerization shrinkage of (meth) acrylatedetermined by reflective laser beam scanning [J]. J. Polym. Sci., Part B: Polym. Phys.,2012,50:923-928.
    [29] Jian Y, He Y, Jiang T, Li C, Yang W, Nie J. Volume shrinkage of UV-curable coatingformulation investigated by real-time laser reflection method [J]. Journal of CoatingsTechnology and Research,2013,10:231-237.
    [30] Jian Y, He Y, Zhao L, Kowalczyk A, Yang W, Nie J. Effect of Monomer Structure onReal-Time UV-Curing Shrinkage Studied by a Laser Scanning Approach [J]. Adv. Polym.Tech.,2013,32: n/a-n/a.
    [31] Jian Y, He Y, Wang J, Xu B, Yang W, Nie J. Rapid photopolymerization of octadecylmethacrylate in the solid state [J]. New J. Chem.,2013,37:444-450.
    [32] Jian Y, He Y, Wang J, Yang W, Nie J. Rapid solid‐state photopolymerization of octadecylacrylate: low shrinkage and insensitivity to oxygen [J]. Polym. Int., Published Online.
    [33] Sun X, Gao J P, Wang Z Y. Bicyclic Guanidinium tetraphenylborate: A photobasegenerator and a photocatalyst for living anionic ring-opening polymerization andcross-linking of polymeric materials containing ester and hydroxy groups [J]. J. Am.Chem. Soc.,2008,130:8130-8131.
    [34] Carioscia J A, Stansbury J W, Bowman C N. Evaluation and control ofthiol–ene/thiol–epoxy hybrid networks [J]. Polymer,2007,48:1526-1532.
    [35] Cramer N B, Reddy S K, Cole M, Hoyle C, Bowman C N. Initiation and kinetics ofthiol–ene photopolymerizations without photoinitiators [J]. J. Polym. Sci., Part A: Polym.Chem.,2004,42:5817-5826.
    [36] Fringuelli F, Pizzo F, Tortoioli S, Vaccaro L. Thiolysis of1,2-epoxides by thiophenolcatalyzed under solvent-free conditions [J]. Tetrahedron Lett.,2003,44:6785-6787.
    [37] Fringuelli F, Pizzo F, Vittoriani C, Vaccaro L. Polystyrene‐Supported1,5,7‐Triazabicyclo [4.4.0] dec‐5‐ene as an Efficient and Reusable Catalyst for the Thiolysisof1,2‐Epoxides under Solvent‐Free Conditions [J]. Eur. J. Org. Chem.,2006,2006:1231-1236.
    [38] Ye W, Xu J, Tan C T, Tan C H.1,5,7-Triazabicyclo [4.4.0] dec-5-ene (TBD) catalyzedMichael reactions [J]. Tetrahedron Lett.,2005,46:6875-6878.
    [39] Coles M P. Bicyclic-guanidines,-guanidinates and-guanidinium salts: wide rangingapplications from a simple family of molecules [J]. Chem. Commun.,2009,3659-3676.
    [40] Cao C B, Zhou C, Sun X, Gao J P, Wang Z Y. Photo-induced crosslinking of water-solublepolymers with a new photobase generator [J]. Polymer,2010,51:4058-4062.
    [41] Schnabel W. Polymers and light: fundamentals and technical applications [M].Wiley-VCH Weinheim, Germany,2007.
    [42] Crivello J V, Sangermano M. Visible and long-wavelength photoinitiated cationicpolymerization [J]. J. Polym. Sci., Part A: Polym. Chem.,2001,39:343-356.
    [43] Jun Y, Nagpal P, Norris D J. Thermally Stable Organic–Inorganic Hybrid Photoresists forFabrication of Photonic Band Gap Structures with Direct Laser Writing [J]. Adv. Mater.,2008,20:606-610.
    [44] Lalevée J, Zadoina L, Allonas X, Fouassier J P. New sulfur-centered radicals asphotopolymerization initiating species [J]. J. Polym. Sci., Part A: Polym. Chem.,2007,45:2494-2502.
    [45] Aydogan B, Gundogan A S, Ozturk T, Yagci Y. A dithienothiophene derivative as along-wavelength photosensitizer for onium salt photoinitiated cationic polymerization [J].Macromolecules,2008,41:3468-3471.
    [46] Crivello J V, Bulut U. Curcumin: A naturally occurring long‐wavelength photosensitizerfor diaryliodonium salts [J]. J. Polym. Sci., Part A: Polym. Chem.,2005,43:5217-5231.
    [47] Williams R M, Khudyakov I V, Purvis M B, Overton B J, Turro N J. Direct and SensitizedPhotolysis of Phosphine Oxide Polymerization Photoinitiators in the Presence andAbsence of a Model Acrylate Monomer: A Time Resolved EPR, Cure Monitor, andPhotoDSC Study [J]. The Journal of Physical Chemistry B,2000,104:10437-10443.
    [48] Shin J, Matsushima H, Comer C M, Bowman C N, Hoyle C E. Thiol Isocyanate EneTernary Networks by Sequential and Simultaneous Thiol Click Reactions [J]. Chem.Mater.,2010,22:2616-2625.
    [49] Rydholm A E, Bowman C N, Anseth K S. Degradable thiol-acrylate photopolymers:polymerization and degradation behavior of an in situ forming biomaterial [J].Biomaterials,2005,26:4495-4506.
    [50] Chan J W, Hoyle C E, Lowe A B, Bowman M. Nucleophile-initiated thiol-Michaelreactions: effect of organocatalyst, thiol, and ene [J]. Macromolecules,2010,43:6381-6388.
    [51] Chan J W, Wei H, Zhou H, Hoyle C E. The effects of primary amine catalyzedthio-acrylate Michael reaction on the kinetics, mechanical and physical properties ofthio-acrylate networks [J]. Eur. Polym. J.,2009,45:2717-2725.
    [52] Zhong R, Yang J, Zeng Z, Chen Y. Behavior of quaternary ammonium salt photobasegenerators on initiating free radical photo‐polymerization [J]. Polym. Int.,2006,55:650-656.
    [53] He M, Huang X, Huang Y, Zeng Z, Yang J. Photoinduced redox initiation for fastpolymerization of acrylaytes based on latent superbase and peroxides [J]. Polymer,2012,53:3172-3177.
    [54] Hensel A, Dobbertin J, Schawe J, Boller A, Schick C. Temperature modulated calorimetryand dielectric spectroscopy in the glass transition region of polymers [J]. J. Therm. Anal.Calorim.,1996,46:935-954.