新生未成熟大鼠少突胶质前体细胞缺氧缺糖模型中RhoA和细胞骨架蛋白的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分新生未成熟大鼠少突胶质前体细胞系细胞的分离、纯化、培养和鉴定
     目的
     确定新生未成熟SD大鼠少突胶质前体细胞系细胞的培养体系,获取大量高纯度的少突胶质前体细胞(OPCs),为研究大鼠少突胶质前体细胞缺氧缺糖损伤模型中RhoA和细胞骨架蛋白的表达情况提供足够数量的处于特定分化阶段的少突胶质细胞,以满足实验的需要。
     方法
     将出生72h以内的SD大鼠在无菌条件下断颈处死,取出大脑,去除脑干和海马,剔除脑膜和血管后,将胰酶消化制备的单细胞悬液接种于培养瓶中混合培养7-9d,再利用改良振荡分离纯化法使少突胶质前体细胞与星形胶质细胞分离,得到纯化的少突胶质前体细胞,并用添加了N2的无血清化学限定培养基进行传代培养,促进细胞分化。运用免疫荧光法,在体外培养1d、2d、4d时,对少突胶质细胞不同发育时期特异性表达的细胞表面抗原A2B5、O4、O1以及星形胶质细胞特异性抗原GFAP进行检测,评估所得少突胶质前体细胞的纯度。
     结果
     1.得到了纯度大于95%的少突胶质前体细胞系细胞。
     2.各发育阶段的特异性细胞表面抗原依次表达。
     3.星形胶质细胞的沾染率小于5%。
     结论
     利用改良振荡分离纯化法和添加N2的无血清化学限定培养基可获得大量高纯度的少突胶质前体细胞系细胞,能满足实验对特定分化阶段少突胶质细胞的需求。
     第二部分新生未成熟大鼠少突胶质前体细胞缺氧缺糖模型的建立及评价
     目的
     联合应用耗氧剂和无糖培养基在常氧培养条件下建立新生未成熟大鼠少突胶质前体细胞缺氧缺糖模型,并观察缺氧缺糖对细胞形态和存活率的影响以及超微结构的改变,评估模型是否有效。
     方法
     常氧培养条件下在无糖培养基中加入10mM连二亚硫酸钠,检测加入10min、30min和60min后培养基的PO_2和PCO_2,确定可形成无氧液相环境。将培养2d得到的、以O4阳性为主的少突胶质前体细胞分为正常对照组和缺氧缺糖组,分别在DMEM-F12培养基和含10mM连二亚硫酸钠的无糖DMEM培养基中培养。倒置显微镜下观察细胞形态的改变,并利用MTT法检测处理后即刻、10min、30min、60min和90min的细胞存活率,DAPI荧光染色和透射电镜观察细胞在缺氧缺糖60min后以及复氧1d后的改变,对缺氧缺糖模型进行评价。
     结果
     1.连二亚硫酸钠迅速清除了培养基中的氧,并使培养基在常氧培养条件下能够保持无氧状态至少60min。
     2.联合应用无糖DMEM培养基和连二亚硫酸钠后,细胞出现明显的形态学改变,细胞突起肿胀、变形、断裂,细胞水肿,并随时间延长而加剧。
     3.少突胶质前体细胞存活率随缺氧缺糖时间的延长而逐渐下降,30min、60min和90min细胞存活率均明显低于正常对照组,差异有统计学意义(P均<0.05)。
     4.在缺氧缺糖60min后,少突胶质前体细胞表现为坏死;复氧1d后,细胞出现凋亡。
     结论
     1.连二亚硫酸钠可迅速清除培养基中的氧并使其在短时间内维持在无氧状态。
     2.利用无糖培养基和连二亚硫酸钠可以在常氧培养条件下建立体外培养的少突胶质前体细胞缺氧缺糖模型。
     3.应用此模型,可模拟缺氧缺血对体内细胞造成的损伤,引起体外培养的少突胶质前体细胞出现类似体内的缺氧缺血损伤的改变。
     第三部分大鼠少突胶质前体细胞缺氧缺糖模型中RhoA、ezrin和F-actin的表达
     目的
     检测RhoA、膜细胞骨架连接蛋白ezrin和F-actin在正常少突胶质前体细胞和缺氧缺糖模型中的表达和分布,了解其表达在缺氧缺糖损伤中的变化,探讨三者在缺氧缺糖损伤发生中的作用及相互之间的关系。
     方法
     利用荧光显微镜和激光共聚焦显微镜观察RhoA、磷酸化ezrin和F-actin在纯化培养1d、2d、4d大鼠少突胶质前体细胞中的表达与分布情况。将纯化培养2d,O4阳性为主的少突胶质前体细胞分为正常对照组和缺氧缺糖组,利用无糖DMEM和连二亚硫酸钠建立缺氧缺糖模型,分别运用免疫荧光法、激光共聚焦显微镜和免疫印迹法检测在缺氧缺糖损伤即刻、10min、30min和60min时RhoA、磷酸化ezrin(Thr567)和F-actin的表达情况,观察其荧光强度或灰度值,并与正常对照组相比较。运用SPSS11.0软件进行统计学分析,P<0.05有统计学意义。
     结果
     1.RhoA分布在OPCs细胞浆内,主要在细胞体,细胞突起的分支处可见,在OPCs的发育过程中其分布无明显改变。
     2.磷酸化ezrin(Thr567)在OPCs发育中由遍布整个胞体、细胞膜下逐渐变为仅局限在OPCs延伸的突起的前端。
     3.F-actin在发育中OPCs的分布由最初的整个胞体可见逐渐向细胞膜下、细胞突起部位转移,并逐渐集中于突起的前端,其改变趋势与磷酸化ezrin一致。
     4.OPCs缺氧缺糖损伤后,RhoA的分布变化不明显,表达水平升高,10min达高峰,此后下降但仍维持在较正常对照组高的水平,各时点与对照组相比,差异有统计学意义(P均<0.05)。
     5.磷酸化ezrin(Thr567)在OPCs缺氧缺糖损伤后,10min时表达水平升高至高于正常对照组水平(P<0.05),分布变得不均匀,随后表达水平迅速、持续下降,30min、60min时的表达水平低于对照组(P均<0.05),其变化趋势与RhoA不完全一致。
     6.F-actin在缺氧缺糖后表达持续下降并处于较正常对照组低的水平(P均<0.05),其分布变得不均匀,变化趋势与磷酸化ezrin基本一致。
     结论
     1.在大鼠OPCs的正常发育中,RhoA、磷酸化ezrin和F-actin的表达和分布影响着细胞的形态,三者均参与了少突胶质前体细胞的分化与成熟。
     2.在大鼠OPCs缺氧缺糖模型中,缺氧缺糖引起RhoA、磷酸化ezrin和F-actin的表达和分布明显改变,并最终导致细胞结构的变化。
     3.缺氧缺糖导致大鼠OPCs中RhoA表达增加、激活,引起ezrin和F-actin的相应改变,三者之间相互联系,但是可能还存在其他的机制影响三者的表达和分布。
Objectives
     To establish a culture system of rat's oligodendrocyte precursor lineage cells and obtain highly purified oligodendrocyte precursor lineage cells from neonatal and immature SD rat's brain in vitro, so that we can get enough oligodendrocyte precursor cells(OPCs) which are in the given stage of differentiation to investigate the expression of RhoA and cytoskeleton proteins in an oxygen/glucose deprived model.
     Methods
     Neonatal SD rats born less than 72 hours of age were sacrificed by disconnecting neck under aseptic conditions, brains were taken out the brain and brain stems and hippocampus were discarded, then meninges and vessels were removed. The unicellular suspension was prepared by trypsogen and then the cells were mixed cultured for 7 to 9 days. The oligodendrocyte precursors were separated from astrocyte by orbital shaker, further purified by differential adhesion, and finally cultured in chemically defined serum-free medium with N2 supplement. Immunofluorescence assay was applied to identify the specific antigens A2B5、04 and 01 which expressed in order during the development of oligodendrocyte precursors. GFAP which is the astrocyte-specific antigen was also detected by immunofluorescence assay to evaluate the purity of oligodendrocyte precursors obtained.
     Results
     1. The percentage of cultured oligodendrocyte precursor cells was obtained above 95%.
     2. The ratio of astrocyte-stained cells was less than 5%.
     3. The stage-specific antigens expressed in order in OPCs cells.
     Conclusions
     Separation and purification by developed shaking and differential adhesion and chemically defined medium with N2 are suitable and effective to obtain oligodendrocyte precursor cells, and the purity of oligodendrocyte precursor cells can be high. The need for oligodendrocyte precursors at specific stage can be met.
     Objectives
     To establish an oxygen/glucose deprived(OGD) model of SD rat's oligodendrocyte precursor cells(OPCs) in a nomaxic environment in vitro with dithionite sodium and DMEM without glucose, and evaluate the model by investigating to the changes of cellular shapes, survival and ultrastructure caused by OGD.
     Methods
     Dithionite was applied into DMEM without glucose in a normaxic environment and the pressure of O_2 and CO_2 was detected. To establish the OGD model of neonatal SD rat's oligodendrocyte precursors which are predominently O4 positive with 10mM sodium dithionite and DMEM without glucose. The persistence of 04 positive oligodendrocyte precursors in OGD model and normal control which were cultured in DMEM-F12 in normoxic environment was detected with MTT at 0min, 10min, 30min, 60min and 90min after the oxygen/glucose deprivation. The degree of injury was evaluated by observing the morphologic changes of oligodendrocyte precursors at different time spots under inverted phasecontrast microscope, survival, nuclear changes by DAPI staining, and ultrastructural changes by transmission electron microscope.
     Results
     1. Sodium dithionite eliminated the oxygen in culture medium rapidly and keep the medium in anoxia for 60minutes at least when the medium is placed in a normoxic incubator.
     2. When the O4 positive OPCs were cultured with sodium dithionite and DMEM without glucose, the morphologic changes were obvious: cell body swelling and the processes swelling, deformed and collapsed gradually.
     3. When the O4 positive oligodendrocyte precursor cells were cultured with sodium dithionite and DMEM without glucose, the survival rate decreases gradually with the time and the rate was about 50% at 60min while it decreased to a level lower than 50% at 90min.
     4. Necrosis occured in the cells which had been oxygen/glucose deprived for 60 min while apoptosis took place one day later after reoxygenation.
     Conclusions
     1. Sodium dithionite eliminated the oxygen in culture medium rapidly and kept it in anoxia for 60minutes at least when the medium was placed in a normoxic incubator.
     2. DMEM without glucose and sodium dithionite can be applied to the construction of OGD model in O4 positive oligodendrocytes in a normoxic incubator in vitro.
     3. The damages of oligodendrocyte precursor cells caused by hypoxia-ischemia in vivo can be analogized with this model, and similar damages occur in the oligodendrocyte precursor cells in vitro.
     Objectives
     To observe the expressions and locations of RhoA, phosphorylated ezrin(p-ezrin) and F-actin in the oxygen/glucose deprived model of immature neonatal SD rat's oligodendrocyte precursor cells and normally developing OPCs, and investigate their changes induced by OGD damage ,the roles of the three proteins and the relationship among them during the damage process.
     Methods
     First, immunofluorescence assay and laser scanning Confocal microscope were used to observe the expressions and locations of RhoA, p-ezrin(Thr567) and F-actin in normally developing OPCs when they had been cultured for 1d, 2d and 4d. Then the OPCs which had been cultured for 2d and were mostly O4 positive were divided into two groups, normal control and oxygen/glucose deprived(OGD). The OGD model was esstablished by sodium dithionite and DMEM without glucose first, then the expressions and locations of RhoA, p-ezrin(Thr567) and F-actin were observed at 0min, 10min, 30min and 60min after oxygen/glucose deprivation by immunofluorescence assay, laser scanning Confocal microscope and western blotting. The mean fluorescence densities were analyzed by SPSS 11.0.
     Results
     1. In developing OPCs, RhoA located in cytoplasm and processes which branches stretch out, and the location didn't change obviously.
     2. P-ezrin(Thr567) in OPCs were in cell body first, then transfered to submembrane and processes, and concentrated in tips of process at last during developing.
     3. The distribution and alteration of F-actin coincided with p-ezrin.
     4. After OGD, the expressions of RhoA increased and reached to the peak at 10min, then decreased gradually, but the levels were higher than the control group's at all the time spots(P<0.05). But the distribution didn't change obviously.
     5. The fluorescence density of p-ezrin(Thr567) increased to the peak and was higher than the control's level, then descentd rapidly, kept decreasing to a level persistently lower than the control group's(P<0.05), but the tendency didn't coincide with RhoA's. And the distribution of p-ezrin changed to a nonuniform state after OGD damage.
     6. F-actin's expression decreased and was always lower than the control group's too(P<0.05), and its distribution also becomes nonuniform which is similar to p-ezrin's.
     Conclusions
     1. Expressions and locations of RhoA, p-ezrin and F-actin regulate the morphology of OPCs during developing, and all of them play an important role in differentiation and maturation of OPCs.
     2. Oxygen/glucose deprivation in OGD model of rats' OPCs induces the changes of expression and distribution of RhoA, p-ezrin(Thr567) and F-actin significantly, and change the cytoskeleton and morphology of OPCs ultimately.
     3. OGD increase expression and activity of RhoA which cause changes of p-ezrin and F-actin in their expressions and distributions sequently. But there may be some other mechanisms which affect the expressions and distributions of RhoA, p-ezrin and F-actin in rat's OPCs during the OGD damage.
引文
1.耿战辉,程义勇.重新认识神经胶质细胞[J].生理学进展,2003,34(3):231-234.
    2.刘苹,沈馨亚,叶剑.新生大鼠视神经少突胶质细胞原代培养及其对视神经损伤修复研究的意义[J].中国临床康复,2004,8(4):796-797.
    3.何平,沈馨亚.少突胶质细胞增殖和分化的研究进展[J].中国解剖学杂志,2000,16(2):183-188.
    4. Back SA, Luo NL, Borenstein NS, et al. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter damage[J]. J Neurosci, 2001, 21(4): 1302-1312.
    5. McCarthy KD, de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue[J]. J Cell Biol, 1980, 85(3): 890-902.
    6. Raft MC, Miller RH, Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium[J]. Nature, 1983, 303(5916): 390-396.
    7. Matthieu JM, Honegger P, Trapp BD, et al. Myelination in rat brain aggregating cell cultures[J]. Neuroscience, 1978, 3(6): 565-572.
    8. Armstrong RC, Kim JG, Hudson LD. Expression of myelin transcription factor Ⅰ(MyTI), a "zinc-finger" DNA-binding protein, in developing oligodendrocytes[J]. Glia, 1995, 14(4): 303-321.
    9.殷红兵,丁爱石,吴卫平,等.新生大鼠高纯度少突胶质前体细胞系细胞的培养与鉴定:改良振荡分离纯化法的特点[J].中国临床康复,2005,9(17):36-37.
    10.孙燕,夏春林,孙茂民,等.体外培养获取高纯度O-2A祖细胞[J].解剖学研究,2002,24(4):258-259.
    11.伍亚民,马海涵,廖维宏.大鼠星形胶质细胞和少突胶质细胞的纯化培养与鉴定[J].创伤外科杂志,2000,2(4):207-209.
    12. Armstrong RC. Isolation and Characterization of immature oligodendrocyte lineage cells[J]. Methods, 1998, 16(3): 282-292.
    13.屈卫东,彭晓东,吴德生,等.星形胶质细胞、少突胶质细胞分离培 养新方法研究[J].卫生研究,1999,28(5):263-266.
    14. Deng W, McKinnon RD, Poretz RD. Lead exposure delays the differentiation of oligodendroglial progenitors in vitro[J]. Toxicol Appl Pharmacol, 2001, 174(3): 235-244.
    15. McKinnon RD, Smith C, Behar T, et al. Distinct effects of bFGF and PDGF on oligodendrocyte progenitor cells[J]. Glia, 1993, 7(3): 245-254.
    16. McKinnon RD, Matsui T, Dubois-Dalcq M, et al. FGF modulates the PDGF-driven pathway of oligodendrocyte development[J]. Neuron, 1990, 5(5): 603-614.
    17. Bogler O, Wren D, Barnett SC, et al. Cooperation between two growth factors promotes extended self-renewal and inhibits differentiation of oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells[J]. Proc Natl Acad Sci USA, 1990, 87(16): 6368-6372.
    1. Inage YW, Itoh M, Takashima S. Correlation between cerebrovascular maturity and periventricular leukomalacia[J]. Pediatr Neurol, 2000, 22 (3): 204-208.
    2. Michael OT, Dammann O. Antecedents of cerebral palsy in very low-birth weight infants [J]. Clin Perinatol, 2000, 27 (2): 285-301.
    3. Goldberg WJ, Kadingo RM, Barrett JN. Effects of ischemia-like condition on cultured neurons: protection by low Na~+, low Ca~(2+) solutions[J]. J Neurosci, 1986, 6(11): 3144-3451.
    4. Burns B, Shepard RH. DL2 in excised lungs perfused with blood comaining sodium dithionite(Na_2S_2O_4)[J]. J Appl Physiol, 1979, 46: 100-110.
    5. Lawson WH, Holl RAB, Forster RE. Effect of temperature on deoxygenation rate of human red cells[J]. J Am Physiol, 1965, 20(5): 912-918.
    6.张壮,闫彦芳,韦颖,等.参麦注射液及人参皂苷Rb1、Rg1抗神经、血管内皮、星形胶质细胞缺氧/缺糖损伤的研究[J].北京中医药大学学报,2005,28(3):27-30.
    7.张壮,闫彦芳,韦颖,等.党参皂苷L1抗缺氧缺糖再给氧诱导大鼠皮质神经细胞凋亡的作用[J].中国中医基础医学杂志,2005,11(5): 341-344.
    8.张壮,闫彦芳,孙塑伦,等.比较猪去氧胆酸与牛黄熊去氧胆抗神经细胞缺氧缺糖再给氧损伤的作用[J].中国临床康复,2005,9(17): 134-136.
    9.刘娜,左萍萍,周帆,等.连二亚硫酸钠致PC12和NG108-15细胞拟缺血损伤研究[J].中国药理学通报,1998,14(6):525-529.
    10. Otter D, Austin C. Hypoxia, metabolic inhibition, and isolated rat mesenteric tone: influence of arterial diameter[J]. Microvascular Res, 2000. 59:107-114.
    11.许蜀闽,王培勇,马红英.连二亚硫酸钠在建立培养细胞的无氧环境中的应用[J].第三军医大学学报,2005,27(4):359-360.
    12.刘键,何作云,王培勇.新生大鼠心肌细胞内Ca2+的空间分布及调控的离体研究[J].第三军医大学学报,2001,23(7):806.
    13. Back SA, Han BH, Luo NL, et al. Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia[J]. J Neurosci, 2002, 22(2): 455-463.
    14. Back SA, Luo NL, Borenstein NS, et al. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human prenatal white matter injury[J]. J Neurosci, 2001, 21(4): 1302-1312.
    1.宋今丹.医学细胞生物学[M].北京:人民卫生出版社,2003:235-68.
    2.万选才.现代神经生物学[M].北京:科学出版社,1998:64-69.
    3. Martin TA, Harrison G. Mansel RE, et al. The role of the CD44/Ezrin complex in cancer metastasis[J]. Cril Rev Oncol Hematol, 2003, 46(2): 165-186.
    4. Aspenstoom P, Fransson A, Saran J. GTPases have diverse effects on the organization of the actin filament system[J]. 2004, 337(Pt2): 327-337.
    5. Takai Y, Sasaki T, Motozaki T. Small GYP-binding proteins[J]. Physiol REV, 2001, 81(1):153-208.
    6. Etienne-Mannevide S, Hall A. Rho GYPase in cell biology[J]. Nature, 2002, 420(6916):629-35.
    7. Kaibuchi K, Kuroda S, Amano M. Regulation of the cytoskeleton and cell adhesion by the Rho family GYPases in mammalian cells[J]. Annu Rev Biochem, 1999, 68: 459-486.
    8. Sah VP, Seasholtz TM, Sagil SA, et al. The role of Rho in G protein-coupled receptor signal transduction[J]. Annu Rev Pharmacol Toxicol, 2000, 40: 459-489.
    9. Nobes CD, Hall A. Rho GTPases control polarity, protrusion and adhesion during cell movement[J]. J Cell Biol, 1999, 144(6): 1235-1244.
    10.余波,姚裕家,熊英,等.缺血再灌注损伤对新生鼠肾小管上皮细胞F-actin的影响[J].上海第二医科大学学报.2004,24(5):365-370.
    11. Wojciak-Stothard B, Ysang LY, Haworth SG Rac and Rho play opposing roles in the regulation of hypoxia/reoxygenation-induced permeability changes in pulmonary endothelial cells[J]. American Journal of Physiology, 2005, 288(4): 749-60.
    12. Nobes CD, Hall A. Rho, rac and cdc42 GTPases regulate the assembly of multimolecular complexes associated with actin fibers, lamellipodia and filopodia[J]. Cell, 2001, 81(1): 53-62.
    13. Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system[J]. Physiol Rev, 2001, 81(2): 871-892.
    14. Richter-Landsberg C. The oligodendroglia cytoskeleton in health and disease[J]. J Neurosci Res, 2000, 59(1):11-18.
    15. Rumsby M, Afsari F, Stark M, et al. Microfilament and microtubule organization and dynamics in process extension by central Glia-4 oligodendrocytes: evidence for a microtubule organizing center[J]. Glia, 2003, 42(2): 118-129.
    16. Song J, Goetz BD, Baas PW, et al. Cytoskeletal reorganization during the formation of oligodendrocyte processes and branches[J]. Mol Cell Neurosci, 2001, 17(4): 624-636.
    17. Lonvet-Vallee S. ERM proteins: from cellular architecture to cell signaling[J]. Biol Cell, 2000, 92(5):305-16.
    18. Bretscher A, Reezek D, Berryman M. Ezrin: a protein requiring conformational activation tl link microfilaments to the plasma membrane in the assembly of cell surface structures [J]. J Cell Sci, 1997, 110(Pt24): 3011-3018.
    19. Hunter KW. Ezrin, a key component in tumor metastasis. Trends Mol Med, 2004, 10(5): 201-204.
    20. Baron W, Shattil SJ, Ffrench-Constant C. The oligodendrocyte precursor mitogen PDGF stimulates proliferation by activation of ανβ3 integrins. EMBO J, 2002, 21(8): 1957-1966.
    21. Niederost B, Oertle T, Fritsche J, et al. Nogo-A and myelin-associated glycoprotein mediate neurite inhibition by antagonistic regulation of RhoA and Racl. J Neurosci, 2002, 22(23):10368-76.
    22. Xiquan Liang XQ, Draghi NA, Resh MD. Signaling from Integrins to Fyn to Rho Family GTPases Regulates Morphologic Differentiation of Oligodendrocytes. J Neurosci, 2004, 24(32):7140-714.
    23.李晋辉.未成熟大鼠实验性缺氧缺血性脑白质损伤中F-actin和RhoA的表达变化及毛喉素对神经细胞骨架保护作用探讨.四川大学.2006.
    24. Niederost B, Oertle T, Fritsche J, et al. Nogo-A and myelin-associated glycoprotein mediate neurite inhibition by antagonistic regulation of RhoA and Racl. J of Neurosci, 2002, 22(23):10368-10376.
    25. Gallo G. Letourneau PC. Regulation of growth cone actin filaments by guidance cues, J Neurobiol, 2004, 58(1): 92~102.
    26. Gehler S, Gallo G, Veien E, et al. p75 neurotrophin receptor signaling regulates growth cone filopodial dynamics through modulating RhoA activity. J Neurosci, 2004, 24(18): 4363~4372.
    27. Bandtlow C, Dechant G. From cell death to neuronal regeneration, effects of the p75 neurotrophin receptor depend on interactions with partner subunits. Sci STKE, 2004, 235: pe24.
    28. Bryan B, Kumar V, Stafford LJ, et al. A Rho family guanine nucleotide exchange factor, regulates neurite outgrowth and dendritic spine formation. J Biol Chem, 2004, 279(44): 45824~45832.
    29. Yonemura S, Matsui T, Tsukita S, et al. Rho dependent and independent activation mechanisms of ezrin/radixin/rnoesin proteins:an essential role for polyphosphoinositides in vivo. J Cell Sci, 2002, 115(Pt12): 2569-2580.
    30. Cheryl L, Barbara J. Local ERM activation and dynamic cones at Schwann cell tips implicated in efficient of nodes of Ranvier. The Journal of Cell Biology, 2003, 162(3): 489-98.
    31.陈大鹏,姚裕家,陈娟.新生猪RTE细胞缺氧时ezrin蛋白的变化.四川医学,2004,25(12):1290-1291.
    32. Kobryn CE, Mandel LJ. Decreased protein phosphorylation induced by anoxia in proximal renal tubules. Am J Physiol, 1994, 267(4 Pt1): C1073-1079.
    33. Lang P, Gesbert F, Delespine-Carmagnat M, et al. Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J, 1996, 15(3): 510-519.
    34. Dransart E, Olofsson B, Cherfils J. RhoGDIs revisited: novel roles in Rho regulation. Traffic, 2005, 6(11): 957-966.
    35. Dong JM, Leung T, Manser E, et al. cAMPinduced morphological changes are counteracted by the activated RhoA small GTPase and the Rho kinase ROKα J Biol Chem, 1998, 273(35): 22554-22562.
    36. Raman N, Atkinson SJ. Rho controls actin cytoskeletal assembly in renal epithelial cells during ATP depletion and recovery. American Journal of Physiology, 1999, 276(6): 1312-24.
    37. Tamada Y, Nakajima E, Nakajima T, et al. Proteolysis of neuronal cytoskeletal proteins by calpain contributes to rat retinal cell death induced by hypoxia. Brain Research, 2005, 1050(1-2):148-155.
    38. Mashima T, Naito M, Tsuruo T. Caspase-mediated cleavage of cytoskeleton actin plays a positive role in the process of morphological apoptosis.1999, 18(15): 2423-2430.
    39. Kuhne W, Besselmann M, Noll T, et al. Disintegration of cytoskeletal structure of actin filaments in energy-depleted endothelial cells[J]. Am J Physiol, 1993, 263(5pt2): H1599-1608.
    40. Brancolini C, Lazarevic D, Rodriguez J, et al. J Cell Biol, 1997, 139(3): 759-771.
    1.宋今丹.医学细胞生物学[M].北京:人民卫生出版社,2003:235—168.
    2.万选才.现代神经生物学[M].北京:科学出版社,1998:64—69.
    3. Miller RH. Oligodendrocyte origins. Trends Neurosci, 1996, 19: 92-96.
    4. Miller RH. Regulation of oligodendrocyte development in vertebrate CNS. Prog Neurobiol, 2002, 67(6): 451-467.
    5. Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev, 2001,81(2): 871-927.
    6. Levine JM, Reynolds R, Fawcett JW. The oligdendrocyte precursor cell in health and disease. Trends Neurosci, 2001, 24(1): 39-47.
    7. Richter-Landsberg C. The oligodendroglia cytoskeleton in health and disease. J Neurosci Res, 2000, 59(1):11-18.
    8. Baron W, Shattil SJ, ffrench-Constant C. The oligdendrocyte precursor mitogen PDGF stimulates proliferation by activatin of αvβ3 integrins. EMBO J, 2002, 21(8): 1957-1966.
    9. Rumsby M, Afsari F, Stark M, et al. Microfilament and microtubule organization and dynamics in process extension by Central Glia-4 oligdendrocytes: evidence for a microtubule organizing center. Glia, 2003,42(2): 118-129.
    10. Song J, Goetz BD, Bass PW, et al. Cytoskeletal reorganization during the formation of oligodendrocyte processes and branches. Mol Cell Neurosci, 2001,17(4): 624-636.
    11. Wilson R, Brophy PJ. Role for the oligodendrocyte cytoskeleton in myelination. J Neurosci Res, 1989, 22(4):439-448.
    12. Small JV, Stradal T, Vignal E, et al. The lamellipodium: where motility begins. Trends Cell Biol, 2002,12(3): 112-120.
    13. Machesky LM, Insall RH. Scarl and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr Biol, 1998, 8(25): 1347-1356.
    14. Schmidt A, Hall MN. Signalling to the actin cytoskeleton. Annu Rev Cell Dev Biol, 1998,14: 305-338.
    15. Kachar B, Behar T, Dubois-Dalcq M. Cell shape and motility of oligodendrocytes cultured without neurons. Cell Tissue Res, 1986, 244(1): 27-38.
    16. Barry C, Pearson C, Barbarese E. Morphological organization of oligodendrocyte processes during development in culture and in vivo. Dev Neurosci, 1996, 18(4): 233-242.
    17. Lunn KF, Baas PW, Duncan ID. Microtubule organization and stability in the oligodendrocyte. J Neurosci, 1997,17(13): 4921-4932.
    18. Simpson PB, Armstrong RC. Intracellular signals and cytoskeletal elements involved in oligodendrocyte progenitor migration. Glia, 1999, 26(1): 22-35.
    19. Sinji BF, Tauhata DVS, Edwin W, et al. High Affinity Binding of Brain Myosin-Va to F-actin Induced by Calcium in the Presence of ATP. 2001, 276(3): 39812-39818.
    20. Wang F, Chen L, Arcucci 0, et al. Effect of ADP and ionic strength on the kinetic and motile properties of recombinant mouse myosin V. J Biol Chem, 2000, 275(6): 4329-4335
    21. Trybus KM, Krementsova E, Freyzon Y. Kinetic characterization of a monomeric unconventional myosin V construct. J Biol Chem, 1999, 274(39): 27448-27456
    22. Sakamoto T, Amitani I, Yokota E, et al. Direct observation of processive movement by individual myosin V molecules. Biochem Biophys Res Commun, 2000, 272(2): 586-590.
    23. Nascimento AA, Cheney RE, Tauhata SBF, et al. Enzymatic characterization and functional domain mapping of brain myosin-V. J Biol Chem, 1996,271(29): 17561-17569.
    24. De La Cruz EM, Wells AL, Rosenfeld SS, et al. The kinetic mechanism of myosin V. Proc Natl Acad Sci USA, 1999, 96(24): 13726-13731.
    25. Walker M, Burgess SA, Sellers JR, et al. Two-headed binding of a processive myosin to F-actin. Nature, 2000, 405(6788): 804-807.
    26. Mehta AD, Rock RS, Rief M, et al. Myosin-V is a processive actin-based motor. Nature, 1999,400(6744): 590-593.
    27. Rief M, Rock RS, Mehta AD, et al. Myosin-V stepping kinetics: a molecular model for processivity. Proc Natl Acad Sci USA, 2000, 97(17): 9482-9486.
    28. Reck-Peterson SL, Tyska MT, Novick PJ, et al. The yeast class V myosins, Myo2p and Myo4p, are nonprocessive actin-based motors. J Cell Biol, 2001,153(7): 1121-1126.
    29. Lechler T, Shevchenko A, Shevchenko A, et al. Direct involvement of yeast type I myosins in Cdc42-dependent actin polymerization. J Cell Biol, 2000,148(2): 363 - 373.
    30. Carson JH, Worboys K, Ainger K, et al. Translocation of myelin basic protein mRNA in oligodendrocytes requires microtubules and kinesin. Cell Motil Cytoskeleton, 1997, 38:318-328.
    31. Richter-Landsberg C, Gorath M. Developmental regulation of alternatively spliced isoforms of mRNA encoding MAP2 and tau in rat brain oligodendrocytes during culture maturation. J Neurosci Res 1999, 56:259-270.
    32. Fischer I, Konola J, Cochary E. Microtubule associated protein (MAP1B) is present in cultured oligodendrocytes and co-localizes with tubulin. J Neurosci Res 1990, 27:112-124.
    33. Vouyiouklis DA, Brophy PJ. Microtubule-associated protein MAP1B expression precedes the morphological differentiation of oligodendrocytes. J Neurosci Res, 1993, 35:257-267.
    34. Vouyiouklis DA, Brophy PJ. Microtubule-associated proteins in developing oligodendrocytes: transient expression of a MAP2c isoform in oligodendrocyte precursors. J Neurosci Res, 1995, 42:803-817.
    35. Muller R, Heinrich M, Heck S, et al. Expression of microtubule-associated protein MAP2 and tau in cultured rat brain oligodendrocytes. Cell Tissue Res, 1997,288: 239-249.
    36. Shafit-Zagardo B, Davies P, Rockwood J, et al. Novel microtubule-associated protein-2 isoform is expressed early in human oligodendrocyte maturation. Glia, 2000, 29:233-245.
    37. Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 1998, 279: 519-526.
    38. Baas PW. Microtubules and neuronal polarity: lessons from mitosis. Neuron, 1999,22:23-31.
    39. Kobayashi N, Mundel P. A role of microtubules during the formation of cell processes in neuronal and non-neuronal cells. Cell Tissue Res, 1998,291:163-174.
    40. Laferriere NB, MacRae TH, Brown DL . Tubulin synthesis and assembly in differentiating neurons. Biochem Cell Biol, 1997, 75:103-117.
    41. Goedert M, Crowther RA, Garner CC . Molecular characterization of microtubule-associated proteins tau and MAP2. Trends Neurosci, 1991, 14:193-199.
    42. LoPresti P, Szuchet S, Papasozomenos SC, et al. Functional implications for the microtubule-associated protein tau: localization in oligodendrocytes. Proc Natl Acad Sci USA 1995, 92: 10369-10373.
    43. Goedert M, Spillantini MG, Davies SW. Filamentous nerve cell inclusions in neurodegenerative diseases. Current Opinion Neurobiol, 1998, 8: 619-632.
    44. Gotz J, Probst A, Spillantini MG, et al. Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. EMBO J, 1995, 14:1304-1313.
    45. Ebneth A, Godemann R, Stamer K, et al. Overexpression of Tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease. J Cell Biol, 1998, 143: 777-794.
    46. Bares BA, Raft MC. Axonal control of oligodendrocyte development. J Cell Biol, 1999, 147: 1123-1128.
    47. LoPresti P, Muma NA, De Vries GH. Neu differentiation factor regulates tau protein and mRNA in cultured neonatal oligodendrocytes. Glia, 2001, 35: 147-155.
    48. Takamiya, Kohsaka S, Toya S, et al. Immunohistochemical studies on the proliferation of reactive astrocytes and the expression of cytoskeletal proteins following brain injury in rats[J]. Devel Brain Res, 1998, 38:201-210
    49. Ito J I, Yokoyama S. Sialosylcholesterol induces reorganization of astrocyte filament network. Biochem Biophys Acta, 2000, 1495 (3):195-202.
    50.王立安,赵俊霞.钙对细胞骨架的调控及其在生命活动中的重要作用[J].生物学杂志,1999,16(4):6-7
    51. [0]Kuhne W, Besselmann M, Noll T, et al. Disintegration of cytoskeletal structure of actin filaments in energy-depleted endothelial cells[J]. Am J Physiol, 1993,263(2): H1599.
    52. Park JH, Okayama N, Gute D, et al. Hypoxia\alycemia increases endothelial permeability: role of secondd messengers and cytoskeleton[J]. Am J Physiol, 1999, 277(6pt): C1066-1074.
    53. Niederost B, Oertle T, Fritsche J, et al. Nogo-A and myelin-associated glycoprotein mediate neurite inhibition by antagonistic regulation of RhoA and Racl. J Neurosci, 2002,22(23):10368-10376.
    54. Yin HL, Stoll JT. Proteins that regulate dynamics actin remodeling in response to membrane signaling minireview series. J of Biol Chem, 1999, 274(46): 32529-30.
    55. Cheryl L,Barbara J. Local ERM activation and dynamic cones at Schwann cell tips implicated in efficient of nodes of Ranvier. The Journal of Cell Biology, 2003,162(3): 489-498.
    56. Raman N, Atkinson SJ. Rho controls actin cytoskeletal assembly in renal epithelial cells during ATP depletion and recovery .American Journal of Physiology, 1999, 276(6): 1312-24.
    57. Yoshiyuki T, Emi NA, et al. Proteolysis of neuronal cytoskeletal proteins by calpain contributes to rat retina cell death induced by hypopxia. Brain Research, 2005,1050:148-55.
    58. Mashima T, Naito M, Tsuruo T Caspase-mediated cleavage of cytoskeleton actin plays a positive role in the process of morphological apoptosis.1999,18(15): 2423-30.
    59. Irving FA, Bentley DL, Parsons AA. Assessment of white matter injury following prolonged focal cerebral ischaemia in the rat. Acta Neuropathol (Berl), 2001, 102:627-635.
    60. Irving EA, Yatsushiro K, McCulloch J, et al. Rapid alteration of tau in oligodendrocytes after focal ischemic injury in the rat: involvement of free radicals. J Cereb Blood Flow Metab, 1997, 17:612-622.
    61. Dewar D, Dawson D. Tau protein is altered by focal cerebral ischaemia in the rat: an immunohistochemical and immunoblotting study. Brain Res, 1995, 684: 70-78.
    62. Green SL, Kulp KS, Vulliet R. Cyclin-dependent protein kinase 5 activity increases in rat brain following ischemia. Neurochem Int, 1997, 31: 617-623.
    63. LoPresti P, Konat GW. Hydrogen peroxide induces transient dephosphorylation of tau protein in cultured rat oligodendrocytes. Neurosci Lett, 2001, 311: 142-144.
    64. Gupta RP, Abou-Donia MB. Tau proteins-enhanced Ca2+/calmodulin(CaM)-dependent phosphorylation by the brain supernatant of diisopropyl phosphorofluoridate (DFP)-treated hen: tau mutuns indicate phosphorylation of more amino acids in tau by CaM kinase Ⅱ. Brain Res, 1998, 813:32-43.
    65. Lorio G, Avila J, Diaz-Nido J. Modifications of tau protein during neuronal cell death. J Alzheimers Dis, 2001, 3: 563-575.
    66.程清洲,陈秉朴,戴冀斌.GFAP,S-100蛋白,波形蛋白在大鼠前脑缺血再灌注后的分布[J].右江民族医学院学报,2002,24:661-663.
    67. Martinez G, Carnazza ML, Di Giacomo C, et al. GFAP, S-100, and vimentin proteins in rat after cerebral post-ischrnic reperfusion. Int J Dev Neurosci, 1998, 16(6): 519-526.
    68. Conpstom A, Zajicek J, Webb A, et al. Glial lineages and myelinzation in the central nuerous system[J]. Anat, 1997:161-200.
    69. Kitamura O. Immunohistochemical investigation of hypoxic/ischemic brain damage in forensic autopsy cases. Int J Legal Med. 1994, 107(2): 69-76.
    70. Regners H, Reyners EG ,Regniers L, et al. A glial progenitor cell in the cerebral cortex of the adult rat [J]. Neurcytol, 1986,15:53-61.
    71. Jorgensen MB, Finsen BR, Jensen MB, et al. Microglial and astroglial reactions to and kainic ischemic acid-induced lesions of the adult rat hippocampus[J]. Exp Neural, 1993,120(1):70 - 88.
    72. Levee MG, Dabrowska MI, Lelli JL, et al. AmJ Physiol, 1996, 271(6Pt 1):C1981 - 1992.
    73. Mashima T, Naito M, Tsuruo T. Oncogene, 1999,18(15):2423 - 2430.
    74. Brancolini C ,Lazarevic D ,Rodriguez J , et al . J Cell Biol ,1997 ,139(3) :759 -771.
    75. Mills JC, Stone NL, Erhardt J, et al. J Cell Biol, 1998, 140(3):627.
    76. Kothakota S, Azuma T, Reinhard C, et al. Science, 1997, 278(5336): 294 - 298.
    77. Van-Engeland M, Kuijpers HJ, Ramaekers FC, et a . Exp Cell Res, 1997, 235(2):421- 430.
    78. LoPresti P, Muma NA, De Vries GH. Neu differentiation factor regulates tau protein and mRNA in cultured neonatal oligodendrocytes. Glia, 2001,35:147—155
    1. Martin TA, Harrison G, Mansel RE, et al. The role of CD44/ezrin complex in cancer metastasis. Crit Rev Oncol Hematol, 2003, 46(2): 165-186.
    2.湛凤凰,曹利,胡成平等.鼻咽癌中与已知基因同源的差异表达cDNA序列.湖南医科大学学报,1999,24:103.
    3. Granes F, Urena JM, Rocamora N, et al. Ezrin links syndecan-2 to the cytoskeleton. J Cell. Sci. 2000, 113 (Pt 7): 1267-1276.
    4. Krieg J, Hunter T. Identification of the two major epidermal growth factor-induced tyrosine phosphorylation sites in the microvillar core protein ezrin. J Biol Chem, 1992, 267(27): 19258-19265.
    5. Louvet-Vallee S. ERM proteins: from cellular architecture to cell signaling. Biol Cell, 2000, 92(5): 305-316.
    6. Bretscher A, Reczek D, Berryman M. Ezrin: a protein requiring conformational activation to link microfilaments to the plasma membrane in the assembly of cell surface structure. J Cell Sci, 1997, 110(Pt24):3011-3018.
    7. Fievet BT, Gautreau A, Roy C, et al. Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin. J Cell Biol, 2004, 164(5): 653-659.
    8. Akisawa N, Nishimori I, Iwamura T, et al. High levels of ezrin expressed by human pancreatic adenocarcinoma cell lines with high metastatic potential. Biochem Biophys Res Commun, 1999, 258(2): 395-400.
    9. Lee JH, Katakai T, Hara T, et al. Roles of p-ERM and Rho-ROCK signaling in lymphocyte polarity and uropod formation. J Cell Biol, 2004, 167(2): 327-337.
    10. Hiscox S, Jiang WG. Ezrin regulates cell-cell and cell-matrix adhesion, a possible role with E-cadherin/beta-catenin. J Cell Sci, 1999,112(Pt18) : 3081-3090.
    11. Melendez-Vasquez CV, Rios JC, Zanazzi G, et al. Nodes of Ranvier form in association with ezrin-radixin-moesin(ERM)-positive Schwann cell processes. PNAS, 2001,98(3): 1235-1240.
    12. Hunter KW. Ezrin, a key component in tumor metastasis. Trends Mol Med, 2004, 10(5): 201-204.
    13. Vaheri A, Carpen O, Heiska L, et al. The ezrin protein family: membrane-cytoskeleton interactions and disease associations. Curr Opin Cell Biol. 1997 9(5):659-66.
    14. Bretscher A, Edward K, Fehon RG. ERM proteins and merlin: integrators at the cell cortex. Nat Rev Cell Biol, 2002, 3(8): 586-599.
    15. Ingraffea J, Reczek D, Bretscher A. Distinct cell type-specific expression of scaffolding proteins EBP50 and E3KARP: EBP50 is generally expressed with ezrin in specific epithelia, whereas E3KARP is not. Eur J Cell Biol, 2002, 81(2): 61-68.
    16. Tran YK, Bogler O, Gorse KM, et al. A novel member of the NF2/ERM/4.1 superfamily with growth suppressing properties in lung cancer. Cancer Res, 1999, 59(1): 35-43.
    17. Alonso-Lebrero JL, Serrador JM, Dominguez-Jimenez C, et al. Polarization and interaction of adhesion molecules P-selectin glycoprotein ligand 1 and intercellular adhesion molecule 3 with moesin and ezrin in myeloid cells. Blood, 2000, 95(7): 2413-2419.
    18. Helander TS, Carpen O, Turunen O, et al. ICAM-2 redistributed by ezrin as a target for killer cells. Nature, 1996, 382(6588): 265-268.
    19. Pujuguel P, Del Maestro L, Gautreau A, et al. Ezrin regulates E-cadherin-dependent adherens junction assembly through Racl activation. Mol Bill Cell, 2003,22: 309-325.
    20. Xu Y, Yu Q. E-cadherin negatively regulates CD 44-mediated tumor invasion and branching morphogenesis. J Biol Chem, 2003, 278: 8661-8668.
    21. Townson JL, Naumov GN, Chambers AF. The role of apoptosis in tumor progression and metastasis. Curr Mol Med, 2003, 3(7): 631-642.
    22. Lozupone F, Lugini L, Matarrese P, et al. Identification and relevance of the CD95-binding domain in the N-terminal region of ezrin. J Biol Chem, 2004, 279(10): 9199-9207.
    23. Luciani F, Matarrese P, Giammarioli AM, et al. CD95/phosphorylated ezrin association underlies HIV-1 GP120/IL-2-induced susceptibility to CD95(APO-1/Fas)-mediated apoptosis of human resting CD4(+)T lymphocytes. Cell Death Differ, 2004, 11(5): 574-582.
    24. Gautreau A, Poullet P, Louvard D, et al. Ezrin, a plasma membrane-microfilament linker, signals cell survival through the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci USA, 1999,96:7300-7305.
    25. Khanna C, Wan X, Bose S, et al. The membrane-cytoskeleton linker ezrin is necessary fo osteosarcoma metastasis. Nat Med, 2004,10: 182-186.
    26. Doctor RB, Dahl RH, Salter KD, et al. Reorganization of cholangiocyte membrane domains represents an early event in rat liver ischemia. Hepatology. 1999 May;29(5):1364-74
    27. Chen J, Doctor RB, Mandel LJ. Cytoskeletal dissociation of ezrin during renal anoxia: role in microvillar injury. Am J Physiol, 1994, 267(3 Pt1): C784-795.
    28. Chen J, Cohn JA, Mandel LJ. Dephosphorylation of ezrin as an early event in renal microvillar breakdown and anoxic injury. Proc Natl Acad Sci USA, 1995, 92(16)7495-7499.
    29. Chen J, Wagner MC. Altered membrane-cytoskeleton linkage and membrane blebbing in energy-depleted renal proximal tubular cell. Am J Physiol Rena Physiol, 2001,280 (4): F619-627.
    30. Chen J, Mandel LJ. Unopposed phosphatase action initiates ezrin dysfunction: a potential mechanism for anoxic injury. Am J Physiol, 1997. 273(2Pt1): C710-716.
    31.陈大鹏,姚裕家,陈娟.新生猪RTE细胞缺氧时ezrin蛋白的变化.四川医学,2004,25(12):1290-1291.
    32. Hallett MA, Dagher PC, Atkinson SJ. Rho TGPases show differential sensitivity to nucleotide triphosphate depletion in a model of ischemic cell injury. Am J Physiol Cell Physiol, 2003, 285(1): C129-138.
    33. Hamid SA, Bower HS, Baxter GF. Rho-kinase activation plays a majou role as a mediator of irreversible injury in reperfused myocardium. Am J Physiol Heart Circ Physiol, 2007, [Epub].