石墨烯的修饰及聚合物/石墨烯复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯具有独特的电子特性和物理性质,作为聚合物纳米填料,石墨烯具有非常高的增强效率和效应,同时还可赋予复合材料功能特性。但聚合物/石墨烯复合材料的制备主要受限于石墨烯的宏量制备,石墨烯在聚合物中均匀分散,聚合物-石墨烯界面结构设计,以及缺乏对构效关系的认识。基于这一现状,作者开展了石墨烯的修饰及相关聚合物/石墨烯复合材料的研究,主要内容如下。
     (1)通过乳液共混和原位界面裁剪,设计和制备了具有氢键界面或离子键/氢键界面结构的丁苯吡橡胶(VPR)/GO复合材料。详细研究了界面结构对复合材料性能的影响。对比氢键界面结构的复合材料,离子键界面结构的复合材料具有更优异的力学性能和气体阻隔性,这是因为在复合材料中离子键结构的界面作用更强且GO均匀更均匀。
     (2)采用常用、廉价的染料和荧光增白剂为改性剂,通过非共价键修饰石墨烯,制备了在水中以高浓度稳定分散的单层石墨烯。改性剂分子通过π-π和阳离子-π吸附到石墨烯片上,从而阻止石墨烯的团聚。以聚乙烯醇(PVA)和壳聚糖(CS)为模型聚合物,制备了相应的聚合物/石墨烯复合材料。加入少量石墨烯,复合材料的拉伸强度、拉伸模量和韧性都同时大幅度提高,这是由于石墨烯均匀分散在复合材料中,且平行于样品表面排列,另外改性剂分子有效提高了石墨烯-聚合物界面结合。
     (3)通过非共价键改性策略,在石墨烯表面引入离子对,制备了在室温和无溶剂情况下均匀分散和具有流体性质的石墨烯离子材料(G-NIM)。G-NIM以单片层石墨烯为核,非共价键改性为晕层,柔性分子聚醚胺为壳三部分组成,聚醚胺通过离子键连接并均匀包覆在石墨烯表面。G-NIM具有两亲性,在多种溶剂中呈现稳定和超高浓度分散(浓度高达500mg/ml)。
     (4)以生物来源的单体为原料,采用缩聚反应合成了以羟基封端的生物基聚酯(BE)。利用简单有效的溶剂交换法制备了在多种有机溶剂中呈稳定单层分散的GO分散液。通过GO边缘的羧基与BE端羟基之间的酯化反应,将BE接枝到石墨烯上制备了BE/石墨烯复合材料。由于BE分子链可以连接不同石墨烯片层,有利于石墨烯相互搭接形成导通网络,因此复合材料的电导率和热导率同时显著提升。
     (5)以气相增长碳纳米纤维(VGCF)为石墨烯的纳米稳定粒子,制备了在NMP中稳定分散的VGCF-G杂化填料。VGCF通过π-π作用吸附在石墨烯片层上,阻止石墨烯团聚;同时二维石墨烯片层作为VGCF载体,减少VGCF的缠结。在VGCF-G填充的复合材料(BE/VGCF-G)中,VGCF和石墨烯都均匀分散,且VGCF-BE界面作用明显增强。对比BE/VGCF复合材料,VGCF-G对提高复合材料的力学性能和导电率有显著的协同效应,而且BE/VGCF-G复合材料有更优异的电驱动和红外驱动形状记忆行为。
     (6)从特定的基团相互作用出发,利用单宁酸修饰的石墨烯(TAG)与埃洛石纳米管(HNTs)之间的氢键和配位作用,制备了HNTs-TAG杂化填料。通过胶乳共混法,将杂化填料与丁苯橡胶(SBR)胶乳复合制备SBR/HNTs-TAG复合材料。杂化填料在SBR中互相搭接形成完善稳定的3D填料网络结构。完善的填料网络可以有效“包埋”橡胶分子,增加流体力学体积效应;同时TAG的加入促进HNTs在基体中均匀分散,同时增强了HNTs与SBR的界面作用,因此杂化填料对SBR具有显著的协同增强效应。
Graphene is under the spotlight of the science and technology community owning to itsunparalleled properties. As nanofiller for polymer, graphene has exceptional reinforcingefficiency towards polymer matrix, and it can endow the composites with functionalproperties. However, the real-life applications of graphene in polymer composites are greatlylimited by the large-scale production, the uniform dispersibility of graphene in polymermatrix, the design of interfacial structures, and being lack of the understanding of therelationship between the structures and performances of the composites. Accordingly, in thepresent dissertation, we focused on the studies on the functionalization of graphene andpolymer/graphene composites.
     (1) The elastomeric hybrids consisting of graphene oxide (GO) sheets were fabricatedby utilizing butadiene-styrene-vinyl pyridine rubber (VPR) as the host through co-coagulationprocess and in situ formation of an ionic bonding interface. The VPR/GO composites with anormal hydrogen bonding interface were also prepared. The mechanical properties and gaspermeability of these hybrids with an ionic bonding interface were obviously superior to thoseof the composites with a hydrogen bonding interface, which was due to the fine dispersion ofGO and strong ionic interface in the hybrids.
     (2) Individually dispersed graphene colloid was prepared using common andcommercially available fluorescent whitening agents (FWAs) and dye as nano-covalentmodifiers. The modifiers were successfully anchored onto graphene sheets by π-π andcation-π interaction to prevent the aggregation of graphene. Subsequently, the obtainedgraphene was incorporated into polyvinly alcohol and chitosan (CS) by solution casting tofabricate PVA/graphene and CS/graphene composites. The concurrently significantimprovements in tensile strength and toughness of the composites were observed, which wasrelated to the uniqueness interfacial structure and morphology of the composites. It wasdemonstrated that graphene was homogeneous dispersed in the composites and was alignedparallel to the surface of composite films. Besides, the modifiers located in the graphene and polymer interface zone strengthened the interfacial interaction between them.
     (3) Graphene material with liquid-like behavior was synthesized through decoratinggraphene with a generic non-covalent fashion and subsequently combining them with bulkypolymer chains. Individually dispersed graphene core was first prepared through chemicalreduction of GO by using fluorescent whitening agent VBL as a non-covalent modifier. Thenegative groups of VBL which were anchored onto the graphene sheets imparted grapheneanionic characteristic. Combination of the modified graphene with bulky Jefamine2070chains through electrostatic interaction yielded homogeneous graphene fluid, i.e.graphene-based nanoparticle ionic materials (G-NIM). G-NIM could be stably dispersed in abroad spectrum of solvents at a super-high concentration of500mg/ml.
     (4) A kind of bio-based polyester (BE) was synthesized by poly-condensation betweenplant-derived diols and diacids. The individually dispersed GO sheets in DMF were obtainedby the solvent-exchange method. BE was then grafted onto GO via the easterification, whichwas then subjected to reduction by vitamin C. In the BE/graphene composites, graphenesheets were interconnected by the BE chains, which favored the formation of conductivepaths at very low graphene loading. The concurrently increased electrical and thermalconductivity were a consequence of well-dispersion of graphene in BE and the interconnectedstructure of graphene.
     (5) Graphene oxide was directly reduced into graphene in N-methyl-pyrrolidone with theassisted-dispersion of vapor grown carbon nanofibers (VGCF), resulting in a homogeneousdispersion of VGCF-graphene (VGCF-G) hybrid filler. In the hybrid filler, VGCF served aseffective stabilizers for graphene by adsorbing VGCF onto graphene through π-π interactionbetween them. The obtained hybrid filler was incorporated into a bio-based polyester (BE) toprepare BE/VGCF-G composites. In the BE/VGCF-G composites, the dispersion of VGCFand interfacial adhesion between BE and VGCF were greatly improved because that theincorporated graphene acted as “compatibilizer” between VGCF and BE, leading tosignificant synergistic effects in improving the electrical conductivity and mechanicalproperties of the composites. Furthermore, multi-stimuli responsive shape memory performances (electro-activated and infrared-triggered) of the composites were investigated,and it was showed that BE/VGCF-G composites had a combination of higher shape memoryrecovery, stronger recovery stress and faster response, compared with the compositescontaining VGCF alone.
     (6) Tannic acid functionalized graphene (TAG) aqueous dispersion was prepared andused to hybridize with tubular clay, halloysite nanotubes (HNTs), to prepare a hybrid colloid(HNTs-TAG). The driving force for the hybridization was disclosed to be the specificinteractions (hydrogen bond and bridged bidentate bond) between the catechols on TAG andalumina/siloxane surfaces of HNTs. The obtained hybrid colloid was then co-coagulated withstyrene-butadiene rubber (SBR) emulsion to prepare elastomeric composites. Results showedthat a3D hybrid filler network consisting of HNTs and TAG was developed and served as anovel networked reinforcement in the SBR matrix. The formed hybrid filler network, togetherwith the enhanced interfacial adhesion, was considered to be responsible for the extraordinarysynergetic effects on improving the modulus and strength of the composites.
引文
[1] Novoselov K. S., Geim A. K., Morozov S. V., et al. Electric field effect in atomically thincarbon films[J]. Science,2004,306(5296):666-669
    [2] Balandin A. A., Ghosh S., Bao W., et al. Superior thermal conductivity of single-layergraphene[J]. Nano Letters,2008,8(3):902-907
    [3] Kuilla T., Bhadra S., Yao D., et al. Recent advances in graphene based polymercomposites[J]. Progress in Polymer Science,2010,35(11):1035-1055
    [4] Stankovich S., Dikin D. A., Dommett G. H. B., et al. Graphene-based compositematerials[J]. Nature,2006,442(7100):282-286
    [5] Bai H., Li C., Shi G. Q. Functional composite materials based onchemically convertedgraphene[J]. Advanced Materials,2011,23(9):1089-1115
    [6] Huang X., Qi X., Boey F., et al. Graphene-based composites[J]. Chemical SocietyReviews,2012,41(2):666-686
    [7] Verdejo R., Bernal M. M., Romasanta L. J., et al. Graphene filled polymernanocomposites[J]. Journal of Materials Chemistry,2011,21(10):3301-3310
    [8] Lu X., Yu M., Huang H., et al. Tailoring graphite with the goal of achieving singlesheets[J]. Nanotechnology,1999,10(3):269
    [9] Zheng J., Di C.-a., Liu Y., et al. High quality graphene with large flakes exfoliated byoleyl amine[J]. Chemical Communications,2010,46(31):5728-5730
    [10] Coleman J. N., Lotya M., O’Neill A., et al. Two-dimensional nanosheets produced byliquid exfoliation of layered materials[J]. Science,2011,331(6017):568-571
    [11] Hernandez Y., Nicolosi V., Lotya M., et al. High-yield production of graphene byliquid-phase exfoliation of graphite[J]. Nature Nanotechnology,2008,3(9):563-568
    [12] Khan U., O'Neill A., Lotya M., et al. High-concentration solvent exfoliation ofgraphene[J]. Small,2010,6(7):864-871
    [13] Wang X., Fulvio P. F., Baker G. A., et al. Direct exfoliation of natural graphite intomicrometre size few layers graphene sheets using ionic liquids[J]. Chemical Communications,2010,46(25):4487-4489
    [14] Green A. A., Hersam M. C. Solution phase production of graphene with controlledthickness via density differentiation[J]. Nano Letters,2009,9(12):4031-4036
    [15] Guardia L., Fernandez-Merino M., Paredes J., et al. High-throughput production ofpristine graphene in an aqueous dispersion assisted by non-ionic surfactants[J]. Carbon,2011,49(5):1653-1662
    [16] Berger C., Song Z., Li X., et al. Electronic confinement and coherence in patternedepitaxial graphene[J]. Science,2006,312(5777):1191-1196
    [17] Obraztsov A. N. Chemical vapour deposition: making graphene on a large scale[J].Nature Nanotechnology,2009,4(4):212-213
    [18] Isett L., Blakely J. Segregation isosteres for carbon at the (100) surface of nickel[J].Surface Science,1976,58(2):397-414
    [19] Eizenberg M., Blakely J. Carbon monolayer phase condensation on Ni (111)[J]. SurfaceScience,1979,82(1):228-236
    [20] Reina A., Jia X., Ho J., et al. Large area, few-layer graphene films on arbitrary substratesby chemical vapor deposition[J]. Nano Letters,2008,9(1):30-35
    [21] Kim K. S., Zhao Y., Jang H., et al. Large-scale pattern growth of graphene films forstretchable transparent electrodes[J]. Nature,2009,457(7230):706-710
    [22] Li X., Cai W., An J., et al. Large-area synthesis of high-quality and uniform graphenefilms on copper foils[J]. Science,2009,324(5932):1312
    [23] Li X., Cai W., Colombo L., et al. Evolution of graphene growth on Ni and Cu by carbonisotope labeling[J]. Nano Letters,2009,9(12):4268-4272
    [24] Gao L., Ren W., Zhao J., et al. Efficient growth of high-quality graphene films on Cufoils by ambient pressure chemical vapor deposition[J]. Applied Physics Letters,2010,97(18):183109-183109-183103
    [25] Wintterlin J., Bocquet M.-L. Graphene on metal surfaces[J]. Surface Science,2009,603(10):1841-1852
    [26] Li D., Muller M. B., Gilje S., et al. Processable aqueous dispersions of graphenenanosheets[J]. Nature Nanotechnology,2008,3(2):101-105
    [27] Ramanathan T., Abdala A. A., Stankovich S., et al. Functionalized graphene sheets forpolymer nanocomposites[J]. Nature Nanotechnology,2008,3(6):327-331
    [28] Zaman I., Kuan H. C., Meng Q., et al. A Facile Approach to chemically modifiedgraphene and its polymer nanocomposites[J]. Advanced Functional Materials,2012,22(13):2735-2743
    [29] Zhang H. B., Wang J. W., Yan Q., et al. Vacuum-assisted synthesis of graphene fromthermal exfoliation and reduction of graphite oxide[J]. Journal of Materials Chemistry,2011,21(14):5392-5397
    [30] Stankovich S., Dikin D. A., Piner R. D., et al. Synthesis of graphene-based nanosheetsvia chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45(7):1558-1565
    [31] Gao J., Liu F., Liu Y. L., et al. Environment-friendly method to produce graphene thatmmploys vitamin C and amino acid[J]. Chemistry of Materials,2010,22(7):2213-2218
    [32] Zhu C. Z., Guo S. J., Fang Y. X., et al. Reducing sugar: new functional molecules for thegreensynthesis of graphene nanosheets[J]. ACS Nano,2010,4(4):2429-2437
    [33] Mei X., Zheng H., Ouyang J. Ultrafast reduction of graphene oxide with Zn powder inneutral and alkaline solutions at room temperature promoted by the formation of metalcomplexes[J]. Journal of Materials Chemistry,2012,22(18):9109-9116
    [34] Su C. Y., Xu Y. P., Zhang W. J., et al. Highly efficient restoration of graphitic structure ingraphene oxide using alcohol vapors[J]. ACS Nano,2010,4(9):5285-5292
    [35] Chen W., Yan L., Bangal P. Chemical reduction of graphene oxide to graphene by sulfur-containing compounds[J]. The Journal of Physical Chemistry C,2010,114(47):19885-19890
    [36] Xu L. Q., Yang W. J., Neoh K. G., et al. Dopamine-induced reduction andfunctionalization of graphene oxide nanosheets[J]. Macromolecules,2010,43(20):8336-8339
    [37] Lei Y., Tang Z., Liao R., et al. Hydrolysable tannin as environmentally friendly reducerand stabilizer for graphene oxide[J]. Green Chemistry,2011,13(7):1655-1658
    [38] Liao R., Tang Z., Lei Y., et al. Polyphenol-reduced graphene oxide: mechanism andderivatization[J]. The Journal of Physical Chemistry C,2011,115(42):20740-20746
    [39] Campos L. C., Manfrinato V. R., Sanchez-Yamagishi J. D., et al. Anisotropic etching andnanoribbon formation in single-layer graphene[J]. Nano Letters,2009,9(7):2600-2604
    [40] Jiao L., Zhang L., Wang X., et al. Narrow graphene nanoribbons from carbonnanotubes[J]. Nature,2009,458(7240):877-880
    [41] Kosynkin D. V., Higginbotham A. L., Sinitskii A., et al. Longitudinal unzipping ofcarbon nanotubes to form graphene nanoribbons[J]. Nature,2009,458(7240):872-876
    [42] Chen L., Hernandez Y., Feng X., et al. From nanographene and graphene nanoribbons tographene sheets: chemical synthesis[J]. Angewandte Chemie-International Edition,2012,51(31):7640-7654
    [43] Liu N., Luo F., Wu H., et al. One-step ionic-liquid-assisted electrochemical synthesis ofionic-liquid-functionalized graphene sheets directly from graphite[J]. Advanced FunctionalMaterials,2008,18(10):1518-1525
    [44] Subrahmanyam K., Panchakarla L., Govindaraj A., et al. Simple method of preparinggraphene flakes by an arc-discharge method[J]. The Journal of Physical Chemistry C,2009,113(11):4257-4259
    [45] Dato A., Radmilovic V., Lee Z., et al. Substrate-free gas-phase synthesis of graphenesheets[J]. Nano Letters,2008,8(7):2012-2016
    [46] Qian H., Negri F., Wang C., et al. Fully conjugated tri (perylene bisimides): an approachto the construction of n-type graphene nanoribbons[J]. Journal of the American ChemicalSociety,2008,130(52):17970-17976
    [47] Brodie B. C. On the atomic weight of graphite[J]. Philosophical Transactions of theRoyal Society of London,1859,149:249-259
    [48] Staudenmaier L. Verfahren zur darstellung der graphits ure[J]. Berichte der deutschenchemischen Gesellschaft,1898,31(2):1481-1487
    [49] Hummers Jr W., Offeman R. Preparation of graphitic oxide[J]. Journal of the AmericanChemical Society,1958,80(6):1339-1339
    [50] Xu Y., Sheng K., Li C., et al. Highly conductive chemically converted graphene preparedfrom mildly oxidized graphene oxide[J]. Journal of Materials Chemistry,2011,21(20):7376-7380
    [51] Wang X., Bai H., Shi G. Size Fractionation of graphene oxide sheets by pH-assistedselective sedimentation[J]. Journal of the American Chemical Society,2011,133(16):6338-6342
    [52] Sun X., Luo D., Liu J., et al. Monodisperse chemically modified graphene obtained bydensity gradient ultracentrifugal rate separation[J]. ACS Nano,2010,4(6):3381-3389
    [53] Gao W., Alemany L. B., Ci L., et al. New insights into the structure and reduction ofgraphite oxide[J]. Nature Chemistry,2009,1(5):403-408
    [54] Faria A. F., Martinez D. S. T., Moraes A. C. M., et al. Unveiling the role of oxidationdebris on the surface chemistry of graphene through the anchoring of Ag nanoparticles[J].Chemistry of Materials,2012,24(21):4080-4087
    [55] Dreyer D. R., Park S., Bielawski C. W., et al. The chemistry of graphene oxide[J].Chemical Society Reviews,2010,39(1):228-240
    [56] Kim J., Cote L. J., Huang J. Two dimensional soft material: new faces of grapheneoxide[J]. Accounts of Chemical Research,2012,45(8):1356-1364
    [57] Kim J., Cote L. J., Kim F., et al. Graphene oxide sheets at interfaces[J]. Journal of theAmerican Chemical Society,2010,132(23):8180-8186
    [58] Cao Y., Zhang J., Feng J., et al. Compatibilization of immiscible polymer blends usinggraphene oxide sheets[J]. ACS Nano,2011,5(7):5920-5927
    [59] Dreyer D. R., Jarvis K. A., Ferreira P. J., et al. Graphite oxide as a carbocatalyst for thepreparation of fullerene-reinforced polyester and polyamide nanocomposites[J]. PolymerChemistry,2012,3(3):757-766
    [60] Dreyer D. R., Jarvis K. A., Ferreira P. J., et al. Graphite oxide as a dehydrativepolymerization catalyst: a one-step synthesis of carbon-reinforced poly (phenylene methylene)composites[J]. Macromolecules,2011,44(19):7659-7667
    [61] Niyogi S., Bekyarova E., Itkis M. E., et al. Solution properties of graphite andgraphene[J]. Journal of the American Chemical Society,2006,128(24):7720-7721
    [62] Liu Y. S., Zhou J. Y., Zhang X. L., et al. Synthesis, characterization and optical limitingproperty of covalently oligothiophene-functionalized graphene material[J]. Carbon,2009,47(13):3113-3121
    [63] Tang Z., Kang H., Shen Z., et al. Grafting of polyester onto graphene for electrically andthermally conductive composites[J]. Macromolecules,2012,45(8):3444-3451
    [64] Veca L., Lu F., Meziani M., et al. Polymer functionalization and solubilization of carbonnanosheets[J]. Chemical Communications,2009,2009(18):2565-2567
    [65] Yang H. F., Shan C. S., Li F. H., et al. Covalent functionalization of polydispersechemically-converted graphene sheets with amine-terminated ionic liquid[J]. ChemicalCommunications,2009(26):3880-3882
    [66] Bourlinos A. B., Gournis D., Petridis D., et al. Graphite oxide: chemical reduction tographite and surface modification with primary aliphatic amines and amino acids[J].Langmuir,2003,19(15):6050-6055
    [67] Salvio R., Krabbenborg S., Naber W., et al. The Formation of Large-Area ConductingGraphene-Like Platelets[J]. Chemistry-AEuropean Journal,2009,15(33):8235-8240
    [68] Stankovich S., Piner R. D., Nguyen S. T., et al. Synthesis and exfoliation ofisocyanate-treated graphene oxide nanoplatelets[J]. Carbon,2006,44(15):3342-3347
    [69] Xu C., Wu X. D., Zhu J. W., et al. Synthesis of amphiphilic graphite oxide[J]. Carbon,2008,46(2):386-389
    [70] Kan L. Y., Xu Z., Gao C. General avenue to individually dispersed graphene oxide-basedtwo-dimensional molecular brushes by free radical polymerization[J]. Macromolecules,2011,44(3):444-452
    [71] Shen J., Hu Y., Li C., et al. Synthesis of amphiphilic graphene nanoplatelets[J]. Small,2009,5(1):82-85
    [72] Lomeda J. R., Doyle C. D., Kosynkin D. V., et al. Diazonium functionalization ofsurfactant-wrapped chemically converted graphene sheets[J]. Journal of the AmericanChemical Society,2008,130(48):16201-16206
    [73] Stankovich S., Piner R., Chen X., et al. Stable aqueous dispersions of graphiticnanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium4-styrenesulfonate)[J]. Journal of Materials Chemistry,2006,16(2):155-158
    [74] Lu C. H., Yang H. H., Zhu C. L., et al. Agraphene platform for sensing biomolecules[J].Angewandte Chemie-International Edition,2009,48(26):4785-4787
    [75] Qi X., Pu K., Li H., et al. Amphiphilic Graphene Composites[J]. AngewandteChemie-International Edition,2010,49(49):9426-9429
    [76] Su Q., Pang S. P., Alijani V., et al. Composites of graphene with large aromaticmolecules[J]. Advanced Materials,2009,21(31):3191-3195
    [77] Tang Z., Lei Y., Guo B., et al. The use of rhodamine B-decorated graphene as areinforcement in polyvinyl alcohol composites[J]. Polymer,2012,53(2):673-680
    [78] Tang Z., Zeng C., Lei Y., et al. Fluorescent whitening agent stabilized graphene and itscomposites with chitosan[J]. Journal of Materials Chemistry,2011,21(43):17111-17118
    [79] Wang L., Liao R., Tang Z., et al. Sodium deoxycholate functionalized graphene and itscomposites with polyvinyl alcohol[J]. Journal of Physics D: Applied Physics,2011,44(44):445302
    [80] Liu X., Sun D., Wang L., et al. Sodium humate-functionalized graphene and its uniquereinforcement effects for rubber[J]. Industrial&Engineering Chemistry Research,2013,52(41):14592-14600
    [81] Zhang C., Huang S., Tjiu W. W., et al. Facile preparation of water-dispersible graphenesheets stabilized by acid-treated multi-walled carbon nanotubes and their poly (vinyl alcohol)composites[J]. Journal of Materials Chemistry,2012,22(6):2427-2434
    [82] Zhang C., Tjiu W. W., Fan W., et al. Aqueous stabilization of graphene sheets usingexfoliated montmorillonite nanoplatelets for multifunctional free-standing hybrid films viavacuum-assisted self-assembly[J]. Journal of Materials Chemistry,2011,21(44):18011-18017
    [83] Yang X. M., Tu Y. F., Li L. A., et al. Well-dispersed chitosan/graphene oxidenanocomposites[J]. ACS Applied Materials&Interfaces,2010,2(6):1707-1713
    [84] Liang J. J., Huang Y., Zhang L., et al. Molecular-level dispersion of graphene intopoly(vinyl alcohol) and effective reinforcement of their nanocomposites[J]. AdvancedFunctional Materials,2009,19(14):2297-2302
    [85] Nguyen Dang L., Pahimanolis N., Hippi U., et al. Graphene/cellulose nanocompositepaper with high electrical and mechanical performances[J]. Journal of Materials Chemistry,2011,21(36):13991-13998
    [86] Putz K. W., Compton O. C., Palmeri M. J., et al. High-nanofiller-content grapheneoxide-polymer nanocomposites via vacuum-assisted self-assembly[J]. Advanced FunctionalMaterials,2010,20(19):3322-3329
    [87] Wenjuan L., Xiu-Zhi T., Hao-Bin Z., et al. Simultaneous surface functionalization andreduction of graphene oxide with octadecylamine for electrically conductive polystyrenecomposites[J]. Carbon,2011,49(14):2724-2730
    [88] Wang X., Xing W., Zhang P., et al. Covalent functionalization of graphene withorganosilane and its use as a reinforcement in epoxy composites[J]. Composites Science andTechnology,2012,72(6):737-743
    [89] Lian H., Li S., Liu K., et al. Study on modified graphene/butyl rubber nanocomposites. I.Preparation and characterization[J]. Polymer Engineering&Science,2011,51(11):2254-2260
    [90] Liao R., Tang Z., Lin T., et al. Scalable and versatile graphene functionalized with themannich condensate[J]. ACS Applied Materials&Interfaces,2013,5(6):2174-2181
    [91] Barroso-Bujans F., Cerveny S., Verdejo R., et al. Permanent adsorption of organicsolvents in graphite oxide and its effect on the thermal exfoliation[J]. Carbon,2010,48(4):1079-1087
    [92] Hernández M., Bernal M. d. M., Verdejo R., et al. Overall performance of naturalrubber/graphene nanocomposites[J]. Composites Science and Technology,2012,73(1):40-46
    [93] Shen B., Zhai W., Chen C., et al. Melt blending in situ enhances the interaction betweenpolystyrene and graphene through π-π stacking[J]. ACS Applied Materials&Interfaces,2011,3(8):3103-3109
    [94] Araby S., Zhang L., Kuan H.-C., et al. A novel approach to electrically and thermallyconductive elastomers using graphene[J]. Polymer,2013,54(14):3663-3670
    [95] Araby S., Meng Q., Zhang L., et al. Electrically and thermally conductiveelastomer/graphene nanocomposites by solution mixing[J]. Polymer,2014,55(1):201-210
    [96] Song P., Cao Z., Cai Y., et al. Fabrication of exfoliated graphene-based polypropylenenanocomposites with enhanced mechanical and thermal properties[J]. Polymer,2011,52(18):4001-4010
    [97] Zhan Y., Wu J., Xia H., et al. Dispersion and exfoliation of graphene in rubber by anultrasonically-assisted latex mixing and in situ reduction process[J]. MacromolecularMaterials and Engineering,2011,296(7):590-602
    [98] Potts J. R., Shankar O., Murali S., et al. Latex and two-roll mill processing ofthermally-exfoliated graphite oxide/natural rubber nanocomposites[J]. Composites Scienceand Technology,2013,74:166-172
    [99] Fan W., Zhang C., Tjiu W. W., et al. Fabrication of electrically conductivegraphene/polystyrene composites via a combination of latex and layer-by-layer assemblyapproaches[J]. Journal of Materials Research,2013,28(04):611-619
    [100] Wang L. L., Zhang L. Q., Tian M. Mechanical and tribological properties ofacrylonitrile-butadiene rubber filled with graphite and carbon black[J]. Materials&Design,2012,39:450-457
    [101] Quan Y., Lu M., Tian M., et al. Functional and mechanical properties of acrylateelastomer/expanded graphite nanocomposites[J]. Journal of Applied Polymer Science,2013,130(1):680-686
    [102] Jang J. Y., Kim M. S., Jeong H. M., et al. Graphite oxide/poly(methyl methacrylate)nanocomposites prepared by a novel method utilizing macroazoinitiator[J]. CompositesScience and Technology,2009,69(2):186-191
    [103] Huang Y. J., Qin Y. W., Zhou Y., et al. Polypropylene/graphene oxide nanocompositesprepared by in situ Ziegler-Natta polymerization[J]. Chemistry of Materials,2010,22(13):4096-4102
    [104] Fang M., Wang K. G., Lu H. B., et al. Covalent polymer functionalization of graphenenanosheets and mechanical properties of composites[J]. Journal of Materials Chemistry,2009,19(38):7098-7105
    [105] Xu Z., Gao C. In situ polymerization approach to graphene-reinforced nylon-6composites[J]. Macromolecules,2010,43(16):6716-6723
    [106] Wang X., Hu Y. A., Song L., et al. In situ polymerization of graphene nanosheets andpolyurethane with enhanced mechanical and thermal properties[J]. Journal of MaterialsChemistry,2011,21(12):4222-4227
    [107] Hu H. T., Wang X. B., Wang J. C., et al. Preparation and properties of graphenenanosheets-polystyrene nanocomposites via in situ emulsion polymerization[J]. ChemicalPhysics Letters,2010,484(4-6):247-253
    [108] Liu K., Chen L., Chen Y., et al. Preparation of polyester/reduced graphene oxidecomposites via in situ melt polycondensation and simultaneous thermo-reduction of grapheneoxide[J]. Journal of Materials Chemistry,2011,21(24):8612-8617
    [109] Lee S. H., Dreyer D. R., An J., et al. Polymer brushes via controlled, surface-initiatedatom transfer radical polymerization (ATRP) from graphene oxide[J]. Macromolecular RapidCommunications,2009,31(3):281-288
    [110] Kang H., Zuo K., Wang Z., et al. Using a green method to develop grapheneoxide/elastomers nanocomposites with combination of high barrier and mechanicalperformance[J]. Composites Science and Technology,2014,92:1-8
    [111] Cai D., Jin J., Yusoh K., et al. High performance polyurethane/functionalized graphenenanocomposites with improved mechanical and thermal properties[J]. Composites Scienceand Technology,2012,72(6):702-707
    [112] Li F., Yan N., Zhan Y., et al. Probing the reinforcing mechanism of graphene andgraphene oxide in natural rubber[J]. Journal of Applied Polymer Science,2013,129(4):2342-2351
    [113] Ozbas B., Toki S., Hsiao B. S., et al. Strain‐induced crystallization and mechanicalproperties of functionalized graphene sheet‐filled natural rubber[J]. Journal of PolymerScience Part B: Polymer Physics,2012,50(10):718-723
    [114] Araby S., Zaman I., Meng Q., et al. Melt compounding with graphene to developfunctional, high-performance elastomers[J]. Nanotechnology,2013,24(16):165601
    [115] Zhang Y., Zhu Y., Lin G., et al. What factors control the mechanical properties of poly(dimethylsiloxane) reinforced with nanosheets of3-aminopropyltriethoxysilane modifiedgraphene oxide?[J]. Polymer,2013,54(14):3605-3611
    [116] Khan U., May P., O'Neill A., et al. Development of stiff, strong, yet tough compositesby the addition of solvent exfoliated graphene to polyurethane[J]. Carbon,2010,48(14):4035-4041
    [117] Wu J., Huang G., Li H., et al. Enhanced mechanical and gas barrier properties of rubbernanocomposites with surface functionalized graphene oxide at low content[J]. Polymer,2013,54(7):1930-1937
    [118] Wang Y., Chen L., Yu J., et al. Strong and conductive polybenzimidazole compositeswith high contents of graphene[J]. RSCAdvances,2013,3(30):12255-12266
    [119] Zhou T. N., Chen F., Tang C. Y., et al. The preparation of high performance andconductive poly (vinyl alcohol)/graphene nanocomposite via reducing graphite oxide withsodium hydrosulfite[J]. Composites Science and Technology,2011,71(9):1266-1270
    [120] Prasad K. E., Das B., Maitra U., et al. Extraordinary synergy in the mechanicalproperties of polymer matrix composites reinforced with2nanocarbons[J]. Proceedings of theNational Academy of Sciences of the United States ofAmerica,2009,106(32):13186-13189
    [121] Yu A. P., Ramesh P., Sun X. B., et al. Enhanced thermal conductivity in a hybridgraphite nanoplatelet-carbon nanotube filler for epoxy composites[J]. Advanced Materials,2008,20(24):4740-4744
    [122] Du J., Cheng H. M. The fabrication, properties, and uses of graphene/polymercomposites[J]. Macromolecular Chemistry and Physics,2012,213(10-11):1060-1077
    [123] Ozbas B., O'Neill C. D., Register R. A., et al. Multifunctional elastomernanocomposites with functionalized graphene single sheets[J]. Journal of Polymer SciencePart B-Polymer Physics,2012,50(13):910-916
    [124] Choi J. T., Ryu K. S., Lee H., et al. Functionalized graphene sheet/polyurethanenanocomposites: Effect of particle size on the physical properties[J].2010InternationalForum on Strategic Technology,2010;334-336.
    [125] Potts J. R., Shankar O., Du L., et al. Processing-morphology-property relationships andcomposite theory analysis of reduced graphene oxide/natural rubber nanocomposites[J].Macromolecules,2012,45(15):6045-6055
    [126] Zhan Y., Lavorgna M., Buonocore G., et al. Enhancing electrical conductivity of rubbercomposites by constructing interconnected network of self-assembled graphene with latexmixing[J]. Journal of Materials Chemistry,2012,22(21):10464-10468
    [127] Ma P. C., Liu M. Y., Zhang H., et al. Enhanced electrical conductivity ofnanocomposites containing hybrid fillers of carbon nanotubes and carbon black[J]. ACSApplied Materials&Interfaces,2009,1(5):1090-1096
    [128] Liu Y.-T., Dang M., Xie X.-M., et al. Synergistic effect of Cu(2+)-coordinated carbonnanotube/graphene network on the electrical and mechanical properties of polymernanocomposites[J]. Journal of Materials Chemistry,2011,21(46):18723-18729
    [129] Chen Z., Ren W., Gao L., et al. Three-dimensional flexible and conductiveinterconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials,2011,10(6):424-428
    [130] Kim H., Abdala A. A., Macosko C. W. Graphene/polymer nanocomposites[J].Macromolecules,2010,43(16):6515-6530
    [131] Shenogin S., Bodapati A., Xue L., et al. Effect of chemical functionalization on thermaltransport of carbon nanotube composites[J]. Applied Physics Letters,2004,85(12):2229-2231
    [132] Yu A., Ramesh P., Itkis M. E., et al. Graphite nanoplatelet-epoxy composite thermalinterface materials[J]. The Journal of Physical Chemistry C,2007,111(21):7565-7569
    [133] Shen J., Li T., Long Y., et al. Comparison of thermal properties of silicone reinforced bydifferent nanocarbon materials[J]. Soft Materials,2013,11(3):326-333
    [134] Yang H., Tian M., Jia Q. X., et al. Improved mechanical and functional properties ofelastomer/graphite nanocomposites prepared by latex compounding[J]. Acta Materialia,2007,55(18):6372-6382
    [135] Zhamu A., Jang B. Z. Pristine nano graphene-modified tires[P], USA: US12/583,3752011-08-20.
    [136] Mu Q., Feng S. Thermal conductivity of graphite/silicone rubber prepared by solutionintercalation[J]. Thermochimica Acta,2007,462(1):70-75
    [137] Dao T. D., Lee H.-i., Jeong H. M. Alumina-coated graphene nanosheet and itscomposite of acrylic rubber[J]. Journal of Colloid and Interface Science,2014,416:38-43
    [138] Tang Z., Wu X., Guo B., et al. Preparation of butadiene-styrene-vinyl pyridinerubber–graphene oxide hybrids through co-coagulation process and in situ interfacetailoring[J]. J Mater Chem,2012,22(15):7492-7501
    [139] Kim H., Miura Y., Macosko C. W. Graphene/polyurethane nanocomposites forimproved gas barrier and electrical conductivity[J]. Chemistry of Materials,2010,22(11):3441-3450
    [140] Mao Y., Wen S., Chen Y., et al. High performance graphene oxide based rubbercomposites[J]. Scientific reports,2013,3:2508
    [141] Malas A., Pal P., Das C. K. Effect of expanded graphite and modified graphite flakes onthe physical and thermo-mechanical properties of styrene butadiene rubber/polybutadienerubber (SBR/BR) blends[J]. Materials&Design,2014,55:664-673
    [142] Chen B., Ma N., Bai X., et al. Effects of graphene oxide on surface energy, mechanical,damping and thermal properties of ethylene-propylene-diene rubber/petroleum resin blends[J].RCS Advances,2012,2(11):4683-4689
    [143] Valentini L., Bolognini A., Alvino A., et al. Pyroshock testing on graphene based EPDMnanocomposites[J]. Composites Part B: Engineering,2014,60:479-484
    [144] Yan N., Xia H., Zhan Y., et al. New insights into fatigue crack growth in graphene-fillednatural rubber composites by microfocus hard-X-Ray beamline radiation[J]. MacromolecularMaterials and Engineering,2013,298(1):38-44
    [145] Li Y., Wang Q., Wang T., et al. Preparation and tribological properties of grapheneoxide/nitrile rubber nanocomposites[J]. Journal of materials science,2012,47(2):730-738
    [146] Singh V. K., Shukla A., Patra M. K., et al. Microwave absorbing properties of athermally reduced graphene oxide/nitrile butadiene rubber composite[J]. Carbon,2012,50(6):2202-2208
    [147] Wu H., Zhao W., Hu H., et al. One-step in situ ball milling synthesis ofpolymer-functionalized graphene nanocomposites[J]. Journal of Materials Chemistry,2011,21(24):8626-8632
    [148] Tang Z., Zeng C., Lei Y., et al. Fluorescent whitening agent stabilized graphene and itscomposites with chitosan[J]. Journal of Materials Chemistry,2011,21(43):17111-17118
    [149] Si Y., Samulski E. T. Synthesis of water soluble graphene[J]. Nano Letters,2008,8(6):1679-1682
    [150] Huating H., Xianbao W., Jingchao W., et al. Microwave-assisted covalent modificationof graphene nanosheets with chitosan and its electrorheological characteristics[J]. AppliedSurface Science,2011,257(7):2637-2642
    [151] Gao Y., Yip H. L., Chen K. S., et al. Surface doping of conjugated polymers bygraphene oxide and its application for organic electronic devices[J]. Advanced Materials,2011,23(16):1903-1908
    [152] Wang S., Yu D., Dai L. Polyelectrolyte functionalized carbon nanotubes as efficientmetal-free electrocatalysts for oxygen reduction[J]. Jourlan of The American ChemicalSociety,2011,133(14):5182-5285
    [153] Goh S., Lee S., Dai J., et al. X-ray photoelectron spectroscopic studies of ionicinteractions between sulfonated polystyrene and poly (styrene-co-4-vinylpyridine)[J].Polymer,1996,37(23):5305-5308
    [154] Compton O., Dikin D., Putz K., et al. Electrically conductive alkylated graphene papervia chemical reduction of amine-functionalized graphene oxide Paper[J]. Advanced Materials,2010,22(8):892-896
    [155] Lei Y., Tang Z., Zhu L., et al. Functional thiol ionic liquids as novel interfacialmodifiers in SBR/HNTs composites[J]. Polymer,2011,52(5):1337-1344
    [156] Salim N. V., Hameed N., Guo Q. Competitive hydrogen bonding and self-assembly inpoly(2-vinyl pyridine)-block-poly(methyl methacrylate)/poly(hydroxyether of bisphenol A)Blends[J]. Journal of Polymer Science Part B-Polymer Physics,2009,47(19):1894-1905
    [157] Cesteros L. C., Meaurio E., Katime I. Miscibility and specific interactions in blends ofpoly (hydroxy methacrylates) with poly (vinylpyridines)[J]. Macromolecules,1993,26(9):2323-2330
    [158] Zhou X., Goh S., Lee S., et al. Interpolymer complexation between poly(vinylphosphonic acid) and poly (vinylpyridine) s[J]. Polymer,1997,38(21):5333-5338
    [159] Labudzinska A., Gorczynska K. The UV difference spectra as a characteristic feature ofphenols and aromatic amines[J]. Journal of molecular structure,1995,349:469-472
    [160] Yun H., Kwei T., Okamoto Y. Effects of acidity and methylation on the UV andfluorescence spectra of poly (pyridine) s in aqueous acidic solutions and in the solid state[J].Macromolecules,1997,30(16):4633-4638
    [161] Raza M. A., Westwood A., Brown A., et al. Characterisation of graphite nanoplateletsand the physical properties of graphite nanoplatelet/silicone composites for thermal interfaceapplications[J]. Carbon,2011,49(13):4269-4279
    [162] Qian Y., Lindsay C. I., Macosko C. W., et al. Synthesis and properties ofvermiculite-reinforced polyurethane nanocomposites[J]. ACS Applied Materials&Interfaces,2011,3(9):3709-3717
    [163] Vo L. T., Anastasiadis S. H., Giannelis E. P. Dielectric study of poly(styrene-co-butadiene) composites with carbon black, silica, and nanoclay[J].Macromolecules,2011,44(15):6162-6171
    [164] Bokobza L., Erman B. A theoretical and experimental study of filler effect onstress-deformation-segmental orientation relations for poly (dimethylsiloxane) networks[J].Macromolecules,2000,33(23):8858-8864
    [165] Liu J., Wu S., Zhang L., et al. Molecular dynamics simulation for insight intomicroscopic mechanism of polymer reinforcement[J]. Physical Chemistry Chemical Physics,2010,13(2):518-529
    [166] Arroyo M., Lopez-Manchado M., Herrero B. Organo-montmorillonite as substitute ofcarbon black in natural rubber compounds[J]. Polymer,2003,44(8):2447-2453
    [167] Ganter M., Gronski W., Reichert P., et al. Rubber nanocomposites: morphology andmechanical properties of BR and SBR vulcanizates reinforced by organophilic layeredsilicates[J]. Rubber Chemistry and Technology,2001,74(2):221-235
    [168] Shanmugharaj A., Bae J., Lee K. Y., et al. Physical and chemical characteristics ofmultiwalled carbon nanotubes functionalized with aminosilane and its influence on theproperties of natural rubber composites[J]. Composites Science and Technology,2007,67(9):1813-1822
    [169] Bokobza L. The reinforcement of elastomeric networks by fillers[J]. MacromolecularMaterials and Engineering,2004,289(7):607-621
    [170] Joly S., Garnaud G., Ollitrault R., et al. Organically modified layered silicates asreinforcing fillers for natural rubber[J]. Chemistry of Materials,2002,14(10):4202-4208
    [171] LeBaron P. C., Pinnavaia T. J. Clay nanolayer reinforcement of a silicone elastomer[J].Chemistry of Materials,2001,13(10):3760-3765
    [172] Yang Q., Pan X. J., Huang F., et al. Fabrication of high-concentration and stableaqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin andcellulose derivatives[J]. Journal of Physical Chemistry C,2010,114(9):3811-3816
    [173] Jeong H., Jin M., An K., et al. Structural stability and variable dielectric constant inpoly sodium4-styrensulfonate intercalated graphite oxide[J]. The Journal of PhysicalChemistry C,2009,113(30):13060-13064
    [174] Liu Z., Xu Y., Zhang X., et al. Porphyrin and fullerene covalently functionalizedgraphene hybrid materials with large nonlinear optical properties[J]. The Journal of PhysicalChemistry B,2009,113(29):9681-9686
    [175] Ghosh A., Rao K. V., George S. J., et al. Noncovalent functionalization,exfoliation, andsolubilization of graphene in water by employing a fluorescent coronene carboxylate[J].Chemistry-a European Journal,2010,16(9):2700-2704
    [176] Yang N. L., Zhai J., Wang D., et al. Two-dimensional graphene bridges enhancedphotoinduced charge transport in dye-sensitized solar Cells[J]. ACS Nano,2010,4(2):887-894
    [177] Geng J., Jung H. Porphyrin functionalizedgraphene sheets in aqueous suspensions: fromthepreparation of graphene sheets to highly conductive graphene films[J]. Journal of PhysicalChemistry C,2010,114(18):8227-8234
    [178] Varghese N., Ghosh A., Voggu R., et al. Selectivity in the interaction of electron donorand acceptor molecules with graphene and single-walled carbon nanotubes[J]. Journal ofPhysical Chemistry C,2009,113(39):16855-16859
    [179] Zhao J., Lu J., Han J., et al. Noncovalent functionalization of carbon nanotubes byaromatic organic molecules[J]. Applied Physics Letters,2003,82(21):3746-3747
    [180] Wang Q., Li L., Chen N. Effect of poly(ethylene oxide) on the structure and propertiesof poly(vinyl alcohol)[J]. Journal of Polymer Science Part B-Polymer Physics,2010,48(18):1946-1954
    [181] Salavagione H. J., Martinez G., Gomez M. A. Synthesis of poly(vinyl alcohol)/reducedgraphite oxide nanocomposites with improved thermal and electrical properties[J]. Journal ofMaterials Chemistry,2009,19(28):5027-5032
    [182] Yang X. M., Li L. A., Shang S. M., et al. Synthesis and characterization of layer alignedpoly(vinyl alcohol)/graphene nanocomposites[J]. Polymer,2010,51(15):3431-3435
    [183] Zhao X., Zhang Q. H., Chen D. J., et al. Enhanced mechanical properties ofgraphene-based poly(vinyl alcohol) composites[J]. Macromolecules,2010,43(5):2357-2363
    [184] Wang X., Bai H., Yao Z., et al. Electrically conductive and mechanically strongbiomimetic chitosan/reduced graphene oxide composite films[J]. Journal of MaterialsChemistry,2010,20(41):9032-9036
    [185] Gorga R. E., Cohen R. E. Toughness enhancements in poly (methyl methacrylate) byaddition of oriented multiwall carbon nanotubes[J]. Journal of Polymer Science Part B:Polymer Physics,2004,42(14):2690-2702
    [186] Palmeri M. J., Putz K. W., Brinson L. C. Sacrificial bonds in stacked-cup carbonnanofibers: biomimetic toughening mechanisms for composite systems[J]. ACSNano,2010,4(7):4256-4264
    [187] Gomez-Navarro C., Burghard M., Kern K. Elastic properties of chemically derivedsingle graphene sheets[J]. Nano Letters,2008,8(7):2045-2049
    [188] Feng R., Guan G., Zhou W., et al. In situ synthesis of poly (ethyleneterephthalate)/graphene composites using a catalyst supported on graphite oxide[J]. Journal ofMaterials Chemistry,2011,21(11):3931-3939
    [189] Vadukumpully S., Paul J., Mahanta N., et al. Flexible conductive graphene/poly(vinylchloride) composite thin films with high mechanical strength and thermal stability[J]. Carbon,2011,49(1):198-205
    [190] Rodriguez R., Herrera R., Archer L. A., et al. Nanoscale ionic materials[J]. AdvancedMaterials,2008,20(22):4353-4358
    [191] Jespersen M. L., Mirau P. A., Meerwall E. v., et al. Canopy dynamics in nanoscale ionicmaterials[J]. ACS Nano,2010,4(7):3735-3742
    [192] Rodriguez R., Herrera R., Bourlinos A. B., et al. The synthesis and properties ofnanoscale ionic materials[J]. Applied Organometallic Chemistry,2010,24(8):581-589
    [193] Bourlinos A. B., Stassinopoulos A., Anglos D., et al. Functionalized ZnO nanoparticleswith liquidlike behavior and their photoluminescence properties[J]. Small,2006,2(4):513-516
    [194] Zheng Y., Zhang J., Lan L., et al. Preparation of solvent-free gold nanofluids with facileself-assembly technique[J]. ChemPhysChem,2010,11(1):61-64
    [195] Zhang J. X., Zheng Y. P., Lan L., et al. Direct synthesis of solvent-free multiwall carbonnanotubes/silica nonionic nanofluid hybrid material[J]. ACS Nano,2009,3(8):2185-2190
    [196] Sun L., Fang J., Reed J. C., et al. Lead-salt quantum-dot ionic liquids[J]. Small,2010,6(5):638-641
    [197] Bourlinos A. B., Chowdhury S. R., Herrera R., et al. Functionalized nanostructures withliquid-like behavior: expanding the gallery of available nanostructures[J]. AdvancedFunctional Materials,2005,15(8):1285-1290
    [198] Bourlinos A. B., Georgakilas V., Tzitzios V., et al. Functionalized carbon nanotubes:synthesis of meltable and amphiphilic derivatives[J]. Small,2006,2(10):1188-1191
    [199] Lei Y., Xiong C., Guo H., et al. Controlled viscoelastic carbon nanotube fluids[J].Journal of the American Chemical Society,2008,130(11):3256-3257
    [200] Fernandes N., Dallas P., Rodriguez R., et al. Fullerol ionic fluids[J]. Nanoscale,2010,2(9):1653-1656
    [201] Michinobu T., Nakanishi T., Hill J. P., et al. Room temperature liquid fullerenes: anuncommon morphology of C60derivatives[J]. Journal of the American Chemical Society,2006,128(32):10384-10385
    [202] Zheng Y., Zhang J., Lan L., et al. Preparation of solvent-free gold nanofluids with facileself-assembly technique[J]. ChemPhysChem,2010,11(1):61-64
    [203] Voggu R., Das B., Rout C. S., et al. Effects of charge transfer interaction of graphenewith electron donor and acceptor molecules examined using Raman spectroscopy and cognatetechniques[J]. Journal of Physics-Condensed Matter,2008,20(47):472204
    [204] Zhou J., Huang J., Tian D. M., et al. Cyclodextrin modified quantum dots with tunableliquid-like behaviour[J]. Chemical Communications,2012,48(30):3596-3598
    [205] Zhang S., Xiong P., Yang X., et al. Novel PEG functionalized graphene nanosheets:enhancement of dispersibility and thermal stability[J]. Nanoscale,2011,3(5):2169-2174
    [206] Jespersen M. L., Mirau P. A., von Meerwall E., et al. Canopy dynamics in nanoscaleionic materials[J]. ACS Nano,2010,4(7):3735-3742
    [207] Bourlinos A. B., Chowdhury S. R., Jiang D. D., et al. Layered organosilicatenanoparticles with liquidlike behavior[J]. Small,2005,1(1):80-82
    [208] Parikh A., Schivley M., Koo E., et al. n-Alkylsiloxanes: from single monolayers tolayered crystals. the formation of crystalline polymers from the hydrolysis ofn-octadecyltrichlorosilane[J]. Journal of the American Chemical Society,1997,119(13):3135-3143
    [209] Meyer J. C., Geim A., Katsnelson M., et al. The structure of suspended graphenesheets[J]. Nature,2007,446(7131):60-63
    [210] Liu Z., Robinson J. T., Sun X. M., et al. PEGylated nanographene oxide for delivery ofwater-insoluble cancer drugs[J]. Journal of the American Chemical Society,2008,130(33):10876-10877
    [211] Kim K. K., Yoon S. M., Choi J. Y., et al. Design of dispersants for the dispersion ofcarbon nanotubes in an organic solvent[J]. Advanced Functional Materials,2007,17(11):1775-1783
    [212] Hsiao M., Liao S., Yen M., et al. Preparation of covalently functionalized grapheneusing residual oxygen-containing functional groups[J]. ACS Applied Materials&Interfaces,2010,2(11):3092-3099
    [213] Zhang B., Zhang Y., Peng C., et al. Preparation of polymer decorated graphene oxide bygamma-ray induced graft polymerization[J]. Nanoscale,2012,4(5):1742-1748
    [214] Zhang X., Coleman A. C., Katsonis N., et al. Dispersion of graphene in ethanol using asimple solvent exchange method[J]. Chemical Communications,2010,46(40):7539-7541
    [215] Shih C. J., Lin S., Strano M. S., et al. Understanding the stabilization ofliquid-phase-exfoliated graphene in polar solvents: molecular dynamics simulations andkinetic theory of colloid aggregation[J]. Journal of the American Chemical Society,2010,132(41):14638-14648
    [216] Zheng X. L., Xu Q., He L. H., et al. Modification of graphene oxide with amphiphilicdouble-crystalline block copolymer polyethylene-b-poly(ethylene oxide) with assistance ofsupercritical CO2and its further functionalization[J]. Journal of Physical Chemistry B,2011,115(19):5815-5826
    [217] Shin H., Kim K., Benayad A., et al. Efficient reduction of graphite oxide by sodiumborohydride and its effect on electrical conductance[J]. Advanced Functional Materials,2009,19(12):1987-1992
    [218] Zhang J. L., Yang H. J., Shen G. X., et al. Reduction of graphene oxide via L-ascorbicacid[J]. Chemical Communications,2010,46(7):1112-1114
    [219] Guo B. C., Chen Y. W., Lei Y. D., et al. Biobased poly(propylene sebacate) as shapememory polymer with tunable switching temperature for potential biomedical applications[J].Biomacromolecules,2011,12(4):1312-1321
    [220] Dutta P., Biswas S., Ghosh M., et al. The dc and ac conductivity ofpolyaniline-polyvinyl alcohol blends[J]. Synthetic Metals,2001,122(2):455-461
    [221] Stauffer D., Aharony A. Introduction to percolation theory[M]. London: Taylor andFrancis,1991:181.
    [222] Gelves G. A., Al-Saleh M. H., Sundararaj U. Highly electrically conductive and highperformance EMI shielding nanowire/polymer nanocomposites by miscible mixing andprecipitation[J]. Journal of Materials Chemistry,2010,21(3):829-836
    [223] Liang J. J., Wang Y., Huang Y., et al. Electromagnetic interference shielding ofgraphene/epoxy composites[J]. Carbon,2009,47(3):922-925
    [224] Yoonessi M., Gaier J. R. Highly conductive multifunctional graphene polycarbonatenanocomposites[J]. ACS Nano,2010,4(12):7211-7220
    [225] Wang Z., Lu Y., Liu J., et al. Preparation of nano-zinc oxide/EPDM composites withboth good thermal conductivity and mechanical properties[J]. Journal of Applied PolymerScience,2011,119(2):1144-1155
    [226] Sim L. C., Ramanan S., Ismail H., et al. Thermal characterization of Al2O3and ZnOreinforced silicone rubber as thermal pads for heat dissipation purposes[J]. ThermochimicaActa,2005,430(1-2):155-165
    [227] Verdejo R., Barroso-Bujans F., Rodriguez-Perez M. A., et al. Functionalized graphenesheet filled silicone foam nanocomposites[J]. Journal of Materials Chemistry,2008,18(19):2221-2226
    [228] Ganguli S., Roy A. K., Anderson D. P. Improved thermal conductivity for chemicallyfunctionalized exfoliated graphite/epoxy composites[J]. Carbon,2008,46(5):806-817
    [229] Zhong H., Lukes J. R. Interfacial thermal resistance between carbon nanotubes:Molecular dynamics simulations and analytical thermal modeling[J]. Physical Review B,2006,74(12):125403
    [230] Al-Saleh M. H., Sundararaj U. A review of vapor grown carbon nanofiber/polymerconductive composites[J]. Carbon,2009,47(1):2-22
    [231] Zhang C., Yi X. S., Yui H., et al. Selective location and double percolation of shortcarbon fiber filled polymer blends: high-density polyethylene/isotactic polypropylene[J].Materials Letters,1998,36(1):186-190
    [232] Georgakilas V., Otyepka M., Bourlinos A. B., et al. Functionalization of graphene:covalent and non-covalent approaches, derivatives and applications[J]. Chemical Reviews,2012,112(11):6156-6214
    [233] Liu C., Qin H., Mather P. T. Review of progress in shape-memory polymers[J]. Journalof Materials Chemistry,2007,17(16):1543-1558
    [234] Meng Q., Hu J. A review of shape memory polymer composites and blends[J].Composites Part A: Applied Science and Manufacturing,2009,40(11):1661-1672
    [235] Villar-Rodil S., Paredes J. I., Martinez-Alonso A., et al. Preparation of graphenedispersions and graphene-polymer composites in organic media[J]. Journal of MaterialsChemistry,2009,19(22):3591-3593
    [236] Haubner K., Murawski J., Olk P., et al. The route to functional graphene oxide[J].ChemPhysChem,2010,11(10):2131-2139
    [237] Kudin K. N., Ozbas B., Schniepp H. C., et al. Raman spectra of graphite oxide andfunctionalized graphene sheets[J]. Nano Letters,2008,8(1):36-41
    [238] Zhang C., Ren L., Wang X., et al. Graphene oxide-assisted dispersion of pristinemultiwalled carbon nanotubes in aqueous media[J]. Journal of Physical Chemistry C,2010,114(26):11435-11440
    [239] Mandal A., Nandi A. K. Noncovalent functionalization of multiwalled carbon nanotubeby a polythiophene-based compatibilizer: reinforcement and conductivity improvement inpoly (vinylidene fluoride) films[J]. The Journal of Physical Chemistry C,2012,116(16):9360-9371
    [240] Baskaran D., Mays J. W., Bratcher M. S. Noncovalent and nonspecific molecularinteractions of polymers with multiwalled carbon nanotubes[J]. Chemistry of Materials,2005,17(13):3389-3397
    [241] Tang Z., Sun D., Yang D., et al. Vapor grown carbon nanofiber reinforced bio-basedpolyester for electroactive shape memory performance[J]. Composites Science andTechnology,2013,75(11):15-21
    [242] Tibbetts G. G., Lake M. L., Strong K. L., et al. A review of the fabrication andproperties of vapor-grown carbon nanofiber/polymer composites[J]. Composites Science andTechnology,2007,67(7):1709-1718
    [243] Bauhofer W., Kovacs J. Z. A review and analysis of electrical percolation in carbonnanotube polymer composites[J]. Composites Science and Technology,2009,69(10):1486-1498
    [244] Obukhov S. First order rigidity transition in random rod networks[J]. Physical ReviewLetters,1995,74(22):4472-4475
    [245] Shah D., Maiti P., Jiang D. D., et al. Effect of nanoparticle mobility on toughness ofpolymer nanocomposites[J]. Advanced Materials,2005,17(5):525-528
    [246] Di Lorenzo M., Errico M., Avella M. Thermal and morphological characterization ofpoly (ethylene terephthalate)/calcium carbonate nanocomposites[J]. Journal of MaterialsScience,2002,37(11):2351-2358
    [247] Jin J., Song M., Pan F. A DSC study of effect of carbon nanotubes on crystallisationbehaviour of poly (ethylene oxide)[J]. Thermochimica Acta,2007,456(1):25-31
    [248] Yah W. O., Xu H., Soejima H., et al. Biomimetic Dopamine derivative for selectivepolymer modification of halloysite nanotube lumen[J]. Journal of the American ChemicalSociety,2012,134(29):12134-12137
    [249] Du M. L., Guo B. C., Lei Y. D., et al. Carboxylated butadiene-styrene rubber/halloysitenanotube nanocomposites: interfacial interaction and performance[J]. Polymer,2008,49(22):4871-4876
    [250] Yah W. O., Takahara A., Lvov Y. M. Selective modification of halloysite lumen withoctadecyl phosphonic acid: new inorganic tubular micelle[J]. Journal of the AmericanChemical Society,2012,134(3):1853-1859
    [251] Faure E., Falentin-Daudré C., Jér me C., et al. Catechols as versatile platforms inpolymer chemistry[J]. Progress in Polymer Science,2013,38(1):236-270
    [252] Chen W., Wu S., Lei Y., et al. Interfacial structure and performance of rubber/boehmitenanocomposites modified by methacrylic acid[J]. Polymer,2011,52(19):4387-4395
    [253] McBride M. B., Wesselink L. G. Chemisorption of catechol on gibbsite, boehmite, andnoncrystalline alumina surfaces[J]. Environmental Science&Technology,1988,22(6):703-708
    [254] Das B., Voggu R., Rout C. S., et al. Changes in the electronic structure and properties ofgraphene induced by molecular charge-transfer[J]. Chemical Communications,2008(41):5155-5157
    [255] Joussein E., Petit S., Churchman J., et al. Halloysite clay minerals-a review[J]. ClayMinerals,2005,40(4):383-426
    [256] Liu Y. T., Xie X. M., Ye X. Y. High-concentration organic solutions of poly(styrene-co-butadiene-co-styrene)-modified graphene sheets exfoliated from graphite[J].Carbon,2011,49(11):3529-3537
    [257] Wang M.-J. Effect of polymer-filler and filler-filler interactions on dynamic propertiesof filled vulcanizates[J]. Rubber Chemistry and Technology,1998,71(3):520-589
    [258] Jia Q. X., Wu Y. P., Wang Y. Q., et al. Organic interfacial tailoring of styrene butadienerubber–clay nanocomposites prepared by latex compounding method[J]. Journal of AppliedPolymer Science,2007,103(3):1826-1833
    [259] Farahani T. D., Bakhshandeh G., Abtahi M. Mechanical and viscoelastic properties ofnatural rubber/reclaimed rubber blends[J]. Polymer Bulletin,2006,56(4-5):495-505
    [260] Tian M., Cheng L., Zhang L. Interface and mechanical properties of peroxide curedsilicate nanofiber/rubber composites[J]. Journal of Applied Polymer Science,2008,110(1):262-269
    [261] Fan J., Shi Z., Tian M., et al. Unzipped multiwalled carbon nanotube oxide/multiwalledcarbon nanotube hybrids for polymer reinforcement[J]. ACS Applied Materials&Interfaces,2012,4(11):5956-5965
    [262] Wang Z., Liu J., Wu S., et al. Novel percolation phenomena and mechanism ofstrengthening elastomers by nanofillers[J]. Physical Chemistry Chemical Physics,2010,12(12):3014-3030