温室菜田施氮损失的双氰胺控制效应规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究针对温室蔬菜生产中由过量施用氮肥以及不合理的灌水措施导致的氮肥利用率低、氮素损失(NO_3~--N、N_2O气体排放和NH_3挥发)严重的资源浪费和环境负效应问题,重点研究硝化抑制剂双氰胺(DCD)在温室蔬菜生产条件下的硝化抑制效果及其影响机制,筛选出适用于温室番茄生产的水氮管理和DCD优化用量方案,明晰温室芹菜生产DCD配施的优化肥料类型,为我国温室菜田施氮损失的生化调控提供了科学的理论依据和技术支持。主要研究结果与结论如下:
     1. DCD随温度的升高其在土壤中存留时间缩短,DCD的硝化抑制效应随用量的增加而增强。当温度升高可通过适当增加DCD用量来提高硝化抑制效果。在温室蔬菜生产条件下,使用DCD的适宜温度为20℃~30℃,硝化抑制作用可持续29天,适宜用量为施纯氮量的10%。
     2.在优化水氮处理条件下,配施DCD能显著抑制土壤NH_4~+-N含量的降低,提高氮素利用率;同时,降低土壤硝态氮含量,从而减少氮淋失。与传统水氮处理相比,优化水氮配施DCD可使温室番茄施用氮素的利用率由13.84%提高到22.45%;可使表层(0~10 cm)土壤的NO_3~--N淋失量降低49.34%~55.54%,0~30cm土层NO_3~--N含量降低35.21%~64.88%;平均减少30~120 cm土层NO_3~--N淋失量为61.08%~72.00%。
     3.在不同水氮处理条件下,土壤N_2O排放和NH_3挥发的高峰期,分别出现在追肥灌水后的第3天和第3~5天;与传统水氮处理相比,土壤N_2O排放量降低84.07%~96.19%,NH_3挥发量降低20.61%~41.51%。
     4.优化水氮管理配施DCD的调控措施能够显著降低番茄体内硝酸盐含量,改善番茄果实品质。可使番茄果实硝酸盐含量降低51.94%~62.82%。同时,显著提高番茄果实Vc、可溶性糖和可溶性蛋白质的含量,但对游离氨基酸和有机酸的影响则不显著。
     5.不同肥料(尿素、腐熟牛粪和1:1尿素与腐熟牛粪混合)分别与DCD配施后均显著影响土壤氮素转化,不同程度上促进芹菜氮素吸收及营养品质的改善。与单施肥料相比,肥料与DCD配施后使土壤中NH_4~+-N含量增加17.70%~92.97%,NO_3~--N含量降低12.28%~81.90%;可使芹菜茎、叶吸氮量分别增加29.24%~80.20%、30.89%~66.33%,硝酸盐含量分别降低17.18%~37.05%、7.63%~25.21%,同时显著提高芹菜中可溶性糖、蛋白质、游离氨基酸和Vc含量。
     6.适用于温室番茄生产的水氮管理和DCD用量方案为,在优化水氮管理条件下,168 kg/hm~2的氮素追施量配施氮素用量10%的DCD,可显著提高氮素利用率并降低氮损失;适用于温室芹菜生产与DCD配施的优化肥料为尿素。
Aiming at the serious waste of resources and environmental negative effect problems of low utilization efficiency of nitrogen and nitrogen losses via NO_3~--N leaching, N_2O emission and NH_3 volatilation in the greenhouse vegetable production systems, resulting from the excessive application of nitrogen fertilizers and unreasonable irrigation, the objectives of this study were to explore the inhibition efficiency of DCD and its affected mechanism in a greenhouse vegetable soil, and then select the optimum and effective nitrogen and irrigation management method and application rate of DCD for the greenhouse tomato production, and fertilizer type for greenhouse celery production, which would provided theoretic basis and technical instructions for the DCD regulation of fertilizer nitrogen losses in greenhouse vegetable production systems. Main results of this study were summarized as follows:
     1. The remaining time of DCD in the soil decreased with the increasing temperature and its inhibition effect was strongly enhanced with increasing application rate of DCD. Thus the effective inhibition effects could also be achieved by increasing the application rate of DCD under high temperature. Therefore, under the greenhouse vegetable production systems, DCD applied at 10% of the fertilizer nitrogen rate under 20℃~30℃, would remain effective in the soil for 29 days, and would thus be effective in inhibiting nitrification.
     2. The combination of recommended nitrogen and irrigation with the addition of DCD can significantly inhibit the decrease of the NH_4~+-N contents in the soil, and reduce nitrogen loss as NO_3~--N. Comparing with the traditional management of nitrogen and irrigation, the combination of recommended nitrogen and irrigation with the addition of DCD can improve the utilization efficiency of nitrogen from 13.84% to 22.45%. In addition, the average NO_3~--N contents in the top soil depth (0~10 cm) were decreased by 49.34%~55.54%, the NO_3~--N contents in the 0~30 cm and 30~120 cm soil profiles were also reduced by 35.21%~64.88% and 61.08%~72.00%, respectively.
     3. Under different management of nitrogen and irrigation, the flux peak of N_2O emission and NH_3 volatilization generally appeared 3 days and 3~5 days after the application of nitrogen and irrigation, respectively. Comparing with the traditional management of nitrogen and irrigation, the combination of recommended nitrogen and irrigation with the addition of DCD can reduce N_2O emission factors by 84.07%~96.19%, and decrease the total NH_3 volatilization by 20.61%~41.51%.
     4. The combination of recommended nitrogen and irrigation with the addition of DCD can significantly decrease the NO_3~--N contents in tomato fruit, and improve the quality of tomato fruit. The NO_3~--N contents in tomato fruit were decreased by 51.94%~62.82%, and the Vc, soluble sugar and soluble protein contents were also improved, but the free amino acid and organic acid contents of tomato were not significantly affected by the combination of recommended nitrogen and irrigation with the addition of DCD.
     5. The three different types of fertilizers (Urea, Dung, and 1:1Urea + Dung) coupled with DCD can significantly affect the conversion of nitrogen, and consequently increase the nitrogen uptakes of celery and improve the celery quality. Comparing with the fertilizers applied alone, three different fertilizers coupled with DCD increased the NH_4~+-N contents in the soil by 17.70%~92.97%, decreased the NO_3~--N contents in the soil by 12.28%~81.90%. The nitrogen uptakes of the shoot and leaf of celery were increased by 29.24%~80.20% and 30.89%~66.33%, respectively. The NO_3~--N contents in the shoot and leaf of celery were decreased by 17.18%~37.05% and 7.63%~25.21%, respectively. In addition, the contents of soluble sugar, soluble protein, free amino acid and Vc were also improved by the addition of DCD.
     6. The combination of the nitrogen rate of 168 kg/hm~2 and optimum management irrigation with DCD applied at 10% of nitrogen rate offers the optimum combination of reduced nitrogen losses and increased utilization efficiency of nitrogen for the greenhouse tomato production. Urea coupled with DCD was the optimum combination in reducing N losses for the greenhouse celery production.
引文
[1]张英,徐晓红,田子玉.我国设施农业的现状、问题及发展对策[J].现代农业科技,2008,12:83-86.
    [2]李亚敏,商庆芳,田丰存,等.我国设施农业的现状及发展趋势[J].2007, 11(4):120-121,124.
    [3]秦巧燕,贾陈忠,曲东,等.我国设施农业发展现状及施肥特点[J].湖北农学院学报,2002,22(4):373-376.
    [4]张真和,陈青云,高丽红,等.我国设施蔬菜产业发展对策研究(上、下)[J].蔬菜,2010,5:1-3.
    [5]刘艳军,李琪,梁文举.设施栽培对土壤环境质量的影响[J].辽宁工程技术大学学报,2006,25(3):468-470.
    [6]马文奇,毛达如,张福锁.山东省蔬菜大棚养分积累状况[J].磷肥与复肥,2000,15(3):65-67.
    [7] Chen Q, Zhang X S, Zhang H Y, et al. Evaluation of current fertilizer practice and soil fertility in vegetable production in the Beijing region [J]. Nutr. Cycl. Agroecosyst, 2004, 69:51-58.
    [8] Ju X T, Kou C L, Zhang F S. Nitrogen balance and groundwater nitrate contamination: Comparison among intensive cropping systems on the North China Plain [J].Environ. Poll, 2006, 143(1):117-125.
    [9]刘兆辉,江丽华,张文君,等.山东省设施蔬菜施肥量演变及土壤养分变化规律[J].土壤学报,45(2):296-303.
    [10]马文奇,毛达如,张福锁.山东大棚蔬菜施肥中存在的问题及对策[A].李晓林.平衡施肥与可持续优质蔬菜生产[C].北京:中国农业大学出版社, 2000: 41-47.
    [11] Chen Q, Zhang X S, Zhang H Y,et al. Evaluation of current fertilizer practice and soil fertility in vegetable production in the Beijing region[J]. Nutrient Cycling in Agroecosystems, 2004, 69: 51-58.
    [12]陈清,张福锁,主编.蔬菜养分资源综合管理理论与实践[M].北京:中国农业大学出版社,2007:8.
    [13]张维理,徐爱国,冀宏杰,等.中国农业面源污染形势估计及控制对策Ⅲ.中国农业面源污染控制中存在问题分析[J].中国农业科学,2004,37(7):1026-1033.
    [14]焦晓燕,王立革,张东玲,张京社,董二伟.陕西省节能温室蔬菜施肥现状、存在问题及建议[J].山西农业科学,2010,38(4):37-41.
    [15] Ju X T, Kou C L, Christie P, et al. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain [J].Environmental Pollution, 2007, 145:497-506.
    [16]闵炬,施卫明.不同施氮量对太湖地区大棚蔬菜产量、氮肥利用率及品质的影响[J].植物营养与肥料学报,2009,15(1):151-157.
    [17]孙传范,曹卫星,戴廷波.土壤-作物系统中氮肥利用率的研究进展[J].土壤,2001,(2):64-69.
    [18]郭盛熙,吴礼树.施用氮钾肥料对蔬菜品质影响的研究进展[J].华中农业大学学报.2002, 21(6):593-598.
    [19]赵凤艳,王敏秋.保护地黄瓜优质高产氮肥施用参数的研究[J].黑龙江农业科学,2000,(6):8-10.
    [20]肖厚军,阎献芳,彭刚.氮肥对菠菜产量和硝酸盐含量的影响[J].贵州农业科学,2001,29(1):22-24.
    [21] Alexiev NP, Rankov V, Jevtic S. The effect of intensive organo-mineral fertilization on the yield of greenhouse cucumber and mineralization of nitrogen-containing organic compounds in soil [J].Acta Horticulture, 1997, 462:225-228.
    [22] Nicolas T, Hans Christoph S, Ulrike W, et al. Nitrogen management in field vegetables- A guide to efficient fertilization.Published on the Web by the Hortieultural Researeh and Development Centre, Canada.2001.
    [23]刘明池,陈殿奎.氮肥用量与黄瓜产量和硝酸盐积累的关系[J].中国蔬菜,1996,(3):26-28.
    [24]李俊良,张晓晨,孟祥霞,李晓林,张福锁.大白菜氮肥推荐施用技术的研究[J].莱阳农学院学报,2002,19(2):83-85.
    [25]赵凤艳,陈翠玲.氮肥用量对蔬菜产量和品质的影响[J].农业系统科学与综合研究,2001,17(1):43-44.
    [26] Van Wassenhove F, Dirinek P J, Schamp N M. Effect of nitrogen fertilizers on celery volatiles [J]. J.Agr. Food Chem., 1990, 38:220-226.
    [27]杨丽娟,梁成华.不同用量氮、钾肥对油菜产量及品质的影响[J].沈阳农业大学学报,1999,30(2):109-111.
    [28]秦巧燕,贾陈忠,覃敏,等.陕西关中设施栽培蔬菜的硝酸盐累积状况分析[J].土壤肥料,2005,(1):29-31.
    [29] Zhao, C.S., Hu, C.X., Huang, W., Sun, X.C., Tan, Q.L. & Di, H.J. A lysimeter study of nitrate leaching and optimum nitrogen application rates for intensively irrigated vegetable production systems in Central China [J]. Journal Soils Sediments, 2010, 10:9-17.
    [30] Zhou J B, Chen Z J, Liu X J, Zhai B N, Powlson D S. Nitrate accumulation in soil profiles under seasonally open 'sunlight greenhouses' in northwest China and potential for leaching loss during summer fallow. Soil Use and Management, 2010, 26(3): 332-339.
    [31]童有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径研究田[J].园艺学报,1991,18(2):159-1621.
    [32]周建斌,翟丙年,陈竹君,等.设施栽培菜地土壤养分的空间累积及其潜在的环境效应[J].农业环境科学学报,2004,23(2):2:332-335.
    [33] He F F, Chen Q, Jiang R F, Chen X P, Zhang F S. Yield and nitrogen balance of greenhouse tomato (Lycopersium esculentum Mill) with conventional and site-specific nitrogen management in Northern China [J]. Nutrient Cycling in Agroecosystems, 2007, 77: 1-14.
    [34] Song X Z, Zhao C X, Wang X L, and Li J. Study of nitrate leaching and nitrogen fate under intensive vegetable production pattern in northern China [J]. Comptes Rendus Biologies, 2009, 332(4): 385-392.
    [35] Ren T, Christie P, Wang J G, Chen Q, Zhang F S. Root zone soil nitrogen management to maintain high tomato yields and minimum nitrogen losses to the environment [J]. Scientia Horticulturae, 2010, 125(1): 25-33.
    [36] Ju M, Shi W M, Xing G X, Zhang H L and Zhu Z L. Effects of a catch crop and reduced nitrogenfertilization on nitrogen leaching in greenhouse vegetable production systems [J]. Nutr Cycl Agroecosyst, 2011, 91: 31-39.
    [37]张光亚,陈美慈,闵航,等.设施栽培土壤N2O释放及硝化、反硝化细菌数量的研究[J].植物营养与肥料学报,2002,8(2):239-243.
    [38] Zheng X H, Han S H, Huang Y, Wang Y S and Wang M X. Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands [J]. Global Biogeochemical Cycles, 2004, 18:19 GB2018
    [39] He F F, Jiang R F, Chen Q, Zhang F S and Su F. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China [J]. Environmental Pollution, 2009, 157(5): 1666-1672.
    [40] Duxbury J M. The significance of agricultural sources of greenhouse gases [J]. Fertilizer Research, 1994, 38: 151-163.
    [41] Zaman M, Saggar S, Blennerhassett J D, Singh J. Effect of urease and nitrification inhibitors on N transformation, gaseous emissions of ammonia and nitrous oxide, pasture yield and N uptake in grazed pasture system [J]. Soil Biology & Biochemistry, 2009, 41: 1270-1280.
    [42] Intergovernmental Panel on Climate Change (IPCC) .Climate change 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ (eds) Contribution of working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2001, Cambridge, UK and New York
    [43] Martikainen P J. Nitrous oxide emission associated with autotrophic ammonium oxidation in acid coniferous forest soil[J]. Appl. Environ. Microb, 1985, 50(6): 1519-1525.
    [44] Clough T J, Di H J, Cameron K C, et al. Accounting for the utilization of a N2O mitigation tool in the IPCC inventory methodology for agricultural soils [J]. Nutrient Cycling in Agroecosystems, 2007, 78: 1-14.
    [45] Moir J L, Cameron K C, Di H J. Effects of the nitrification inhibitor dicyandiamide on soil mineral N, pasture yield, nutrient uptake and pasture quality in a grazed pasture system [J]. Soil Use and Management, 2007, 23:111-120.
    [46] Di H J, Cameron K C. Nitrous oxide emissions from two dairy pasture soils as affected by different rates of a fine particle suspension nitrification inhibitor, dicyandiamide [J]. Biology and Fertility of Soils, 2005: 42:472-480.
    [47] Menendez S, Merino P, Pinto M, et al. 3, 4-Dimethylpyrazol phosphate effect on nitrous oxide, nitric oxide, ammonia, and carbon dioxide emissions from grasslands [J]. Journal of Environmental Quality, 2006, 35:973-981.
    [48] Di H J, Cameron K C. Reducing environmental impacts of agriculture by using a fine particle suspension nitrification inhibitor to decrease nitrate leaching from grazed pastures [J]. Agriculture, Ecosystems and Environment, 2005, 109: 202-212.
    [49]伍少福,吴良欢,尹一萌,等.含硝化抑制剂DMPP复合肥对日光温室芹菜生长和营养品质的影响[J].应用生态学报,2007,18(2):383-388.
    [50]孙志梅,武志杰,陈利军,等.氮转化的生化调控对蔬菜生长及土壤质量的影响[J].辽宁工程技术大学学报,2008,27(1):129-132.
    [51]毛知耕.土壤肥料学[M].北京:中国农业出版社,1997.
    [52] Owens L B. Effects of nitrapyrin on nitrate movement in soil columns [J]. J Environ Qual, 2001, 10(3):308-310.
    [53] Ball-Coelho B R, Roy R C. Enhanced ammonium sources to reduce nitrate leaching [J]. Nutrient Cycling in Agroecosystems, 1999, 54: 73-80.
    [54] Wolt J D. A meta-evaluation of nitrapyrin agronomic and environmental effectiveness with emphasis on corn production in the Midwestern USA [J]. Nutrient Cycling in Agroecosystems, 2004, 69: 23-41.
    [55] Di H J, Cameron K C. Treating grazed pasture soil with a nitrification-inhibitor, eco-nTM, to decrease nitrate leaching under spray irrigation-a lysimeter study[J]. New Zealand Journal of Agricultural Research, 2004, 47:351-356.
    [56]俞巧钢,陈英旭,张秋玲,等.DMPP对菜地土壤氮素淋失的影响研究[J].水土保持学报,2006,20(4):40-43.
    [57] Weiske A, Benekiser G, Herbert T, et al. Influence of the nitrification inhibitor 3, 4-domethypyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emission, carbon dioxide fluxes and methane oxidation during 3 years of repeated application on field experiments [J]. Boil Fertil Soils, 2001, 34:109-117
    [58] Banuls J, Quinones A, Primo-Millo E, et al. A new nitrification inhibitor (DMPP) improves the nitrogen fertilizer efficiency in citrus-growing system [M]. Plant nutrition-Food security and sustainability of agro-ecosystems. Dordrecht: Kluwer Academic Publishers, 2001, 762-763.
    [59]陈振华,陈利军,武志杰.脲酶-硝化抑制剂对减缓尿素转化产物氧化及淋溶的作用[J].应用生态学报,2005,16(2):238-242.
    [60]邢卫,陈利军,陈振华,等. NBPT与DMPP不同剂量组合对尿素氮转化的影响[J].土壤通报,2008,39(4):896-899.
    [61] Wakabayashi S, Matsubara H, Webster D A. Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla[J]. Nature, 1986, 322: 481-483.
    [62]余光辉,张杨珠.三种硝化抑制剂对小白菜产量及品质的影响[J].土壤通报, 2006, 37(4): 737-740.
    [63]王玉峰.氢醌在玉米上应用效果的研究[J].玉米科学, 2002, 10(2): 90-92.
    [64]李晓鸣.氢醌在小麦吸收利用氮素中的作用[J].黑龙江农业科学, 2002, (4): 4-5.
    [65] Bymes B H, et al. Effect of a urease inhibitor phenyl phosphorodiamidate on the efficiency of urea applied to rice [J]. Soil Sci Am.J, 1983, 47:270-274.
    [66]栾书荣.新型硝化抑制剂DMP-D的研究[D].扬州大学,2004.
    [67]王改玲,郝明德,陈德立.硝化抑制剂和通气调节对土壤N2O排放的影响[J].植物营养与肥料学报, 2006, 12(1): 32-36.
    [68] Xu X, Boeckx P, Wang Y, et al. Nitrous oxide and methane emission during rice growth andthrough rice plants effect of dicyandiamide and hydroquinone [J]. Biology and Fertility of Soil, 2002, 36:53-58.
    [69] H J Di, K C Cameron. Mitigation of nitrous oxide emissions in spray-irrigated grazed grassland by treating the soil with dicyandiamide, a nitrification inhibitor [J]. Soil Use and Management, 2003, 19(4):284-290.
    [70] Weiske A, Benckiser G, Herbert T. Influence of the nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emission, carbon dioxide fluxes and methane oxidation during 3 years of repeated application infield experiment[J].Biology and Fertility of soils,2001,34:109-117.
    [71] Linzmeier W, Gutser R, Schmidhalter U. Nitrous oxide emission from soil and from a nitrogen-15-labelled fertilizer with the new nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP)[J].Biology and Fertility of Soils, 2001,34: 103-108.
    [72] Zaman M, Blennerhassett J D. Effect of the different rates of urease and nitrification inhibitors on gaseous emissions of ammonia and nitrous oxide, nitrate leaching and pasture production from urine patches in an intensive grazed pasture system [J]. Agriculture, Ecosystems and Environment, 2010(36): 236-246.
    [73] Clay D E, Malzer G L, Anderson J L. Ammonia volatilization from urea as influenced by soil temperature, soil water content, and nitrification and hydrolysis inhibitors[J]. Soil Sci. Soc. Am. J, 1990, 54: 263-266.
    [74] Wang X B, Xin J F, Grant C A, et al. Effects of placement of urea with a urease inhibitor on seeding emergence, N uptake and dry matter yield of wheat [J]. Can. J. Plant Sci., 1995, 75:449-452.
    [75] Li L T, Wang Z P, Van C O, et al. Urea N uptake efficiency of ryegrass (Lolium pereme L.) in the presence of urease inhibitors [J]. Biol. Fertil. Soils, 1993, 15:225-228.
    [76]周礼恺,赵晓燕,李荣华,等.脲酶抑制剂对土壤尿素氮转化的影响[J].应用生态学报,1992,3:36-41.
    [77]郭春秋,方元久.脲酶抑制剂在棉花上的应用效果探讨[J].作物研究,2000,1:35-37.
    [78]刘娜,扬红,孙庆元.脲酶抑制剂对大豆生长的影响[J].大连轻工业学院学报,2006,25(1):26-29.
    [79]焦晓光,梁文举,陈利军,等.脲酶/硝化抑制剂对土壤有效态氮、微生物量氮和小麦氮吸收的影响[J].应用生态学报,2004,15(10):1903-1906.
    [80]孙志梅,武志杰,梁文举,等.3,5-二甲基吡唑对铵态氮硝化及作物生长的影响[J].植物营养与肥料学报,2006, 12(6):869-874.
    [81]苏壮.脲酶/硝化抑制剂对土壤中尿素氮转化及其生物有效性的影响[J].沈阳农业大学学报,2005,36(2):230-232.
    [82] Zerulla W, Barth T, Dressel J, et al. 3, 4-dimethylpyrazole phosphate (DMPP): A new nitrification inhibitor for agriculture and horticulture: An introduction [J]. Biology and Fertility of Soils, 2001, 34: 79-84.]
    [83] Sema M D, Baduls Q A. Evaluation of 3, 4-dimethylpyrazole phosphate as a nitrification inhibitorin a Citrus-cultivated soil [J]. Boil Fertil Soils, 2001, 32:41-46.
    [84]Cookson W R, Cornforth I S. Dicyandiamide slows nitrification in dairy cattle urine patches: Effects on soil solution composition, soil pH and pasture yield [J]. Soil Biology and Biochemistry, 2002, 34: 1461-1465
    [85] Bronson K F, Touchton J T, Hauck R D, et al. Nitrogen-15 recovery in winter wheat as affected by application timing and dicyandiamide [J]. Soil Science Society of America Journal, 1991, 55: 130-135.
    [86]范业成,叶厚专.脲酶抑制剂在水稻上施用效果[J].土壤通报, 26(5): 230-231.
    [87]卢婉芳,陈苇,王德仁.脲酶抑制剂NBPT对提高尿素氮利用率的研究[J].中国农学通报,1990,6(2):23-25.
    [88] Irigoyen I, Lamsfus C, Aparicio-Tejo P, et al. The influence of 3, 4-dimethylpyrazole phosphate and dicyandiamide on reducing nitrate accumulation in spinach under Mediterranean conditions [J].The Journal of Agricultural Science, 2006,144: 555-562.
    [89]余光辉,张杨珠,万大娟.几种硝化抑制剂对土壤和小白菜硝酸盐含量及产量的影响[J].应用生态学报,2006,17(2) :247-250.
    [90] Montemurro F, Capotorti G, Lacertosa G, et al. Effects of urease and nitrification inhibitors application on urea fate in soil and nitrate accumulation in lettuce [J]. Journal of Plant Nutrition, 1998, 21: 245-252.
    [91] Pasda G, Hahndel R, Zerulla W. Effect of fertilizers with the new nitrification inhibitor DMPP (3, 4-dimethylpyrazole phosphate) on yield and quality of agricultural and horticultural crops [J].Biology and Fertility of Soils,2001,34: 85-97.
    [92]叶雪珠,俞巧钢.新型硝化抑制剂对青菜硝酸盐含量及其品质的影响[J].浙江农业科学,2008, 3:263-264.
    [93]鲁素云.植物病害生物防治学[M].北京:北京农业大学出版社,1999
    [94] Wang hong, Chu tian-duo. Characteristics of magnesium release from fluvoaquic soil and relative availability of magnesium to plants [J].Pedosphere, 2000, 10(3):281-288.
    [95] Liang W J, Li Q, Jiang Y, et al. Nematode faunal analysis in an aquic brown soil fertilised with slow-release urea, Northeast China [J].Applied Soil Ecology, 2005, 29:185-192.
    [96]孙志梅,刘艳军,梁文举,等.新型脲酶抑制剂LNS与双氰胺配合施用对菜田土壤尿素氮转化及蔬菜生长的影响[J].土壤通报,2005,36(5):803-805.
    [97]华建峰,蒋倩,施春健,庄秋丽,姜勇.脲酶/硝化抑制剂对土壤脲酶活性、有效态氮及春小麦产量的影响[J].土壤通报,2008,39(1): 94-99.
    [98]赵略,孙庆元,于英梅,马国宝.脲酶抑制剂nBPT对土壤脲酶活性和脲酶产生菌的影响[J].大连轻工业学院学报, 2007, 26(1): 24-27.
    [99]宋志远,孙庆元.脲酶抑制剂nBPT对土壤微生物的影响[J].大连轻工业学院学报,2006,25(2):100-102.
    [100]王洪霞,孙庆元.双氰胺对土壤微生物种群数量的影响[J].安徽农业科学,2006,34(1):113-114.
    [101]孙志梅,武志杰,陈利军,等.3,5-二甲基吡唑(DMP)施用后土壤硝化作用潜势及微生物群落动态变化研究[J].农业环境科学学报,2006,25(6):1518-1523.
    [102] Li H, Liang X Q, Chen Y X, et al. Effect of nitrification inhibitor DMPP on nitrogen leaching, nitrifying organisms, and enzyme activities in a rice-oilseed rape cropping system [J]. Journal of Environmental Sciences, 2008(20):149-155.
    [103] Zacherl, B, Amberger A. Effect of the nitrification inhibitors dicyandiamide, nitrapyrin and thiourea on Nitrosomonas europaea [J]. Fertilizer Research, 1990, 22, 37-44.
    [104] Maureen O C, Gerard Emily M, Carter P E, Lardner Richard, et al. Effect of the nitrification inhibitor dicyandiamide (DCD) on microbial communities in a pasture soil amended with bovine urine[J]. Soil Biology & Biochemistry, 2010, 42:1425-1436.
    [105] Di H J, Cameron K C, Shen J P, Winefield C S, O'Callaghan M, Bowatte S, He J Z. Methanotroph abundance not affected by applications of animal urine and a nitrification inhibitor, dicyandiamide, in six grazed grassland soils[J]. J Soils Sediments, 2011, 11:1032-1039.
    [106] Di H J, Cameron K C. The use of a nitrification inhibitor, dicyandiamide (DCD), to decrease nitrate leaching and nitrous oxide emissions in simulated grazed and irrigated grassland [J]. Soil Use and management, 2002, 18:395-403.
    [107] Di H J, Cameron K C. Mitigation of nitrous oxide emissions in spry-irrigated grazed by treating the soil with dicyandiamide, a nitrification inhibitor [J]. Soil Use and Management, 2003, 19: 84-290.
    [108] Cui M, Sun X C, Hu C X, Di H J, Tan Q L, Zhao C S. Effective mitigation of nitrate leaching and nitrous oxide emissions in intensive vegetable production systems using a nitrification inhibitor, dicyandiamide[J]. Journal Soils Sediments, 2011, 11:722-730.
    [109]Oslan J, Yusminah H, ABD.M, Alimuddun A, et al. Influence of chemical fertilizers and a nitrification inhibitor on greenhouse gas fluxes in a corn (Zea mays L.) field in Indonesia [J]. Microbes Environ, 2008, 23(1):29-34.
    [110]Merino P, Estavillo J M, Besga G, Pinto M and C Gonzalez-Murua. Nitrification and denitrification derived nitrous oxide production from a grassland soil under application of DCD and Actilith F2 [J]. Nutrient Cycling in Agroecosystems, 2001, 60:9-14.
    [111]史云峰,赵牧秋,张丽莉.双氰胺在砖红壤中硝化抑制效果的影响因素研究[J].安徽农业科学,2011,33 (10): 20437-20440.
    [112]Macadam X, Prado A, Merino P, Estavillo J, Pinto M, C Gonzalez-Murua. Dicyandiamide and 3, 4-dimethyl pyrazole phosphate decrease nitrous oxide emissions from grassland but dicyandiamide produces deleterious effects in clover [J]. Journal of Plant Physiology 160, 2003, 1517-1523.
    [113] Di H J, Cameron K C. Effects of temperature and application rate of a nitrification inhibitor, dicyandiamide (DCD), on nitrification rate and microbial biomass in a grazed pasture soil [J]. Australian Journal of Soil Research, 2004, 42:927-932.
    [114] Irigoyen I, Muro J, Azpilikueta A P, Lamsfus C. Ammonium oxidations kinetics in the presence of nitrification inhibitors DCD and DMPP at various temperatures[J]. Aust J Soil Res, 2003, 41:1177-1183.
    [115] Zhang H J, Wu Z J, Zhou Q X. Dicyandiamide sorption-desorption behavior on soils and peat humus[J]. Pedosphere, 2004, 14(3):395-399
    [116] Singh J, Saggar S, Giltrap D L, Bolan N S. Decomposition of dicyandiamide (DCD) in three contrasting soils and its effect on nitrous oxide emission, soil respiratory activity, and microbial biomass-an incubation study[J]. Australian Journal of Soil Research, 2008, 46: 517-525.
    [117] Puttanna K, Nanje Gowda N M, Prakasa Rao EVS.Effect of concentration, temperature, moisture, liming and organic matter on the efficiency of the nitrification inhibitors benzotriazole, o-nitrophenol m-nitroaniline and dicyandiamide [J]. Nutrient Cycling in Agroecosystems, 1999, 54: 251-257.
    [118] Barth G, von Tucher, S.,Schmidhalter U. Influence of soil Parameters on the effete of 3, 4-dimethyl Pyrazole Phosphate as a nitrification inhibitor[J]. Boil. Fertil. Soil, 2001, 34:98-102.
    [119] Malzer G L, et al. Performance of dicyandiamide in the north central states.Commun [J]. Soil Sci. Plant Anal., 1989, 20(19&20): 2001-2122.
    [120] Williamson J C, Menneer J C, Torrens RS. Impact of dicyandiamide on the mineral nitrogen cycle of a volcanic, silt loam soil receiving effluent [J]. Applied Soil Ecology, 1996, 4: 39-48.
    [121] Bronson K F, Touchton J T, Hauck R D. Decomposition rate of dicyandiamide and nitrification inhibition [J]. Communication in Soil Science and Plant Analysis, 1989, 20: 2067-2078.
    [122] Godgers G A, Wickranasinghe K N, Jenkinson D S. Mineralization of dicyandiamide, labeled with 15N, in acid soils [J]. Soil Biology and Biochemistry, 1985, 17:253-254.
    [123] Reddy G R, Datta N P. Use of dicyandiamide on nitrogen fertilizers [J]. J. Indian Soc. Soil Sci, 1965, 13:135-139.
    [124] Slangen JHG, Kerkhoff P. Nitrification inhibitors in agriculture and horticulture: A literature review [J]. Fertilizer Research, 1984, 5: 1-76.
    [125] Di H J, Cameron K C. Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies [J]. Nutr Cycl Agroecosyst, 2002, 64,237-256.
    [126] Haynes R J, Williams P H. Nutrient cycling and soil fertility in the grazed pasture ecosystem [J]. Adv Agron, 1993, 49,119-199.
    [127] Jarvis S C, Scholefield D, Pain B. Nitrogen cycling in grazing systems. In: Bacon PE(ed), Nitrogen fertilization in the environment [M]. Marcel Dekker Inc., New York, 1995, 381-419.
    [128] Monaghan, R.M, Paton, R. J, Drewry, J. J. Nitrogen and phosphorus losses in mole and title drainage from a cattle-grazed pasture in eastern Southland [J].New Zealand Journal of Agricultural Research, 2002, 45:197-205.
    [129] Decau M L, Simon J C, Jacquet A. Nitrate leaching under grassland as affected by mineral nitrate fertilization and cattle urine [J].Journal of Environmental Quality, 2004, 33:637-644.
    [130] Mora M L, Cartes P, Nunea P, Salazar M, Demanet R. Movement of NO3--N and NH4+-N in an Andisol and its influence on ryegrass production in a short term study [J]. Journal of Soil Science and Plant Nutrition, 2007, 7: 46-63.
    [131] Di H J, Cameron K C. The use of a nitrification inhibitor, dicyandiamide (DCD), to reduce nitrateleaching from cow urine patches in a grazed dairy pasture under irrigation [J]. Soil Use and Management, 2002, 18, 395-403.
    [132] Di H J. Cameron K C. Treating grazed pasture soil with a nitrification inhibitor, eco-nTM, to decrease nitrate leaching in a deep sandy soil under spray irrigation-a lysimeter study[J]. New Zealand Journal of Agricultural Research, 2004, 47, 351-361.
    [133] Abbasi M K, Adams W A. Estimation of simultaneous nitrification and denitrification in grassland soil associated with urea-N using 15N and nitrification inhibitor [J]. Biol Fertil Soils, 2000, 31, 38-44.
    [134] Amberger A. Research on dicyandiamide as a nitrification inhibitor and future outlook [J].. Commun Soil Sci Plant Anal, 1989, 20, 1933-1955.
    [135] Di H J, Cameron K C, Shen J P, Winefield C S, O'Callaghan M, Bowatte S, He J Z. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils [J]. Nat Geosci, 2009, 2, 621-624.
    [136] Treusch A H, Leininger S, Kletzin A, et al. Novel genes for nitrite reductase and amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling [J].Environmental Microbiology, 2005, 7: 1985-1995.
    [137] Schleprt C, Jurgens G, Jonuscheie M. Genomic studies of uncultivated archaea [J]. Nature Review of Microbiology, 2005, 3: 479-488.
    [138] Nicol, G W, Schleper C. Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? [J]. Trends in Microbiology, 2006, 14: 207-212.
    [139] Prosser J I, Nicol G W. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment [J]. Environmental Microbiology, 2008, 10:2931-2941.
    [140] Yamamoto N, Otawa K, Nakai Y. Diversity and abundance of ammonia-oxidizing bacteria and ammonia-oxidizing archaea during cattle manure composting [J]. Microb Ecol, 2010, 60:807-815.
    [141] Williamson J C, Menneer J C, Torrens R S. Impact of dicyandiamide on the internal nitrogen cycle of a volcanic, silt loam soil receiving effluent [J]. Applied Soil Ecology, 1996, 4: 39-48.
    [142] Irigoyen I, Muro J, Azpilikueta M, Aparicio-Tejo P, Lamsfus C. Ammonium oxidation kinetics in the presence of nitrification inhibitors DCD and DMPP at various temperatures [J]. Australian Journal of Soil Research, 2003, 41: 1177-1183.
    [143] Sprosen M S, Ledgard S F, Lindsey. Effect of rate and form of dicyandiamide application on nitrate leaching and pasture production from a volcanic ash soil in the Waikato [J]. New Zealand Journal of Agricultural Research, 2009, 52(1):47-55.
    [144] Merino P, Estavillo J M, Besga G, Pinto M, Gonzalez-Murua C. Nitrification and denitrification derived N2O production from a grassland soil under application of DCD and Actilith F2 [J]. Nutrient Cycling in Agroecosystems, 2001, 60, 9-14.
    [145] Macadam X M B, Prado A, Merino P, Estavillo J M, Pinto M, Gonzalez-Muria C. Dicyandiamide and 3, 4-dimethuyl pyrazole phosphate decrease N2O emissions from grassland but dicyandiamide produces deleterious effects in clover [J]. Journal of Plant physiology, 2003,160:1517-1523.
    [146] Rotthauwe J H, Witzel K P, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations [J]. Appl. Environ. Microbiol, 1997, 63: 4704-4712.
    [147] Francis C A, Roberts K J, Beman J M, Santoro A E, Oakley B B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean [J]. Proc Natl Acad Sci U S A, 2005, 102:14683-14688.
    [148] Rajbanshi S S, Benckiser G, Ottow J CG. Effects of concentration, incubation temperature, and repeated applications on degradation kinetics of dicyandiamide (DCD) in model experiments with a silt loam soil. Biology and Fertility of Soils, 1992, 13: 61-64.
    [149] McCarty G W, Bremer J M. 1989.Laboratory evaluation of dicyandiamide as a soil nitrification inhibitor [J]. Communications in Soil Science and Plant Analysis, 20: 2049-2065.
    [150]杨劲峰,韩晓日,战秀梅,等.不同施肥处理对棕壤N2O排放量的影响[J].生态环境,2007,16(2):560-563.
    [151]闫湘,金继运,何萍,等.提高氮肥利用率技术研究进展[J].中国农业科学,2008,41(2):450-459.
    [152]刘利军,闫双堆,杜慧平,李伟林.不同肥力水平大棚土壤氮素转化的研究[J].山西农业科学,2009,37(2):32-35.
    [153] Zhu J H, Li X L, Christie P, Li J L. Environmental implications of low nitrogen use efficiency in excessively fertilizer hot pepper (Capsicum frutescens L.) cropping system[J]. Agric. Ecosyst. Environ, 2005, 111: 70-80.
    [154]Vilsmeier K. Kolorimetrische, Bestimmung von dicyandiamide in boden [J]. Z Pflanzeneraehr Bodennkd, 1979, 142:792-798.
    [155] McCarty G W, Bremer J M. Laboratory evaluation of dicyandiamide as a soil nitrification inhibitor [J]. Communications in Soil Science and Plant Analysis, 1989, 20: 2049-2065.
    [156]Sprosen M S, Ledgard S F, Lindsey S B. Effect of rate and form of dicyandiamide application on nitrate leaching and pasture production from a volcanic ash soil in the Waikato [J]. New Zealand Journal of Agricultural Research, 2009, 52(1): 47-55.
    [157] Avrahami S and Bohannan B J M. Response of nitrosospira sp. strain AF-Like ammonia oxidizers to changes in temperature, soil moisture content and fertilizer concentration [J]. Applied and Environmental Microbiology, 2007, 73(4): 1166-1173.
    [158]杨春霞,李永梅.双氰胺对不同质地红壤中碳酸氢铵的硝化抑制作用研究[J].植物营养与肥料学报,2007,13(6):1035-1039.
    [159]马成芝,孙立德,梁志兵,王天仲.辽西日光温室大棚内小气候的变化规律[J].安徽农业科学,2008,36(30):13342-13344, 13390.
    [160] Jones D L, Healey J R, Willett V B, Farrar J F, Hodge A. Dissolved organic nitrogen uptake by plants: An important N uptake pathway? [J].Soil Biology and Biochemistry, 2005, 37: 413-423.
    [161] Asing J, Saggar S, Singh J, Bolan N S. Assessment of nitrogen losses from urea and organic manure with and without nitrification inhibitor, dicyandiamide, applied to lettuce underglasshouse conditions [J]. Australian Journal of Soil Research, 2008, 6: 535-541.
    [162]Banerjee B, Pathak H, Aggarwal P K. Effects of dicyandiamide, farmyard manure and irrigation on crop yields and ammonia volatilization from an alluvial soil under a rice (Oryza sativa L.) -wheat (Triticum aestivum L.) cropping system [J]. Biol Fertil Soils, 2002, 36:207-214.
    [163] Mkhabela MS, Gordon R, Burton D, Madani A, Hart W, Elmi A. Ammonia and nitrous oxide emissions from two acidic soils of Nova Scotia fertilised with liquid hog manure mixed with or without dicyandiamide [J]. Chemosphere, 2006, 65:1381-1387.
    [164] Dendooven L, Bonhomme E, Merckx R, Vlassak K. N dynamics and sources of N2O production following pig slurry application to a loamy soil [J]. Biology and Fertility of Soils, 1998, 26:224-228.
    [165] Tao X, Matsunaka T, Sawamoto T. Dicyandiamide application plus incorporation into soil reduces N2O and NH3 emissions from anaerobically digested cattle slurry[J]. Australian Journal of Experimental Agriculture, 2008, 48:169-174.
    [166]李鑫,巨晓棠,张丽娟,万云静,刘树庆.不同施肥方式对土壤氨挥发和氧化亚氮排放的影响[J].应用生态学报,2008,19(1):99-104.
    [167]王朝辉,刘学军,巨晓棠,张福锁.田间土壤氨挥发的原位测定[J].植物营养与肥料学报,2002,8(2):205-209.
    [168] Merino P, Estavillo J M, Graciolli L A, Pinto M, Lacuesta M, Munoz-Rueda A, G onzalez-Murua C. Mitigation of N2O emissions from grassland by nitrification inhibitor and Actilith F2 applied with fertilizer and cattle slurry [J]. Soil Use and Management, 2002, 18: 135-141.
    [169] Vogeler I, Blard A, Bolan N. Modeling DCD effect on nitrate leaching under controlled conditions [J]. Australian Journal of Soil Research, 2007, 45: 310-317.
    [170] Ding W X, Yu H Y, and Cai Z C. Impact of urease and nitrification inhibitors on nitrous oxide emissions from fluvo-aquic soil in the North China Plain[J]. Biol Fertil Soils, 2011, 47, 91-99.
    [171] Granli T, B?ckman O C. Nitrous oxide from agriculture [J]. Norwegian J Agric Sci Suppl, 1994.12:7-128.
    [172] Dobbie K E, Smith K A. Impact of different forms of N fertilizer on N2O emissions from intensive grassland [J].Nutr Cycl Agroecosyst,2003,67:37-46.
    [173] Clough T J, Kelliher F M, Sherlock R R, Ford C D. Lime and soil moisture effects on nitrous oxide emissions from a urine patch [J]. Soil Sci Soc Am J, 2004, 68:1600-1609;
    [174]姚志生,郑循华,周再兴,谢宝华,等.太湖地区冬小麦与蔬菜地N2O排放对比观测研究[J].气候与环境研究, 2006,11 (6): 691-701.
    [175]武其甫,武雪萍,李银坤,吴会军,等.保护地N2O排放通量特征研究[J].植物营养与肥料科学, 2011, 17(4):942-948.
    [176] Zhang Z X, Li Y E, Hua L, Wan Y F, Jiang N N. Effects of different fertilizer levels on N2O flux from protected vegetable land[J]. Tran CSAE, 2010, 26(5): 269-275.
    [177]卢昌艾,孔令明,胡万里,夏体渊,等.滇池流域集约化西芹地的N2O排放[J].农业环境科学学报, 2008,27(5): 1870-1875.
    [178] Di H J, Cameron K C.Nitrous oxide emissions from dairy pasture soils as affected by different rates of a fine particle suspension nitrification inhibitor, dicyandiamide [J]. Biol Fertil Soils, 2006, 42:472-480.
    [179] Di H J, Cameron K C, Sherlock R R. Comparison of the effectiveness of a nitrification inhibitor, dicyandiamide, in reducing nitrous oxide emissions in four different soils under different climatic and management conditions[J]. Soil Use & Management, 2007, 23: 1-9.
    [180]卢燕宇,黄耀,郑循华.农田氧化亚氮排放系数的研究[J].应用生态学报,2005,16(7):1299-1302.
    [181] Gioacchini P, Nastri A, Marzadori C, Giovannini C, Antisari L V, Gessa C. Influence of urease and nitrification inhibitors on N losses from soils fertilized with urea [J]. Biology and Fertility of Soils, 2002, 36: 129-135.
    [182]董文旭,胡春胜,张玉铭.不同施肥对土壤尿素NH3挥发的影响[J].干旱地区农业研究,2005,23(2):76-79.
    [183]李宗新,王庆成,刘开昌,董树亭,等.不同施肥模式下夏玉米田间氨挥发规律[J].生态学报, 2009,19(1): 0307-0314.
    [184]李银坤,武雪萍,梅旭荣,段敏杰,等.常规灌溉条件下施氮对温室土壤氨挥发的影响[J].农业工程学报, 2011,7:23-30.
    [185]贺发云,尹斌,金雪霞,曹兵,等.南京两种菜地氨挥发的研究[J].土壤学报,2005,42 (2): 253-259.
    [186]龚巍巍,张宜升,何凌燕,栾胜基.菜地氨挥发损失及影响因素原位研究[J].环境科学, 2011,32(2): 345-350.
    [187] Zhu Z L.Efficient management of nitrogen fertilizers for flood rice in relation to nitrogen transformation in flooded soils [J]. Pedosphere, 1992, 2: 97-114.
    [188]李合生.植物生理生化实验原理与技术.北京:高等教育出版社,2000.
    [189]史奕,徐星凯,周礼恺,Cleemput O V.抑制剂及其组合对尿素15N在小麦-土壤系统中的行为和归宿的影响[J].应用生态学报,1998,9(2):168-170.
    [190] Ma Z B, Wang X C, He J G, et al. Effects of nitrogen forms on endogenous plant hormones content in different organs of wheat after an thesis[J]. Journal of Plant Ecology, 2006, 30: 991-997.
    [191]何盈,蔡顺香,何春梅,罗涛.施氮量和DCD对蕹菜生长、硝酸盐累积及土壤氮素形态的影响[J].北方园艺,2007,12:10-13.
    [192] Wilson C E et al. Dicyandiamide influence on uptake of preplan-applied fertilizer nitrogen by rice [J]. Soil Sci. Soc. Am .J, 1990, 54:1157-1161.
    [193]李远新,李进辉,何莉莉,宫国义,李天来.氮磷钾配施对保护地番茄产量及品质的影响[J].中国蔬菜.1997, (4):10-13.
    [194] Nicolas T, Hans Christoph S, Ulrike W, Helene L, Josee O. Nitrogen Management in Field Vegetables-A guide to efficient fertilization. Published on the Web by the Horticultural Research and Development Centre, Canada, 2001.
    [195]白优爱,贺建德,陈清,李晓林.京郊保护地秋季番茄的氮素供应利用[J].中国蔬菜,2004,(2):7-9.
    [196]王朝辉,宗志强,李生秀,陈宝明.蔬菜的硝态氮累积及菜地土壤的硝态氮残留[J].环境科学,2002,23(3):79-83.
    [197]沈明珠,翟宝杰,东惠茹,等.蔬菜硝酸盐的研究Ⅰ.不同蔬菜硝酸盐和亚硝酸盐含量评价[J].园艺学报,1982, 9(4):43-47.
    [198]付时丰,罗雪梅,杜立宇,等.沈阳市农业污染现状的初步调查[J].环境保护科学,2002, 28(2): 31-32, 51.
    [199]李会合,王正银.施肥对叶类蔬菜硝酸盐含量的影响[J].磷肥与复肥, 2001, 16 (3): 65-67.
    [200]黄益宗,冯宗炜,王效科,等.硝化抑制剂在农业上应用的研究进展[J].土壤通报,2002,33(4):310-315.
    [201]孙志梅,武志杰,陈利军,贾立斌.土壤硝化作用的抑制剂调控及其机理[J].应用生态学报,2008,19(6): 1389-1395.
    [202]傅柳松,刘超,吴方正.钼和双氰胺降低蔬菜硝酸盐积累的效应研究[J].环境污染与防治,1994,16(3):4-6.
    [203]胡勤海,傅柳松.双氰胺对蔬菜硝酸盐积累抑制作用的研究[J].环境污染与防治,1991,13(1):6-8.
    [204]舒冬妮,齐鑫山.双氰胺抑制蔬菜积累硝酸盐的试验研究[J].农业环境保护,1992,11(4):176-178.
    [205]石美,张妹婷,沈峰,梁东丽,党虎玲.石灰性土壤中不同硝化抑制剂的抑制效果极其对亚硝态氮累积的影响[J].中国农业科学,2011,44(3):500-506.
    [206] McTaggart IP, et al. Nitrous oxide emissions from grassland and spring barley, following N fertiliser application with and without nitrification inhibitors [M]. Biol Fertil Soils, 1997, 25:261 -268.
    [208]刘永刚,武志杰,陈利军,等.抑制剂尿素施用对芹菜生长和品质的影响[J].生态学杂志,2006,25(9):1024-1027.
    [209]姬兴杰,熊淑萍,李春明,张伟,等.不同肥料类型对土壤酶活性与微生物数量时空变化的影响[J].水土保持学报,2008,22(1):123-133.
    [210]王健鹏,李阿红,王会志.有机肥对土壤理化性质的影响[J].吉林蔬菜,2007, 4:51-53.