氮肥管理模式对设施菜地氮素残留与利用的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国集约化设施蔬菜生产中氮素不合理投入导致资源浪费、土壤质量退化和环境污染风险增加等突出问题,以我国设施蔬菜生产典型区山东寿光为研究基地,通过实地调查、田间试验,研究了不同氮肥管理模式对不同棚龄设施菜地土壤肥力质量、环境质量和氮素利用的影响。采用灰关联度方法初步确定了氮肥优化管理模式,利用15N交叉双标记的田间微区实验探明了农民习惯施氮和氮肥优化管理模式下有机、无机氮素在植物-土壤体系中的去向。研究提出了山东寿光设施菜地合理的氮肥管理模式,同时为保持设施蔬菜优质高效生产和土壤可持续利用提供了理论和技术支持。主要研究结果如下:
     (1)在对寿光设施菜地的实地调查和已有资料分析的基础上,提出了当地农民习惯施肥量:化肥氮1000kg N/ha,有机肥氮1200kg N/ha。寿光集约化设施菜地农民习惯水肥管理下氮素的盈余结果表明,设施菜地土壤氮素损失情况十分严重。
     (2)设施菜地0-20cm耕层土壤肥力水平随种植年限的增加而增加,与农民习惯氮肥管理模式相比较,减施氮肥管理模式在耕层中能够保证较高的土壤肥力。随着氮肥施用量和种植年限的增加,耕层土壤中电导率含量显著增加(P<0.05),且土壤电导率与土壤硝态氮含量间存在显著的正相关关系。与农民习惯氮肥管理模式相比较,减施氮肥管理模式下土壤电导率均有降低,说明减施氮肥模式能够有效地抑制土壤盐渍化的形成。硝态氮是设施菜地无机氮残留的主要形式。低龄大棚硝态氮主要累积在0-20cm土层,随着氮肥的不断施入,高龄大棚中60-100cm土层均有较多的硝态氮累积。减施氮肥管理模式均能够降低土层硝态氮的积累,其中以50%农民习惯化肥氮(500kg N/ha)+秸秆+滴灌模式降低的土壤硝态氮累积最显著(P<0.05)。
     (3)农民习惯氮肥管理模式下过量的氮肥投入没有显著提高作物的产量和品质,反而降低了氮肥农学效率、氮肥利用率和氮肥生理效率,产值、效益和产投比的下降;较农民习惯施氮量减少30%-50%能够保证番茄具有较高的产量和品质,有利于提高作物对氮素的吸收和利用,但是需要配合其他的措施效果更好。
     (4)灰关联度法结果表明,50%农民习惯化肥氮(500kg N/ha)+秸秆+滴灌的管理模式在番茄生产管理中的综合评价最好,农民习惯氮肥管理模式在设施生产中综合效益最低。15N双标记示踪试验结果表明,两个氮肥管理模式下作物对当季化肥氮的吸收和利用均显著高于对有机肥氮的吸收和利用(P<0.05);化肥氮主要以硝态氮的形式残留在土壤中,而有机肥氮主要以有机结合态氮的形态存在,土壤残留的氮均随土层深度的增加而降低;化肥氮的损失量和损失率均低于有机肥氮;氮肥优化模式能够显著提高化肥氮和有机肥氮的吸收和利用,显著降低化肥氮在土壤中的残留和氮肥在不同途径的损失量(P<0.05),而对有效减少有机肥氮在土壤中的残留和损失方面相差不大。
     基于上述试验结果,综合考虑氮肥管理模式对设施菜地农学效应、肥力效应和环境效应影响,确定在寿光设施菜地的化肥氮投入量为500kg N/ha,灌溉方式为滴灌,并在设施菜地中添加一定量的秸秆调节土壤C/N比,有利于稳定土壤-蔬菜系统的氮素平衡,保证番茄产量和品质、改善土壤质量和降低化肥氮的表观损失,从可持续发展角度来看,具有更大的应用价值。
Excessive nitrogen (N) fertilization input has resulted in deteriorated crop yield and quality, lowefficiency of N use, soil quality degeneration and serious environmental problems, etc. Field plot trailsthat aiming to resolve the problems were carried out in Guan Lu village (GL) and Dong Liu Ying village(DLY) of Shouguang, Shandong Province, the famous greenhouse vegetable production base in northernChina. Based on the results of the effects of different N fertilizer management models on soil quality,utilization and fate of N and the statistical analysis of Gray Relational Analysis, an optimum N fertilizermanagement model was selected. To understand the mechanism of N fertilizer recovery rates underfarmer’s common practices and optimum N fertilizer management model, the micro-plot experimentwith~15N tracing technique was utilized to investigate the fate and utilization on chemical and organic Nfertilizer. The main findings were as follows:
     (1) Based on the statistical data of literatures and the farm’s survey in Shouguang, theconventional chemical and organic N were1000and1200kg/ha, respectively. N surplus was analyzedaccording to “black box method” under conventional N fertilizer model. The results showed N loss wasvery serious in greenhouse vegetable system.
     (2) Soil fertility such as total N, organic matter, available P and K were high in the0-20cmsurface layers and accumulation increasing with increasing length of period of vegetable production.There were no significant differences on soil urease and invertase abilities among different N fertilizermanagement models. Compared with conventional N fertilizer model, reducing30%-50%N fertilizercombined with some measurements could preserve soil fertility in greenhouse vegetable. Soil salinityoccured in the topsoil layer (0-20cm) of greenhouse, significantly increasing with increasing Nfertilizer application and length of period of vegetable production (P<0.05). Soil electrical conductivity(EC) values were highly significantly and positively correlated with NO_3~--N concentrations, indicatingthat the excess NO_3~--N accumulations were an important factor contributing to soil salinity.Compared with conventional N fertilizer management model, soil EC value significantly lower in N5model (P<0.05). The results indicated that reducing50%chemical N fertilizer combined with straw anddrip irrigation had significant impact on soil salinization inhibition. NO_3~--N accumulation was the mainsoil mineral N residue form. NO_3~--N accumulation in0-100cm soil profile was significantly increasedwith the increasing of N rate. NO_3~--N mainly accumulated in0-20cm soil depth in GL. Over-applied Nfertilizer under conventional N fertilizer management model resulted in more NO_3~--N accumulated in60-100cm soil profile in DLY. The average NO_3~--N accumulation amounts in0-100cm soil profileunder conventional N fertilizer management model were higher than other N fertilizer models.Reducing50%N fertilizer combined with straw and drip irrigation significantly decreased soil NO3–-Naccumulation.
     (3) The highest N fertilizer rate and irrigation (conventional N fertilizer model) not only lowered Nagronomic efficiency, N recovery and N physiologic efficiency, but also failed to improve tomato yieldand quality, thus reducing outputs and profit for farmers and wasting N fertilizer. High crop yields, quality and N use efficiency could be achieved with reducing30%-50%N fertilizer application, butsome measurements should be combined with it.
     (4) Gray Relational Analysis indicated that the best comprehensive evaluation was achieved by50%reduction of the conventional N chemical fertilizer input combined with adjustment of the C/Nratio and water–fertilizer coupling (N5model) and the worst comprehensive evaluation wasconventional N fertilizer model (N1). So N5model was selected as the optimum N fertilizermanagement model. The micro-plot experiment with~15N tracing technique showed that~15N recoveryderived from chemical N fertilizer was significantly higher than~15N recovery derived organic Nfertilizer under N1and N5models. NO_3~--N was the main chemical N residue form, but organic-boundwas the main organic N residue form.~15N loss derived from chemical N fertilizer was significantlyhigher than~15N recovery derived organic N fertilizer. Increasing N rate decreased crop recovery butincreased soil N recovery. Compared with N1model,~15N recovery under optimizing N application wassignificantly improved, whatever~15N derived from chemical or organic N fertilizer (P<0.05). Otherwise,~15N residue and loss derived from chemical N fertilizer were significantly decreased under N5model(P<0.05). A great deal of manure was used for the high benefit of greenhouse vegetable cropping system,which led to more organic N residue and loss. There was no significantly difference between N1and N5model.
     The present study showed that environmental protection and high crop yields could be achievedwith a50%reduction of the conventional N chemical fertilizer input combined with adjustment of theC/N ratio and fertigation. These combined approaches represent a practical approach for reducingexcess N input while maintaining the sustainability of greenhouse-based intensive vegetable systems.
引文
1.白优爱.京郊保护地番茄养分吸收及氮素调控研究[D].中国农业大学,硕士论文,2003
    2.蔡贵信,文启孝.土壤氮素.江苏科学技术出版社,1992,171-196.
    3.曹兵,贺发云,徐秋明等.南京郊区番茄地中氮肥的气态氮损失[J].土壤学报2006,43(1):62-68.
    4.陈宝明.施氮对植物生长、硝态氮累积及土壤硝态氮残留的影响[J].生态环境,2006,15(3):630-632.
    5.陈殿奎.关联行业,2006, http://www.chenhr.com
    6.陈清,张宏斌,李晓林.德国蔬菜生产的氮肥推荐系统[J].中国蔬菜,2000.55-57.
    7.陈晓群,姚军,朱文清等.设施蔬菜地土壤硝态氮的变化及其对环境的影响[J].宁夏农林科技,2004,5:4-5.
    8.陈新平,邹春琴,刘亚萍等.菠菜不同品种累积硝酸盐能力的差异及其原因[J].植物营养与肥料学报,2000,6(1):30-34.
    9.陈振德,何金明,陈建美等.施肥对茼蒿硝酸盐和亚硝酸盐含量的影响[J].山东农业科学,1999,40-40.
    10.褚素贞,张乃明,毛昆明,史静等.昆明地区设施土壤养分变化规律研究[J].云南农业大学学报,2005,20(3):366-368,387
    11.邓美华.稻田生态系统优化施氮与氨挥发损失研究[D].西北农业大学,2005.
    12.董章杭,李季,孙丽梅.集约化蔬菜种植区化肥施用对地下水硝酸盐污染影响的研究-以“中国蔬菜之乡”山东省寿光市为例[D].农业环境科学学报,2005,24(6):1139-1144.
    13.窦超银,康跃虎,万书勤等.覆膜滴灌对地下水浅埋区重度盐碱地土壤酶活性的影响.农业工程学报[J],2010,26(3):44-51.
    14.杜会英.保护地蔬菜氮肥利用、土壤养分和盐分累积特征研究[D].中国农业科学院研究生院博士论文,2007.
    15.杜连凤,赵同科,张成军等.京郊地区3种典型农田系统硝酸盐污染现状调查[J].中国农业科学,2009,42(8):2837-2843.
    16.杜连凤.长江三角洲地区菜地系统氮肥利用与土壤质量变异研究[D].中国农业科学院研究生院博士论文,2005.
    17.杜社妮,张成娥,徐福利等.不同施肥对日光温室西红柿菜地土壤酶活性的影响[J].西北植物学报,2003,8:165-168.
    18.杜新民,吴忠红,张永清等.不同种植年限日光温室土壤盐分和养分变化研究[J].水土保持学报,2007,21(2):78-80.
    19.樊淑文.番茄配方施肥研究[M].北京农业科技汇编,1990.
    20.高兵,任涛,李俊良等.灌溉策略及氮肥施用对设施番茄产量及氮素利用的影响[J].植物营养与肥料学报,2008,14(6):1104-1109.
    21.高俊岭,宋朝玉,王玉军等.施肥对青岛市设施蔬菜产量、净产值及土壤环境的影响[J].中国生态农业学报,2011,19(6):1261-1267.
    22.高新昊.农作物秸秆资源化利用及日光温室番茄长季节栽培肥水管理技术[D].南京农业大学,博士学位论文,2006.
    23.高砚芳,段增强,郇恒福.宜兴市温室土壤理化性质的调查和分析[J].土壤(Soils),2007,39(6):968-972.
    24.高艳明,孙权,李建设.氮肥施用量对大白菜硝酸盐累积的影响研究[J].中国生态农业学报,2004,12(2):115-117.
    25.高中强.山东省设施蔬菜发展现状、问题及对策建议[J].产业论坛,2010,2:12-14,
    20.
    26.葛晓光,王晓雪,付亚文等.长期定位施氮条件下菜田氮素循环的研究[J].中国蔬菜,1999,1:13-17.
    27.耿增超,姜林,李珊珊等.祁连山中段土壤有机碳和氮素的剖面分布[J].应用生态学报.2011,2(3):65-672.
    28.巩建华,柯遵伟,李季.河北省藁城市蔬菜种植区化肥施用与地下水硝酸盐污染研究[J].农村生态环境,2004,20(1):56-59.
    29.古巧珍,杨学云,孙本华等.日光温室蔬菜地土壤主要养分含量及其累积特征分析[J].西北农林科技大学学报(自然科学版),2008,36(3):129-134.
    30.关松荫.土壤酶学研究方法.北京农业出版社,1986.
    31.郭全忠.安康市设施蔬菜施肥现状及土壤养分累积特性研究[J].安徽农业科学,2007,35(20):6194-6195.
    32.郭瑞英,彭丽华,陈清等.秸秆与氰胺化钙调控技术对温室黄瓜生长及氮素残留的影响[J].生态环境,2006,15(3):633-636.
    33.韩鹏远,焦晓燕,王立革等.太原城郊老菜区番茄氮肥利用率及氮去向研究[J].中国生态农业学报,2010,18(3):482-485.
    34.何飞飞.设施番茄生产体系的氮素优化管理及其环境效应研究[D].中国农业大学博士论文,2006.
    35.何景友,安景文,刘慧颖等.兴城地区土壤钾素状况及施钾肥对玉米的影响[J].杂粮作物,2003,2:107-108.
    36.和亮.京郊地下水硝态氮状况及设施菜地填闲作物利用研究[D].河北农业大学,硕士论文,2011.
    37.侯彦林,王曙光,郭伟等.尿素施肥量对土壤微生物和酶活性的影响[J].土壤通报,2004,35(3):301-305.
    38.黄德明.作物营养与科学施肥[M].农业出版社,1993,225-229.
    39.黄化刚,张锡洲,李廷轩.典型设施栽培地区养分平衡及其环境风险[J].农业环境科学学报,2007,26(2):676-682.
    40.黄锦法,曹志洪,李艾芬等.稻麦轮作田改为保护地菜田土地肥力质量的演变[J].植物营养与肥料学报,2003,9(1):19-25.
    41.黄丽华,沈根祥,钱晓雍等.砂质梨园和蔬菜地氮素流失及其影响因素研究[J].农业环境科学学报,2008,27(2):687-691.
    42.黄启为,彭建伟,罗建新等.化肥对蔬菜硝酸盐含量的影响[J].湖南农业大学学报(自然科学版),2002,28(5):387-390.
    43.吉艳芝.填闲作物阻控设施蔬菜土壤硝态氮累积和淋失的研究[D].河北农业大学博士论文,2010.
    44.冀宏杰.过量施用氮肥对北京市蔬菜硝酸盐含量影响的综合评估[D].河北农业大学硕士论文,1999.
    45.贾继文,李文庆,陈宝成.山东省蔬菜大棚土壤养分状况与施肥状况调查研究[J].谢建昌,菜园土壤肥力与蔬菜合理施肥.河海大学出版社,南京.1997,10:73-76.
    46.姜宁宁,李玉娥,华珞等.不同氮源及秸秆添加对菜地土壤N2O排放的影响[J].VIP学报,2012,1,225-229.
    47.姜宁宁.不同水肥措施对设施菜地土壤CO2和N2O排放的影响[D].首都师范大学,硕士论文,2011.
    48.焦艳平,康跃虎,万书勤等.干旱区盐碱地滴灌土壤基质势对土壤盐分分布的影响[J].农业工程学报,2008,24(6):53-58.
    49.巨晓棠,刘学军,张福锁.尿素配施有机物料时土壤不同氮素形态的动态及利用[J].中国农业大学学报,2002,7(3):52-56.
    50.巨晓棠,潘家荣,刘学军等.北京郊区冬小麦/夏玉米轮作体系中氮肥去向研究[J].植物营养与肥料学报,2003,9(3):264-270.
    51.巨晓棠,张福锁.关于氮肥利用率的思考.生态环境,2003,12(2):192-197.
    52.寇长林,巨晓棠,高强等.两种农作体系施肥对土壤质量的影响[J].生态学报,2004,24(11):2548-2556.
    53.李冰,王昌全,冯长春等.喷施不同钙肥对葛笋产量及品质的影响[J].中国农学通报,2004,20(2):129-131.
    54.李贵宝.几种蔬菜作物高产平衡施肥研究[J].土壤肥料,1990,2:37-38.
    55.李家康,陈培森,沈桂琴等.几种蔬菜的养分需求与钾素增产效应[J].土壤肥料,1997,3:3-6.
    56.李见云,侯彦林,化全县等.大棚设施土壤养分和重金属状况研究[J].土壤,2005,37(6):626-629.
    57.李建设,高艳明,孙权.氮肥形态与大白菜产量及硝酸盐累积的关系[J].中国蔬菜,2002,6:15-17
    58.李建伟.2005年我国蔬菜产业发展的回顾[J].中国蔬菜,2006,10:1-2
    59.李俊良,陈新平,李晓林等.大白菜氮肥施用的产量效应、品质效应和环境效应[J].土壤学报,2003,40(2):261-266.
    60.李俊良,崔德杰,孟祥霞等.山东寿光保护地蔬菜施肥现状及问题的研究[J].土壤通报,2002,33(2):126-128.
    61.李俊良.莱阳、寿光两种不同种植模式中蔬菜施肥问题的研究[D].中国农业大学,博士论文,2001.
    62.李树辉.北方设施菜地重金属的累积特征及防控对策研究[D].中国农业科学院研究生院博士论文,2011.
    63.李小刚,王平,刘淑英等.兰州砂田蔬菜施肥现状及钾肥肥效[J].土壤通报,2001,32(5):220-223.
    64.李晓林,张福锁,米国华主编.平衡施肥与可持续优质蔬菜生产[M].中国农业大学出版社,2000.
    65.李孝勇,武际,朱宏斌等.秸秆还田对作物产量及土壤养分的影响[J].安徽农业科学,2003,5:870-871.
    66.李银坤.不同水氮条件下黄瓜季保护地氮素损失研究[D].中国农业科学院研究生院,硕论文,2010.
    67.李战国.樱桃番茄在滴灌栽培时氮肥的合理施用量研究[J].长江蔬菜(学术版),2008,8b:42-44.
    68.李忠芳,陈金瑛,陈楚.过量施用氮肥对苋菜和木耳菜硝酸盐含量的影响[J].中国农学通报,2006,22(11):288-290.
    69.刘德,吴凤芝.哈尔滨市郊蔬菜大棚土壤盐分状况及影响[J].北方园艺,1998,6:1-2
    70.刘方春,聂俊华,刘春生等.不同施肥措施对土壤硝态氮垂直分布的特征影响[J].土壤通报,2005,36(1):52-55.
    71.刘哈丽.提高低浓度肥料的效率[J].化肥工业,19891:60.
    72.刘宏斌,李志宏,张云贵等.北京市农田土壤硝态氮的分布与累积特征[J].中国农业科学,2004,37(5):692-698.
    73.刘洪亮,褚贵新,赵凤梅等.北疆棉区长期膜下滴灌棉田土壤盐分时空变化与次生盐渍化趋势分析[J].中国土壤与肥料,2010,4,12-17
    74.刘建玲,廖文华,高志岭等.河北省蔬菜保护地土壤养分的积累状况及影响因素[J].河北农业大学学报,2004,27(1):19-24
    75.刘明月,秦玉芝,蔡雁平等.NPK施用量与芹菜硝酸盐积累和产量相关性[J].中国蔬菜,1998,6:4-7.
    76.刘微,赵同科,王丽英.不同水分、施氮量对土壤中硝态氮含量分布的影响[J].华北农学报,2006,21(3):27-30.
    77.刘晓军,陈竹君,张英莉等.不同栽培年限日光温室土壤养分累积特性研究[J].土壤通报,2009,40(2):285-289.
    78.刘晓燕.黄瓜、番茄日光温室生产中的氮素管理研究[D].西北农林科技大学,硕士论文,2010
    79.刘杏认,任建强,刘建玲.不同氮水平下有机肥碳氮比对土壤硝态氮残留的影响[J].干旱地区农业研究,2006,24(4):30-32.
    80.刘学军,赵紫娟,巨晓棠等.基施氮肥对冬小麦产量、氮肥利用率及氮平衡的影响[J].生态学报,2002,22(7):1122-1128.
    81.刘永刚,陈利军,武志杰.蔬菜中硝酸盐的积累机制及其调控措施[J].土壤通报,2006,37(3):612-616.
    82.刘兆辉,江丽华,张文君等.氮、磷、钾在设施蔬菜土壤剖面中的分布及移动研究[J].农业环境科学学报,2006,25(增刊):537-542.
    83.刘兆辉,江丽华,张文君等.山东省设施蔬菜施肥量演变及土壤养分变化规律[J].土壤学报,2008,45(2):296-303.
    84.刘兆辉,江丽华,张文君等.设施菜地土壤养分演变规律及对地下水威胁的研究[J].土壤通报,2008,39(2):293-298.
    85.刘真贞.不同施氮措施对菜地N2O排放的影响[D].华中农业大学硕士论文,2007.
    86.刘志民,李家金,薛继澄等.设施土壤的肥力特征及酶活性[J].土壤,1999,(5):273-275.
    87.刘子江,李荣华,左敬兰.保护地番茄产量与施用化肥效应的研究[J].土壤通报,1994,25(5):222-223
    88.卢凤刚,陈贵林,吕桂云等.不同供氮水平对韭菜产量和品质的影响[J].园艺学报,2005,32:l131-1133.
    89.鲁如坤.土壤-植物营养学原理和施肥[M].北京:化工工业出版社,1998.
    90.鲁如坤.土壤农业化学分析方法[M].中国农业科技出版社,1999.
    91.陆轶峰,李宗逊,雷宝坤.滇池流域农田氮、磷肥施用现状与评价[J].云南环境科学,2003,22(1):34-37.
    92.吕殿青,同延安,孙本华.氮肥施用对环境污染影响的研究[J].植物营养与肥料学报,1998,4(1):8-15
    93.吕国红,周广胜,赵先丽等.土壤碳氮与土壤酶相关性研究进展[J].辽宁气象,2005,2:6-8.
    94.马娟娟,胡全才,王申贵.钾锌肥与氮肥配施对油菜体内硝酸盐积累的影响[J].山西农业科学,2000,28(2):3-6.
    95.马文奇,毛达如,张福锁.山东省蔬菜大棚养分积累状况[J].磷肥与复肥,2000,5(3):65-67.
    96.毛达如,申建波.植物营养研究方法[M].2005,中国农业大学出版社.
    97.米国全,袁丽萍,龚元石等.不同水氮供应对日光温室番茄土壤酶活性及生物环境的影响的研究[J].农业工程学报,2005,21(7):124-127.
    98.苗锦山,刘文波,沈火林.寿光蔬菜产业发展的经验、其实和对策[J].中国蔬菜,2008,10:8-10.
    99.闵炬,施卫明,王俊儒.不同施氮水平对大棚蔬菜氮磷钾养分吸收及土壤养分含量的影响[J].土壤,2008,40(2):226-231.
    100.潘剑君,房世波,孙维侠等.利用土壤信息系统进行水稻施氮量决策初探-以江苏省大丰市为例[J].南京农业大学学报,2000,23(3):53-56.
    101.亓延凤,魏珉,王秀峰.作物秸秆对日光温室连作黄瓜生育的影响及其适宜用量研究[J].山东农业大学学报(自然科学版),2007,38(2):178-182.
    102.齐红岩,李天来,郭泳等.日光温室番茄长季节栽培条件下植株营养元素吸收特性的研究[J].沈阳农业大学学报,2000,3l(l):64-67.
    103.钱海燕,王兴祥,黄国勤等.施肥对连作蔬菜地蔬菜产量和土壤氮素含量的影响[J].中国农学通报,2008,24(7):270-275.
    104.秦巧燕,贾陈忠,曲东等.施氮量对设施栽培土壤全盐量影响分析[J].现代农业科技,2007,3:231-234.
    105.秦巧燕,贾陈忠,覃敏等.陕西关中蔬菜设施栽培土壤中硝态氮的累积现状[J].长江大学学报(自然版),2005(11):12-14.
    106.任祖淦,陈玉水,唐福钦等.有机无机肥料配施对土壤微生物和酶活性的影响[J].植物营养与肥料学报.1996,2(3):279-283.
    107.沈宏,曹志洪,徐本生.玉米生长期间土壤微生物量与土壤酶变化及其相关性研究[J].应用生态学报,1999,10(4):471-474.
    108.史春余,张夫道,张俊清等.长期施肥条件下设施蔬菜土壤养分变化研究[J].植物营养与肥料学报,2003.9(4):437-441.
    109.宋效宗.保护地生产中硝酸盐的淋洗及其对地下水的影响[D].中国农业大学,博士学位论文,2007.
    110.孙彭寿,李会合,戴亨林.氮磷钾对叶菜类产量和品质的影响[J].西南农业大学学报,2004,26(6):710-714.
    111.孙小凤.不同供氮水平对油白菜产量和品质的影响[J].土壤肥料,2005,4:11-13.
    112.孙晓,钟敏,庄舜尧.长三角蔬菜种植区土壤有机质与氮素含量分析[J].中国农学通报2011,27(8):167-171.
    113.汤丽玲.日光温室番茄的氮素追施调控技术及其效益评估[D].中国农业大学博士论文,
    2004.
    114.唐莉莉,陈竹君,周建斌.蔬菜日光温室栽培条件下土壤养分累积特性研究[J].干旱地区农业研究,2006,24(2):70-74.
    115.唐咏,梁成华,刘志恒等.日光温室蔬菜栽培对土壤微生物和酶活性的影响[J].沈阳农业大学学报(自然科学版),1999,30(1):16-19.
    116.田昌玉,左余宝,林治安等.氮肥利用率概念与15N示踪测定方法研究进展[J].中国农学通报,2010,26(7):210-213.
    117.田琳琳,庄舜尧,杨浩.不同施肥模式对芋艿产量及菜地土壤中氮素迁移累积的影响[J].生态环境学报,2011,20(12):1853-1859.
    118.王朝辉,宗志强,李生秀等.蔬菜的硝态氮累积及菜地土壤的硝态氮残留[J].环境科学,2002,23(3):79-83.
    119.王芳,李友宏,赵天成等.NPK配施及不同氮源对蔬菜产量及硝酸盐积累的影响[J].宁夏农林科技,2009,3:4-5.
    120.王辉,董元华,安琼等.高度集约化利用下蔬菜地土壤养分累积状况[J].土壤,2006,3(1):61-65.
    121.王克武,肖艳,贾小红等.滴灌施肥条件下番茄施氮量的确定[J].中国蔬菜(增刊),2005:67-69.
    122.王平,刘淑英.兰州安宁区蔬菜保护地土壤盐分的含量及其剖面分布规律[J].甘肃农业大学学报,1998,33(2):186-189.
    123.王思萍.大棚栽培对土壤盐渍化的影响[J].安徽农业科学,2007,35(10):2950-2951.
    124.王秀斌.优化施氮下冬小麦/夏玉米轮作农田氮素循环与平衡研究[J].中国农业科学院研究生院博士论文,2009.
    125.王秀峰.应用数字图像技术进行黄瓜和番茄氮素营养诊断的研究[D].吉林农业大学,硕士论,2005.
    126.韦泽秀.水肥对大黄瓜和番茄生理特性及土壤环境的影响[D].西北农林科技大学,博士论文,2009.
    127.翁伟,杨继涛,赵青玲等.我国秸秆资源化技术现状及其发展方向[J].中国资源综合利用,2004,(7):18-21.
    128.吴建繁,王运华,贺建德等.京郊保护地番茄氮磷钾肥料效应及其吸收分配规律研究[J].植物营养与肥料学报,2000,6(4):409-416.
    129.吴建繁,王运华.无公害蔬菜营养与施肥研究进展[J].植物学通报,2000,17(6):492-503.
    130.吴建繁.北京市无公害蔬菜诊断施肥与环境效应研究[D].华中农业大学,博士论文,
    2001.
    131.吴忠红,周建斌.山西设施栽培条件下土壤理化性质的变化规律[J].西北农林科技大学学报,2007,35(5):136-139.
    132.习斌,张继宗,左强等.保护地菜田土壤氨挥发损失及影响因素研究[J].植物营养与肥料学报,2010,16(2):327-333.
    133.肖厚军,闫献芳,彭刚.氮钾硫肥配施对大白菜产量和硝酸盐含量的影响[J].贵州农业科学,2001,29(6):20-22.
    134.肖千明,高秀兰,娄春荣等.辽宁省蔬菜保护地土壤肥力现状分析[J].辽宁农业科学,1997,3:17-21.
    135.熊汉琴,王朝辉,宰松梅等.种植年限对蔬菜大棚土壤肥力的影响[J].水土保持学报,2007,14(3):137-139
    136.徐福利,梁银丽,蔡典雄等.农田水肥关系研究现状[J].首都师范大学学报(自然科学版),2007,28(1):83-88.
    137.徐晓燕.钾氮肥配施对青椒效应的研究[J].土壤通报,1998,29(3):123-125.
    138.许前欣,孟兆芳,于彩虹.减少蔬菜体内硝酸盐污染的施肥技术研究[J].农业环境保护,2000,19(2):109-110.
    139.许映祥,周志宏.大棚番茄徒长原因与防治技术[J].上海蔬菜,2008,6:86-86.
    140.续勇波,郑毅,刘宏斌等.设施栽培中生菜养分吸收和氮磷肥料利用率研究[J].云南农业大学学报,2003,18(3):221-227.
    141.薛继澄,毕德义,李家金等.保护地栽培蔬菜生理障碍的土壤因子与对策[J].土壤肥料,1994,1:4-9.
    142.颜雄,张杨珠,刘晶.土壤肥力质量评价的研究进展[J].湖南农业科学,2008,5:82-85.
    143.杨丽娟,梁成华,须晖.不同用量氮、钾肥对油菜产量及品质的影响[J].沈阳农业大学学报,1999,30(2):109-111.
    144.杨丽娟,张玉龙,李晓安等.灌水方法对塑料大棚土壤-植株硝酸盐分配影响[J].土壤通报,2000,31(2):63-65.
    145.杨黾,杨丽娟,常青等.不同秸秆用量对保护地黄瓜产量及土壤养分的影响[J].北方园艺,2011,46-48.
    146.杨业凤,姚政,金海洋等.上海市浦东新区设施菜地土壤养分特征及改良建议[J].上海农业学报,2009,25(1):48-51.
    147.杨治平,陈明昌,张强等.不同施氮措施对保护地黄瓜养分利用效率及土壤氮素淋失影响[J].水土保持学报,2007,2(2):57-60.
    148.姚春霞,陈振楼,许世远.上海市郊旱作农田土壤盐分研究[J].环境科学,2007,28(6):1372-1376.
    149.姚静.苏南大棚环境特征及设施系统番茄养分吸收调控机制[J].中国科学院土壤研究所,博士论文,2007.
    150.姚志生,郑循华,周再兴等.太湖地区冬小麦田与蔬菜地N2O排放对比观测研究[J].气候与环境研究,2006,11(6):691-701.
    151.叶灵,巨哓棠,刘楠等.华北平原不同农田类型土壤硝态氮累积及其对地下水的影响[J].水土保持学报,2010,24(2):165-168,178.
    152.于红梅,李子忠,龚元石.不同水氮管理对蔬菜地硝态氮淋洗的影响[J].中国农业科学,2005,38(9):1849-1855.
    153.于红梅,李子忠,龚元石.传统和优化水氮管理对蔬菜地土壤氮素损失与利用效率的影响[J].农业工程学报,2007,23(2):54-59.
    154.于亚军,朱波,荆光军.成都平原土壤-蔬菜系统N2O排放特征[J].中国环境科学,2008,28(4):313-318.
    155.余海英,李廷轩,周健民.典型设施栽培土壤盐分变化规律及潜在的环境效应研究.土壤学报,2006,43(4):571-576.
    156.余延丰,熊桂云,张继铭等.秸秆还田对作物产量和土壤肥力的影响[J].湖北农业科学,2008,47(2):169-171.
    157.於丽华.不同灌溉施肥条件下保护地氮素去向及利用的研究[D].沈阳农业大学,硕士论文,2005.
    158.虞娜,张玉龙,黄毅等.温室滴灌施肥条件下水肥耦合对番茄产量影响的研究[J].土壤通报,2003,34(3):179-183.
    159.宇万太,周桦,马强等.氮肥施用对作物吸收土壤氮的影响:兼论作物氮肥利用率[J].土壤学报,2010,47(1):90-96.
    160.袁新民,李晓林,同延安等.陕西关中地区蔬菜地土壤的NO3--N累积[J].土壤侵蚀与水土保持学报,1999,5(5):103-105。
    161.袁新民,王周琼.硝态氮的淋洗及其影响因素[J].干旱地区研究,2000,17(4):46-52.
    162.曾路生,崔德杰,李俊良等.寿光大棚菜地土壤呼吸强度、酶活性、pH与EC的变化研究[J].植物营养与肥料学报,2009,15(4):865-870.
    163.曾希柏,白玲玉,李莲芳等.山东寿光不同利用方式下农田土壤有机质和氮磷钾状况及其变化[J].生态学报,2009,29(7):3737-3746.
    164.张迪,牛明芬,王少军等.不同有机肥处理对设施菜地土壤硝态氮分布影响[J].农业环境科学学报,2010,29(增刊):156-161.
    165.张福锁,王激清,张卫峰等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008,45(3):915-924.
    166.张贵龙.蔬菜保护地氮素利用与去向研究[D].中国农业科学院研究生院博士论文,2009.
    167.张国红.施肥水平对日光温室番茄生育和土壤环境的影响[D].中国农业大学博士论文,
    2004.
    168.张洪程,王秀芹,戴其根等.施氮量对杂交稻两优培九产量、品质及吸氮特性的影响[J].中国农业科学,2003,36(7):800-806.
    169.张继宗,刘培财,左强等.北方设施菜地夏季不同填闲作物的吸氮效果比较研究[J].农业环境科学学报,2009,28(12):2663-2667.
    170.张丽娟,巨晓棠,刘辰琛等.北方设施蔬菜种植区地下水硝酸盐来源分析[J].中国农业科学,2010,43(21):4427-4436.
    171.张漱茗,江丽华,闫华等.济南市售蔬菜硝酸盐含量及施肥影响[J].土壤肥料,1997,5
    172.张维理,徐爱国,冀宏杰等.中国农业面源污染形势估计及控制对策III.中国农业面源污染控制中存在的问题分析[J].中国农业科学,2004,37(7):1026-1033.
    173.张文涛.番茄栽培水肥耦合效应及肥料氮素去向[D].沈阳农业大学,博士论文,2006.
    174.张相松,刘兆辉,江丽华等.设施菜地土壤硝态氮淋溶防控技术的研究[J].青岛农业大学学报(自然科学版),2009,26(2):207-211.
    175.张学军,赵营,陈晓群等.滴灌施肥中施氮量对两年蔬菜产量、氮素平衡及土壤硝态氮累积的影响[J].中国农业科学,2007,40(11):2535-2545.
    176.张振贤,于贤昌.蔬菜施肥原理与技术[M].中国农业大学出版社,1996..
    177.张志斌.我国蔬菜设施栽培技术发展趋势与任务的探讨[C].2008年全国现代设施园艺技术交流会论文集,1-8.
    178.章圣强.沿黄灌区设施蔬菜土壤养分状况及重金属含量与评价[D].兰州大学,硕士论文,2010.
    179.赵凤艳,魏自民,陈翠玲.氮肥用量对蔬菜产量和品质的影响[J].农业系统科学与综合研究,2001,17(1):43-47.
    180.赵凤艳,吴凤芝,刘德等.大棚菜地土壤理化特性的研究[J].土壤肥料,2000(2):11-13.
    181.赵青华,王金芬,胡焕平.氮素水平对日光温室黄瓜品质的影响[J].北方园艺,2007(6):13-14.
    182.赵允格,邵明安.不同施肥条件下农田硝态氮迁移的试验研究[J].农业工程学报,2002,18(4):37-40.
    183.甄兰.氮素营养调控与蔬菜品质研究[D].河北农业大学,硕士论文,2002.
    184.郑兴耗,温贤芳.尿素施肥量对土壤硝态氮形成动力学的影响[J].核农学报,1995,9(增刊):41-48.
    185.钟华平,岳燕珍,樊江文.中国作物秸秆资源及其利用[J].资源科学,2003.25(4):62-67.
    186.周博,高佳佳,周建斌.日光温室栽培下不同种类有机肥氮素矿化特性研究[J].植物营养与肥料学报,2011,6,1531-1537.
    187.周建斌,翟丙年,陈竹君等.设施栽培菜地土壤养分的空间累积及其潜在的环境效应[J].农业环境科学学报,2004,23(2):332-335.
    188.朱德文,陈永生,程三六.我国设施农业发展存在的问题与对策研究[J].农业装备技术,2007,33(1):1-3.
    189.朱建华.蔬菜保护地氮素去向及利用研究[D].中国农业大学博士论文,2002.
    190.朱同彬.设施栽培条件下施肥对土壤生态因子和番茄生长的影响研究[D].山东农业大学硕士论文,2008.
    191.朱兆良,文启孝.中国土壤氮素[M].江苏科学技术出版社,1992,171-196.
    192.朱兆良.推荐氮肥适宜施用量的方法论诌议[J].植物营养与肥料学报,2006,12(1):1-4.
    193.朱兆良.农田中氮肥的损失和对策[J].土壤与环境,2000,9(1):1-6.
    194.朱兆良.中国土壤氮素研究[J].土壤学报,2008,45(5):778-783.
    195. Abril A, Baleani D., Casado-Murillo N., et al. Effect of wheat crop fertilization on nitrogendynamics and balance in the Humid Pampas, Argentina [J]. Agric Ecosyst Environ,2007,119:171–176.
    196. Alexiev N., Rankov V. The effect of intensive organo-mineral fertilization on the yield ofgreenhouse cucumbers and mineralization of nitrogen-containing organic compounds in soil[J]. Aeta Horticulture.1997.462:225-228.
    197. Allaire-Leung S.E., Wu L., Mitchell J.P., et al. Nitrate leaching and soil nitrate content asaffected by irrigation uniformity in a carrot field [J]. Agricultural Water Management,2001,48(1):37-50.
    198. Allen A. G., Jarvis S.C., Headon D.M. Nitrogen oxide emissions from soils due to inputs ofnitrogen from excreta return by livestock on grazed grassland in the UK [J]. Soil Biologyand Biochemistry,1996,28(4-5):597-607
    199. Aparicio V., Costa J.L., Zamora M. Nitrate leaching assessment in a long-term experimentunder supplementary irrigation in humid Argentina [J]. Agricultural Water Management,2008,95(12):1361-1372.
    200. Babiker I. S., Mohamed A., Mohamed A., et al. Assessment of groundwater contaminationby nitrate leaching from intensive vegetable cultivation using geographical informationsystem [J]. Environment International,2004,29(8):1009-1018.
    201. Balliu A., Ibro V. Influence of different levels of potassium fertilizers on growth, yield andascorbic acid content of tomato fruit grown in non-heated greenhouse [J]. ActaHorticulturae.2002,579:385–388.
    202. Barthelmie R.J., Pryor S.C. Implications of ammonia emissions for fine aerosol formationand visibility impairment: a case study from the lower Fraser Valley, British Columbia [J].Atmospheric Environment,1998,32(3):345-352.
    203. Bhanu K., Rekha, Govind Reddy M., Mahavishnan K. Nitrogen and water use efficiency ofbhendi (Abelmoschus esculentus L. Moench) as influenced by drip fertigation [J]. Journal ofTropical Agriculture,2005,43(1-2):43-46,
    204. Blaine R. H., Hutmacher R.B., May D.M. Drip irrigation of tomato and cotton under shallowsaline ground water conditions [J]. Irrigation and Drainage Systems,2006,20(2-3):155-175.
    205. Blom Z.M., Alber H.E. Nitrate concentration and reduction in different genotypes of lettuce[J]. Amer. Sco.Hort Sci,1986,11(6):908-911.
    206. Bouwman A.F, Boumans L.J.M, Batjes N. H. Estimation of global NH3volatilization lossfrom synthetic fertilizers and animal manure applied to arable lands and grasslands [J].Global Biogeochem Cycles,2002, l6(2):1024-1039.
    207. Cai G., Chen D., White R.E., et al. Gaseous nitrogen losses from urea applied to maize on acalcareous fluvo-aquic soil in the North China Plain [J]. Australian Journal of Soil Research,2002,40(5):737-748. www.licor.com/8100A
    208. Chandra P., Singh A. K., Behera T. K., et al. Influence of graded level of nitrogen,phosphorus and potassium on the yield and quality of polyhouse grown tomato(Lycopersicon esculentum) hybrids [J]. Indian J. Agr. Sci.2003,73(9):497-499.
    209. Chen Q., Zhang X.S., Zhang H.Y.,et al. Evaluation of current fertilizer practice and soilfertility in vegetable production in the Beijing region [J]. Nutrient Cycling inAgroecosystems,2004,00:1-8.
    210. Cheng L.S., Lu J.L. Vegetable nutrition and fertilization techniques [M]. Beijing: ChineseAgriculture Press,2002.
    211. Dang J.V., Xiang M., Guo W.L.,et al. Study of the Regularity of the Salt Accumulation ofTopsoil and NO3--N Migrationin Greenhouse Soil and Years of Vegetables Cultivation [J].Chinese Agricultural Science Bulletin,2004,6,134-138.
    212. Darwish T., Atallah T., EI Moujabber M. Salinity evolution and crop response to secondarysoil salinity in two agro-climatic zones in Lebanon [J]. Agricultural Water Management,2005,78:152-164.
    213. Diez J. A., Caballero R., Roman R., et al. Intergrated fertilizer and irrigation management toreduce nitrate leaching in Central Spain [J]. Journal of Environmental Quality,2000,29(5):1539-1547.
    214. Doran J. W., Sarrantonio, M., Liebig M.A. Soil health and sustainability [J]. Advances in.Agronomy,1996,56:1-54.
    215. Evaluation for for sustainable land management in the developing world [M]. Vol.2:Technical papers. Bangkok, Thailand: International Board for Research and Management,
    1991. IBSRAM Proceeding No.12(2).
    216. Faci J.M., Bensaci A., Slatin A., et al. Acase study for irrigation modernization I.Characterization of the district and analysis of water delivery records [J]. Agricultural WaterManagement,2000,42(3):313-314.
    217. Fink M., Scharpf H.C. Apparent nitrogen mineralization and recovery of nitrogen supply infield trials with vegetable crops [J]. Journal of Horticultural Science&Biotechnology,2000,75:723-726.
    218. Gent M.P.N. Yield of greenhouse tomato in response to supplemental nitrogen andpotassium [J]. Acta Hort,2002,633,341-348.
    219. Greenwood D.J. Modeling N-response of field vegetable crops grown under diversecondition with N-able: a review [J]. Journal Plant Nutrient,2001,24(11):1799-1815.
    220. Greenwood D.J. Modelling N-response of field vegetable crops under diverse conditionswith N-ABLE: a review [J]. Journal of Plant Nutrition,2001,24(11):1799-1815.
    221. Greenwood D.L., Rahn, J., Draycott C.R., et al. Vaidyanathan, Modelling and measurementof the effects of fertilizer-N and residue incorporation on N dynamics in vegetable cropping[J]. Soil Use and Management,1996,12:13-24.
    222. Halvorson A. D., Curtis A.R. Nitrogen fertilizer requirements in an annual dryland croppingsystem [J]. Agronomy Journal,1994,86(2):315-318.
    223. Harris G.L., Catt J.A. Overview of the studies on the cracking clay soil at Brimstone Farm,UK [J]. Soil Use and Management,1999,15(4):233-239(7).
    224. Hartz T.K., Bendixen W.E., Wierdsma L. The value of presidedress soil nitrate testing as anitrogen management tool in irrigated vegetable production [J]. HortScience,2000,35(4):651-656
    225. He Q., Chen R.F., Jiang X.P., et al.Yield and nitrogen balance of greenhouse tomato(Lycopersicum esculentum Mill.) with conventional and site-specific nitrogen managementin northern China [J]. Nutr. Cycl. Agroecosyst,2007,77,1–14.
    226. Heckman J. R., Morris T., Sims J.T., et al. Pre-sidedress soil nitrate testing is effective forfall cabbage [J].Hort Science,2002,37(1):113-117.
    227. Heppner C., Jean L.C., Dorne M., et al. The first risk benefit assessment of nitrate invegetables: A European perspective [J]. Toxicology Letters,2008,180:65.
    228. Hisatlmi H., Yoshinori Y. Variatiom in nitrogen uptake and nitrate-nitrogen concentrationamong Sorghum groups [J]. Soil Sci.Plant Nutr.,2000,46(1):97-104.
    229. Hisatlmi H., Yoshinori Y. Variatiom in nitrogen uptake and nitrate-nitrogen concentrationamong Sorghum groups [J]. Soil Sci.Plant Nutr.,2000,46(1):97-104.
    230. Home P. G., Panda R. K., Kar S. Effect of method and scheduling of irrigation of water andnitrogen use effiencies of Okra (Abelmoschus esculentus)[J]. Agricultural WaterManagement,2002,55(2):159-170.
    231. Hompson R.B., Martínez-Gaitan C.,Gallardo M., et al. Identification of irrigation and Nmanagement practices that contribute to nitrate leaching loss from an intensive vegetableproduction system by use of comprehensive survey [J]. Agricultural Water Management,2007,89(3):261-274
    232. Husen, A. and Pal, M.2004. Effect of nitrogen, phosphorus and potassium application tostock plants on nutrient status of coppice shoots of teak (Tectona grandis Linn f.)[J]. Ann.Forest.12(1):22-28.
    233. Isabel S., Vieira Ernesto P. Nitrate accumulation, yield and leaf quality of turnip greens inresponse to nitrogen fertilization [J]. Nutrient Cycling in Agroecosystem,1998,51:249-258.
    234. Jalali M. Nitrates leaching from agricultural land in Hamadan, western Iran [J]. Agric.Ecosystem Environ,2005,110:210–218.
    235. Jégo G., Martínez M., Antigüedad I., et al. Evaluation of the impact of various agriculturalpractices on nitrate leaching under the root zone of potato and sugar beet using the STICSsoil–crop model [J]. Science of The Total Environment,2008,394(2-3):207-221.
    236. Johnson E.W., Jones D. A. G. The effect of nitrogen and potassium on tomato quality [J].Acta Horticulturae.1979,93:347–360.
    237. Ju X.T., Kou C.L., Christie P., et al.Changes in the soil environment from excessiveapplication of fertilizers and manures to two contrasting intensive cropping systems on theNorth China Plain [J]. Environmental Pollution,2007,145:497-506.
    238. Ju X.T., Kou C.L., Zhang F. S., et al. Nitrogen balance and groundwater nitratecontamination: Comparison among three intensive cropping systems on the North ChinaPlain [J]. Environmental Pollution,2006,143(1):117-125.
    239. Kaplan M., Sonnmez S., Tokmak S., et al. Salinization problem in Antalya Regiongreenhouse soils and recommendations [J]. Acta Horticulturae.2002,573:401-406.
    240. Klaring H.P. Strategies to control water and nutrient supplies to greenhouse crops. A review[J]. Agronomie,2001,21:311-321.
    241. Kraft G. J., Stites W. Nitrate impacts on groundwater from irrigated-Vegetablesystems in ahumid north-central US sand plain [J]. Agriculture, Ecosystems and Environment.2003,100:63-74
    242. Larson W.E., Pierce F.J. Conservation and enhancement of soil quality. In: J. Dumanski, E.Pushparajah, M. Latham, and R. Myers, eds. Evaluation for Sustainable Land Managementin the Developing World. Vol.2: Technical Papers. Proc. Int. Workshop., Chiang Rai,Thailand.15-21Sept.1991. Int. Board for Soil Res. and Management, Bangkok, Thailand.
    243. Laura Sa′nchez-Martnn, Augusto Arce, Alejandro Benito, Influence of drip and furrowirrigation systems on nitrogen oxide emissions from a horticultural crop [J]. Soil Biology&Biochemistry,2008,40:1698-1706.
    244. Li X.X., Hu C.S., Delgado J. A., et al. Increased nitrogen use efficiencies as a key mitigationalternative to reduce nitrate leaching in north china plain [J]. Agricultural WaterManagement,2007,89(1-2):137-147.
    245. Liu G.D., Li Y.C., Alva A.K. Moisture Quotients for Ammonia Volatilization from FourSoils in Potato Production Regions [J].Water Air Soil Pollution,2007,183:115-127.
    246. Maggiotto S.R. Fluxes of oxidized nitrogen gases from fertilized agricultural field s [D]. TheUniversity of Guelph, PhD Thesis,2000.
    247. McLay C. D., Dragten R., Sparling G., et al. Predicting groundwater nitrate concentrationsin a region of mixed agricultural land use: a comparison of three approaches [J].Environmental Pollution,2001,115:191-204.
    248. Meisinger J.J., Bandel V.A., Angle J.S., et al. Presidedress nitrate test evaluation inMaryland [J]. Soil Science Society of America Journal,1992,56:1527-1532.
    249. Min L., Chen C.L., Zeng L.S., et al. Influence of lead acetate on soil microbial biomass andcommunity structure in two different soils with the growth of Chinese cabbage (Brassiachinensis)[J]. Chemosphere,2007,66:1197-1205.
    250. Moltay I., Soyergin S., Surmeli N., et al. Determination of the nutrient status ofgreenhouse-grown cucumbers (Cucumis Sativus L.). In the East Marmara region [J].1International SymPosium on Cucurbits, Acta Horticulturae,1999,5:20-2325.
    251. Mozafar A. Nitrogen fertilizers and the amount if vitamins in plants: a review [J]. PlantNutrition,1993,16(12):2479-2506.
    252. Patcharapom P., Chatuporn C., Nanthana C., et al. Phosphorus accumulation in soils andnitrate contamination in underground water export-oriented asparagus farming in Nong NguLauem Village, Nakhon Pathon province,Thailand [J]. Soil Sci Plant Nutr,2004,50(3):385393
    253. Pulgar G., Moreno D.A., Víllora G., et al. Production and composition of Chinese cabbageunder plastic rowcovers in southern Spain [J]. J. Hortic. Sci Biotech.,2001,76(6):608-611.
    254. Quemada M., Cabrera M.L. Temperature and moisture effects on C and N mineralizationfrom surface applied clover residue [J]. Plant and Soil,1997,189:127-137.
    255. Rajput T.B., Patel N.S. Water and nitrate movement in drip-irrigated onion under fustigationand irrigation treatments [J]. Agric. Water Manage,2006,79:293-311.
    256. Ramos C., Agut A., Lidón A. L. Nitrate leaching in important crops of the ValencianCommunity region (Spain)[J]. Environmental Pollution,2002,118:215-223.
    257. Riaz M., Mian I.A., Malcolm S., et al. Extent and causes of3D spatial variations inpotential N mineralization and the risk of ammonium and nitrate leaching from anN-impacted permanent grassland near York. UK [J]. EnvironmentalPollution,2008,156(3):1075-1082
    258. Riley J., Ortiz-onasterio I., Matson P.A. Nitrogen leaching and soil nitrate, nitrite, andammonium levels under irrigated wheat in Northern Mexico [J]. Nutr Cycl Agroecosyst,2001,61:223-236.
    259. Schenk M.K. Nitrogen us in vegetable crops in temperate climates [J]. Hortieultural Review,2000,22:185-222
    260. Shelp M.L., Beauchamp E.G., George W. Nitrous oxide emissions from soil amended withglucose, alfalfa, or corn residuces [J]. Commnuication Soil Science PlantAnnals,2000,31(7-8):877-892
    261. Shen W.S., Lin X.G., Shi W.M., et al. Higher rates of nitrogen fertilization decrease soilenzyme activities, microbial functional diversity and nitrification capacity in a Chinesepolytunnel greenhouse vegetable land [J]. Plant Soil,201,337:137-150.
    262. Shrestha R.K., Ladha J.K. Nitrate in groundwater and integration of nitrogen-catch crop inflee-sweet pepper cropping system [J]. Soil Soc. Am. J.1998,62:1610-1619.
    263. Sierra J. Temperature and soil moisture dependence of N mineralization in intact soil cores[J]. Soil Biology and Biochemistry,1997,29:1557-1563.
    264. Singurindy O., Molodovskaya M., Richards B.K., et al. Gaseous Nitrogen Emission fromSoil Aggregates as Affected by Clay Mineralogy and Repeated Urine Applications.[J]WaterAir Soil Pollut,2008,195:285-299.
    265. Song X.Z., Zhao C. X, Wang X. L,et al. Study of nitrate leaching and nitrogen fate underintensive vegetable production pattern in northern China [J]. Competes Rends Biologist,2009,332(4):385-392.
    266. Sonneveld C., Kreij C. Response of cucumber (Cucumis sativus L) to all unequaldistribution of salts in the root environment [J].Plant and soil,1999,209,47-56.
    267. Ten Berge H. F.M.,Burgers S.L., Van der Meer H.G., et al.Residual inorganic soil nitrogenin grass and maize on sandy soil [J].Environmental Pollution,2007,145(1):22-30.
    268. Thomas F., Doring, Michael Brandt, Jurgen HeB., et al. Effects of straw mulch on soilnitrate dynamics, weeds, yield and soil erosion in organically grown potatoes [J]. FieldCrops Research,2005,94:238-249
    269. Thompson R.B., Granados M. R., Gázquez J.C., et al. Nitrate leaching losses from a recentlydeveloped intensive horticultural system in a previously disadvantaged region. In: J JSchroder and J J Neeteson, Editors, N Management in Agroeco systems in Relation to theWater Framework Directive, Proceedings of14th N Workshop, Plant Research International,The Netherlands,2006,420-422.
    270. Thompson R.B., Meisinger J.J. Gaseous nitrogen losses and ammonia volatilizationmeasurement following land application of cattle slurry in the mid-Atlantic region of theUSA [J]. Plant and Soil,2005,266:231-246.
    271. Thorup-Kristensen K., Magid J., Jensen L.S. Catch crops and green manures as biologicaltools in nitrogen anagement in temperate zones [J]. Advances in Agronomy,2003,79:227-302.
    272. Tian G.M., Cao J.L., Cai Z.C., et al. Ammonia volatilization from wheat field top-dressedwith urea [J].Pedosphere,1998,8(4):331-336.
    273. Tremblay N., Scharof H.C., Weier U., et al. Nitrogen management in field vegetable a guideto different fertilization. http://publications.gc.ca/collections/Collection/A42-92-2001E.pdf
    274. Trindade H.J., Coutinho S., Jarvis N., et al. Nitrogen mineralization in saildy loam soilsunder an intensive double—cropping forage system with dairy-cable slurry applications[J]. European Journal of Agronomy.2001,15:281-293.
    275. Waddell J.T., Gupta S.C., Moncrief J.F., et al. Irrigation-and nitrogen-management impactson nitrate leaching under potato [J].Journal of Environmental Quality,2000,29(1):251-261.
    276. Waddle J.T., Gupts S.C., EMoncrief j., et al. Irrigation-and nitrogen-management impacts onnitrate leaching under potato [J]. J. Environ. Qual.2000,29:251-261.
    277. William R.R., Solie J.B., Johnson G.V., et al. Improving nitrogen use efficiency in cerealgrain production with N5ical sensing and variable rate application [J]. Agron J,2002,94:815-820.
    278. Williams A.E., Johnson A., Land L.J., et al. Spatial and temporal variations in nitratecontamination of a rural aquifer California.[J]. Environ. Qual.1998,27:1147-1157.
    279. Yan X.Y., Akimoto H., Ohara T. Estimation of nitrous oxide, nitric oxide and ammoniaemissions from croplands in East, Southeast and South Asia [J]. Global Change Biology,2003,9(7):1080-1096.
    280. Yao L.X., Li G.L., Tu S. H., et al. Salinity of animal manure and potential risk of secondarysoil Stalinization through successive manure application [J]. Science of The TotalEnvironment,2007,383(1-2):106-114.
    281. Yao, H. Y., Jiao, X. D. and Wu, F. Z.2006. Effects of continuous cucumber cropping andalternative rotations under protected cultivation on soil microbial community diversity [J].Plant Soil.284:195-203.
    282. Zhao R.F, Chen X.P., Zhang F.S., et al. Fertilization and Nitrogen Balance in aWheat-Maize Rotation System in North China [J]. Agron. J,2006,98(4):938-945
    283. Zheng X.H., Han S. H., Huang Y., et al. Re-quantifying the emission factors based on fieldmeasurements and estimating the direct N2O emission from Chinese croplands.GlobalBiogeochemical Cycles,2004,18:GB2018.doi:10.1029/2003GB002167.
    284. Zhu J.H., Li X.L., Christie P., et al. Environmental implications of low nitrogen useefficiency in excessively fertilizerd hot pepper (Capsicum frutescens L.) cropping systems[J]. Agriculture, Ecosystems and Environment.2005,111:70-80.
    285. Zhu Z.L. Fertilizer, Agriculture and Environment [J]. Exploration of Nature,1998,17(66):25-28.