基于AngⅡ上调p38MAPK通路介导的炎症反应与无患子皂苷降压作用及机制的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景现代医学研究表明:高血压是一种慢性低级别炎症性疾病,炎症因素在原发性高血压的发生、发展以及转归中扮演着极其重要的角色。p38丝裂原活化蛋白激酶(p38mitogen-activated protein kinase, p38MAPK)存在于多种生物的细胞内,是介导炎症反应重要的信号转导通路,参与心肌及血管平滑肌细胞的增殖、细胞外基质的合成与降解、内皮细胞损伤及心肌肥厚等多种生理病理过程,其活化或抑制对心肌肥厚、血管重构的发展或逆转起着重要作用。肾素-血管紧张素-醛固酮系统(renin-angiotensin-aldosterone system, RAAS)既是循环分泌系统,又是局部分泌系统,是血压最重要的调节机制之一,其主要效应由血管紧张素Ⅱ(angiotensin-Ⅱ, AngⅡ)及其特异性1型受体(angiotensin type1receptor,ATlR)介导,当信号分子AngⅡ激活其受体ATlR后可上调p38MAPK表达,从而促进炎症反应的发生、发展,加重高血压的病理进程及靶器官的损害。p38MAPK下游的分子包括多种蛋白激酶、磷脂酶及转录因子,通过磷酸化这些分子使它们活化,继而激活作用于下游的核转录因子-κB(nuclear transcription factor-κB,NF-κB)等,调节相关基因转录。NF-κB是调节黏附因子如血管细胞粘附分子-1(vascular cell adhesion molecule1,VCAM-1)、细胞间粘附因子(intercellular adhesion molecule-1,ICAM-1),化学介质单核细胞趋化蛋白-1(monocyte chemoattractant protein-1,MCP-1),炎症因子如白细胞介素-1(interleukin-1,IL-1)、白细胞介素-6(interleukin-6,IL-6)、肿瘤坏死因子-α(tumor necrosis factor-а,TNF-α)等表达的转录因子,与炎症反应的发生、AngⅡ依赖性内皮损伤、细胞增殖及血管平滑肌细胞的转移有重要的关系。
     中医学理论认为:原发性高血压的发生与气血失和、痰湿内蕴、阴阳失调、络脉损伤等病机有关。在慢性低度炎症过程中,损伤的内皮细胞可释放大量活性物质,如炎症因子IL-1、IL-6、C反应蛋白(C-reactive protein,CRP)、ICAM-1、TNF-α、交感神经儿茶酚胺(catecholamine,CA)类递质、缩血管因子AngⅡ、内皮素-1(endothelin-1,ET-1)、血栓素A2(thromboxaneA2,TXA2),扩充血容量物质醛固酮(Aldosterone,ALD),转化生长因子-β1(transforming growth factor-β1,TGF-β1)、血管内皮生长因子(vascular endothelial growth factor,VEGF)等,这与中医所述病理性津液滞留所致“痰”的理论一致。而慢性炎症过程中血小板黏附、聚集及血栓的产生、纤维斑块及结缔组织的形成、单核细胞转变为泡沫细胞在内皮下的沉积、血液粘稠度增高等现象,又符合中医“瘀”的具体表现。“痰”与“瘀”常共同致病,“毒”损心络,加重高血压靶器官心脏的损伤。因此“祛痰化瘀通心络”的中医理论是治疗高血压的新途径。
     无患子皂苷(sapindus saponin,Sap)是从无患子科植物无患子树的种子无患子假种皮中提取的有效部位,《本草拾遗》、《本草纲目》记载:性味、苦平,具有清热、祛痰、消积、杀虫之功效,可用于治疗喉痹、肿痛、咳喘、白带、疮癣、肿毒等症。现代医学研究表明,无患子皂苷具有抗菌、消炎、镇痛多种等药理学活性,本课题组前期研究表明无患子皂苷可降低肾性高血压模型大鼠的血压,改善其左心室做功,对脑缺血再灌注损伤模型大鼠炎症反应也有一定的抑制作用。基于以上发现,我们提出“无患子皂苷‘祛痰化瘀通心络’中医理论的细胞分子机制是对AngⅡ上调p38MAPK信号通路所介导的炎症反应起到调控作用”的假说。
     目的通过研究无患子皂苷对自发性高血压大鼠(spontaneously hypertensive rats,SHR)的降压效果以及对靶器官的保护作用,观察其药效学的量-效关系及时-效关系;通过观察无患子皂苷对AngⅡ/p38MAPK通路诱导的血管内皮、心肌炎症反应以及对内皮损伤、心肌肥厚的影响,探讨“祛痰化瘀通心络”中医降压理论的细胞分子机制,为传统的中医理论寻找生物学基础。
     方法
     1.无患子皂苷的药效学研究
     取A批SHR40只,随机均分为5组,即SHR模型组、卡托普利(captopril, Cap,27mg· kg-1)组、Sap27mg· kg-1、54mg· kg-1、108mg· kg-1剂量组,另取8只健康WKY大鼠作为正常对照组,按剂量连续给药8周,检测指标如下:①对SHR一般状态的影响;②单次给药对血压值的影响;③连续给药对血压值的影响;③对左心室重量指数(left ventricular weight index,LVMI)的影响;④HE及Masson染色观察对心、脑、肾、主动脉血管的组织形态学的影响。
     2.无患子皂苷降压机制研究
     A批大鼠内皮功能检查:①对胸主动脉血管对于不同血管收缩剂AngⅡ(10-9mol· L~(-1)~10-5mol· L~(-1))、苯肾上腺素(phenylephrine,PE)(10-8mol· L~(-1)~10-4mol· L~(-1))、KCl(20mmol· L~(-1)~120mmol· L~(-1))收缩反应性的影响;②对乙酰胆碱(acetylcholinechloride,Ach)(10-10mol· L~(-1)~10-5mol· L~(-1))血管内皮依赖性及硝普钠(sodiumnitroprusside dihydrate,SNP)(10-8mol· L~(-1)~10-3mol· L~(-1))非内皮依赖性血管舒张反应的影响;③Elisa法检测对血管活性物质一氧化氮(nitric oxide,NO)、6-酮-前列腺素1α(6-keto–prostacyclin1α,6-KPG1а)、ET-1、TXB2血清含量的影响。
     另取B批SHR32只,舍去Sap54mg· kg-1剂量组,其余分组及给药同上,检测指标如下:④Elisa法检测对交感神经递质CA类血浆含量的影响;⑤Elisa法检测对RAAS活性物质血浆肾素活性(plasma renin activity, PRA)、血管紧张素转换酶(angiotensin-converting enzyme,ACE)、AngⅡ及ALD血浆含量的影响;⑥对AngⅡ/p38MAPK通路诱导的血管内皮炎症反应的影响:Elisa法检测主动脉血管组织匀浆AngⅡ的含量,RT-PCR法检测AT1RmRNA的基因表达,Western-blot法检测主动脉p-p38MAPK的蛋白表达,免疫组化法检测血管细胞炎症因子ICAM-1、TGF-β1及VEGF的蛋白表达,放免法检测血清炎症因子IL~(-1),IL-6及TNF-α含量;⑦对AngⅡ/p38MAPK通路诱导的心肌炎症反应的影响:Elisa法检测心肌匀浆AngⅡ的含量,免疫组化法检测心肌组织AT1R的蛋白表达情况,免疫组化法检测心肌组织NF-κB的蛋白表达,western-blot法检测心肌组织p-p38MAPK的蛋白表达情况,Elisa法检测心肌匀浆hs-CRP含量,免疫组化法检测心肌组织TGF-β1及VEGF的蛋白表达情况。
     结果
     1.药效学研究结果
     1.1模型大鼠病理变化
     SHR进食量减少、体重减轻,血压随着鼠龄增长,心、脑、肾、血管出现明显的病理损伤,上述指标与正常对照组或实验前比较均有显著性差异(P<0.05或P<0.01)。1.2无患子皂苷降压效果及对及靶器官的保护作用
     无患子皂苷具有以下作用:①Sap27、54、108mg· kg-1剂量组可增加SHR进食量及体重,改善其行为学一般状态;②单次药后30min即表现出降压效果,药效可持续至药后240min;③连续给药8周期间,血压值持续降低,Sap27mg· kg-1降压作用有一定的波动,但Sap54、108mg· kg-1降压效果较为平稳;④可改善高血压靶器官的病理损伤状态:逆转心肌肥厚及心室重构,改善脑皮质区及海马区血管及神经元病变,抑制肾小球的肥大或萎缩,保护主动脉血管内皮、抑制中膜平滑肌的增殖等,上述指标与SHR模型组或用药前比较均有显著性差异(P<0.05或P<0.01)。
     2.降压机制研究结果
     2.1模型大鼠病变机制
     研究发现,自发性高血压大鼠表现为:①内皮损伤、功能失衡,表现为主动脉环对AngⅡ(10-9mol· L~(-1)~10-5mol· L~(-1))、PE(10-8mol· L~(-1)~10-4mol· L~(-1))、KCl(20mmol· L~(-1)~120mmol· L~(-1))诱发的血管收缩反应性增强;②对Ach(10-10mol· L~(-1)~10-5mol· L~(-1))诱发的内皮依赖性舒张反应减弱,而对SNP(10-8mol· L~(-1)~10-3mol· L~(-1))诱发的非内皮依赖性舒张反应未见明显变化;③血清TXB2,ET-1含量增加,而NO,6-k-PGF1a含量减少;④交感神经及RAAS活性物质增强: CA,PRA,ACE,AngⅡ及ALD的血浆含量升高;⑤AngⅡ/p38MAPK通路诱导的血管内皮炎症反应增强:使血管组织AngⅡ含量增加, AT1R基因表达增加,促进血管细胞内p-p38MAPK蛋白表达,使炎症因子ICAM-1、TGF-β1,VEGF在血管的蛋白表达增加,hs-CRP,IL~(-1),IL-6及TNF-α的释放增加;⑥AngⅡ/p38MAPK通路诱导的心肌炎症反应增强:心肌AngⅡ含量增加,心肌细胞内AT1R蛋白表达增加,使p-p38MAPK蛋白表达增加,进而促进核转录因子NF-κB的蛋白表达,使炎症因子CRP在心肌组织含量增加,TGF-β1,VEGF在心肌的蛋白表达水平升高,上述指标与正常对照组比较有显著性差异(P<0.05或P<0.01)。
     2.2无患子皂苷对SHR内皮损伤及心肌肥厚的保护机制
     无患子皂苷可逆转SHR上述病理变化,表现为:①Sap可抑制主动脉对PE、AngⅡ、KCl的收缩反应;②增强对Ach的内皮依赖性舒张效应,对SNP非内皮依赖性舒张效应未见明显影响;③降低血清TXB2,ET-1含量,增加NO,6-k-PGF1a含量;④抑制交感神经及RAAS活性:降低血浆CA,PRA、ACE、AngⅡ及ALD含量;⑤抑制AngⅡ/p38MAPK通路诱导的血管内皮炎症反应:降低血管组织AngⅡ含量,抑制AT1R的基因表达,抑制p-p38MAPK的蛋白表达,使其表达产物ICAM-1,TGF-β1,VEGF,hs-CRP,IL~(-1),IL-6及TNF-α的释放减少;⑥抑制AngⅡ/p38MAPK通路诱导的心肌炎症反应:抑制信号分子AngⅡ在心肌组织的含量,抑制其特异性受体AT1R的蛋白表达,抑制心肌p-p38MAPK的蛋白表达,使其表达产物hs-CRP,TGF-β1及VEGF释放减少,上述指标与SHR对照组有显著性差异(P<0.05或P<0.01)。
     结论
     1.无患子皂苷对SHR有显著的降压作用,对高血压靶器官具有一定的保护作用,降压作用可从30min持续至240min,并在27、54、108mg· kg-1范围内存在一定的剂量依赖性关系;
     2.无患子皂苷通过保护血管内皮、逆转心肌肥厚产生抗高血压作用;
     3.无患子皂苷“祛痰化瘀通心络”中医降压理论的细胞分子机制与调控AngⅡ/p38MAPK信号通路所介导炎症反应有关。
Background It has been reported that hypertension is a chronic inflammatory diseaseof low-level. Inflammation response has been verified as a very important role in theoccurrence and development of hypertension. p38MAPK exists in a variety of biological cells,which is a very important signal transduction pathway leading to inflammatory response,involved in lots of physiological and pathological processes, such as the proliferation ofcardiac and vascular smooth muscle cells, the synthesis or degradation of extracellularmatrix, the damage of endothelial cells and so on. RAAS is both one of a cyclic but alsoa local secretion system, which is the most important regulatory pathway in the bloodpressure. The principal effects of RAAS are mediated by Ang II and its specific ATlR. Itcan induce the expression of p38MAPK. When signaling molecule Ang II is integratedwith its receptor ATlR, inflammatory response will be activated. NF-κB is an importantnuclear transcription factor. It can regulate the transcription of cytokines, which isclosely related to the inflammatory response.
     In traditional Chinese medicine theory, it has been considered that the essentialhypertension is caused by the pathogenesis such as the disharmony of “Qi”and “Blood”,the imbalance of “Yin” and “Yang”. In chronic inflammation process, endothelial cellswill release much active substances, such as inflammatory factors IL~(-1), IL-6, CRP, ICAM-1, TNF-α, sympathetic neurotransmitter CA, vasoconstrictor Ang II, ET andTXA2, blood volume expansion material ALD, transforming growth factor TGF-β1,vascular endothelial growth factor VEGF and so on, which are consistent with "Tan"theory defined as products of pathological body fluid in Chinese medicine. And theadhesion of platelets, aggregation and thrombosis, fibrous plaque and connective tissue,subcutaneous deposition of the monocytes into foam cells, and the increasing of bloodviscosity are also consistent with the “Yu” theory." Tan " and "Yu" often cause diseasesynergistically, and its “Toxicity” will destroy heart. Therefore, we propose the Chinesemedicine theory “removing ‘Tan’ and ‘Yu’ to dredge heart network” as a new way totreat hypertension.
     Sapindus saponins was the effective parts and extracted from the skin of Sapindus.In “Herbal Supplements” and “Compendium of Materia Medica”, it was recordedthat sapindus is mild, bitter with the effects of detoxification, expectorant, circulationand insecticidal. In modern medical research, it has been shown that there wereantibacterial, anti-inflammatory and analgesic multiple pharmacological activities insapindus saponin. Our preliminary studies indicated that Sapindus saponins couldreduce the blood pressure of renal hypertensive model rats, improve their leftventricular acting, and inhibit inflammatory response of cerebral ischemia andreperfusion injury model rats. According to these findings, we proposed the hypothesisthat the cellular and molecular mechanism of the Chinese medicine theory “removing‘Tan’ and ‘Yu’ to dredge heart network” is the regulation of inflammatory responsemediated by p38MAPK signal pathway based on activated Ang Ⅱ.
     Objective To investigate the dose-effect and time-effect relationship of sapindussaponins by studying the effects of antihypertension and protection on target organs inSHR. And also to explore the cellular and molecular mechanism of the Chinesemedicine theory “removing ‘Tan’ and ‘Yu’ to dredge heart network” by observing theeffects on vascular inflammation, endothelial damage and cardiac hypertrophy mediated by Ang Ⅱ/p38MAPK signal pathway.
     Methods (1) The study on pharmacodynamic of sapindus saponins: Forty16-week-oldspontaneously hypertensive rats were randomly divided into five groups, one with placebo asmodel group, one with captopril tablets(27mg·kg-1) as positive control, one withlow-dose (27mg· kg-1), one with medium-dose (54mg· kg-1), one with high-dose (108mg·kg-1) sapindus saponins. And another eight healthy Wistar-Kyoto strain(WKY) ratswere used as the normal group. The animals were treated for eight weeks, and theindicators to be detected were as follows:①the general state of SHR;②the bloodpressure after single treatment;③the blood pressure after continuous treatment;④themorphology of the target organs (heart, brain, kidney and aortic) were observed by HEand Masson staining.
     (2) The mechanism on antihypertension of Sapindus saponins: The indicators to bedetected were as follows:①the response of thoracic aorta on different vasoconstrictorsAngⅡ(10-9mol· L~(-1)~10-5mol· L~(-1)), PE(10-8mol·L~(-1)~10-4mol·L~(-1)), KCl(20mmol·L~(-1)~120mmol·L~(-1));②the endothelium-dependent ornon-endothelium-dependent vasodilation on Ach(10-10mol· L~(-1)~10-5mol· L~(-1)) orSNP(10-8mol· L~(-1)~10-3mol· L~(-1));③the content of NO,6-KPG, ET-1and TXB2inserum was determined by Elisa;④the content of CA in plasma was determined byElisa;⑤the content of PRA, ACE, AngⅡand ALD in plasma was determined byElisa;⑥the effects on inflammatory response induced by AngⅡin aortic endothelialcells: the content of AngⅡ in plasma was determined by Elisa, the gene expression ofAT1RmRNA was determin by RT-PCR, the protein expression of p-p38MAPK wasdetermin by Western-blot, the protein expression of ICAM-1, TGF-β1and VEGF wasdetermin by immunohistochemical method, the content of hs-CRP,IL~(-1),IL-6andTNF-α in serum was determined by radioimmunoassay;⑦the effects on cardiachypertrophy induced by AngⅡin myocardial cells: the content of AngⅡ in myocardialhomogenate was determined by Elisa, the protein expression of AT1R was determin by immunohistochemical method, the protein expression of p-p38MAPK in myocardialcells was determin by Western-blot, the protein expression of NF-κB,TGF-β1andVEGF in myocardial cells was determin by immunohistochemical method.
     Results (1) The results on pharmacodynamics: In the SHR model group, food intakewas reduced, body weight was lost, the blood pressure was increased as the age growth,the target organs (heart, brain, kidney and aortic) were damaged badly, Vs the normalcontrol group and before treatment, there were significant differences (P<0.05or P<0.01); in the Sapindus saponins treatment groups, food intake and body weight wereincreased, the blood pressure was reduced after single treatment30min and continuoustreatment8weeks, the damages of target organs (heart, brain, kidney and aortic) werereversed, Vs the SHR model group and before treatment, there were significantdifferences (P<0.05or P<0.01).
     (2) The results on mechanism of antihypertension: In SHR model group, theresponse of thoracic aorta on different vasoconstrictors AngⅡ, PE and KCl wasimproved, the endothelium-dependent vasodilation on Ach was reduced, but the effectson SNP were not obvious, the content of ET-1and TXB2was increased, the content ofNO and6-KPG1awas reduced, the content of CA, PRA, ACE, AngⅡand ALD inplasma, the gene expression of AT1RmRNA, the protein expression of p-p38MAPK,ICAM-1, TGF-β1and VEGF, the content of hs-CRP, IL~(-1),IL-6and TNF-α in serum,the content of AngⅡ in aorta and myocardial homogenate, the protein expression ofAT1R, p-p38MAPK, NF-κB, TGF-β1and VEGF in myocardial cells were increased, Vsthe normal control group, there were significant differences (P <0.05or P <0.01); in theSapindus saponins treatment groups, all the above indicators were all reduced, Vs theSHR model group, there were significant differences (P <0.05or P <0.01).
     Conclusions Our findings suggested that (1) Sapindus saponins reduced bloodpressure and protected the target organs. The antihypertensive effects of sapindussaponins could be sustained from30min to240min after treatment, and there wasdose-dependent relationship amount27,54and108mg· kg-1dose;(2) The antihypertensive effects of sapindus saponins were carried out by protecting the vascularendothelium and cardiac;(3) Sapindus saponins inhibited the vascular inflammatoryresponse, endothelial injury and cardiac hypertrophy, its cellular and molecularmechanisms of the Chinese medicine theory “removing ‘Tan’ and ‘Yu’ to dredge heartnetwork” were relevant to the regulation of inflammatory responses mediated by AngⅡ/p38MAPK signal pathway.
引文
1. Pauletto P, RattazziM. Inflammation and hypertension: the search for a link[J].Nephrol Dial Transplant,2006,21(4):850-853.
    2. Pietri P, Vyssoulis G, V lachopoulos C, et al. Relationship between low-gradeinflammation and arterial stiffness in patientswith essential hypertension[J].Hypertens,2006,24(11):2231-2238.
    3. GojovaA, Brun V, Esposito B, et al. Specific abrogation of transforming growthfactorbeta signaling in T cells alters atherosclerotic lesionsize and composition inmice[J]. Blood,2007,102(12):4052-4058.
    4.于欣,杨震,徐方芳,等.高血压肾损害患者TNF-α水平的变化研究[J].新医学,2010,41(12):783-785.
    5.蒋波勇,任晓华.原发性高血压患者外周血单个核细胞炎症因子水平的变化[J].中国卫生检验杂志,2010,20(12):3358-3360.
    6.晋凌云,刘嘉瀛,杨增仁,等. TNF-α在冻融嗜中性粒细胞介导血管内皮细胞损伤中的作用[J].中国应用生理杂志,2005,21(4):393-395.
    7.陈昕琳,顾仁樾,章怡祎.丹参多酚酸B对动脉粥样硬化大鼠炎症细胞因子的影响[J].上海中医药大学学报,2011,25(1):63-65.
    8.藏运华,唐明,郭瑞友,等.溶栓颗粒含药血清对TNF-α损伤血管内皮细胞VEGF表达影响的研究[J].中国中医药科技,2011,18(1):15-17.
    9. Brown R,Thompson HJ,Imran SAet al. Traumatic brain injury inducesadipokine gene expression in rat brain.Neurosci Lett,2008,432(1):73-78.
    10. Blacher J, Guerin A, Pannier B,et al. Impact of aortic stiffness on survival in endstage renal disease[J]. Circulation,2005,99(12):2434-2439.
    11. Grisar J,Aletaha D,Steiner CW, et al. Endothelial progenitor cells in activerheumatoid arthritis: effects of tumour necrosis factor and glucocorticoid therapy[J]. Ann Rheum Dis,2007,66(10):1284-1288.
    12.薛冰,丁东新,顾平生,等.老年高血压患者血清TNF-α,IL-6的变化及其临床意义[J].放射免疫学杂志,2004,17:270-271.
    13. Zerher AM. Tissue endot helin-immuno-reactivity in the active coronary atherosclerotic plague: reactivity in the active coronary at herosclerotic plague: a clueto the mechanism of increased vasoreactivity of the culprit lesion in unstableangina[J].Circulation,1995,91:941-947.
    14. Vallance P, Collier J, Bhagat K. Infection inflammation and infarction: does acuteendot helim dysfunction proceed a link [J].Lancet,1997,349:1391-1392.
    15. Hayaishi-Okano R,Yamasaki Y, Katakami N, et al. Elevated C-reactive proteinassociates with early-stage carotid at heosclerosis in young subject swit htypediabetes[J]. Diabetes Care,2002,25:1432-1438.
    16. Badr K,Wainwright CL. Inflammation in the cardiovascular system: here, there andeverywhere[J]. Curr Opin Pharmacol,2004,4(2):107-109.
    17. Kim EK,Choi EJ.Pathological roles of MAPK signaling pathways in humandiseases[J].Biochim Biophys Acta,2010,1802(4):396-405.
    18. Takeda K, Kaisho T, Akira S. Toll-like receptors[J]. Annu Rev Immunol,2003,21:335-376.
    19. Jians Y, Han JH. p38MAPK signal transduction pathway[J]. Chin BullLife Sci,1999,11(3):102~106.
    20. Lim W, Ma W, Gee K, et al. Distinct role of p38and c-Jun N-terminal kinases inIL-10-dependent and IL-10-independent regulation of the costimulatory moleculeB712in lipopolysaccharide-stimulated human monocytic cells[J]. J Immunol,2002,168(4):1759-1769.
    21. Jians Y, Han JH. P38MAPK signal transduction pathway[J].Chin BullLife Sci,1999,11(3):102-106.
    22. JiangY. Progress of study on the mechanismof acti-vation of endothelial cellsinduced by lipopolysaccharide[J]. Natl Med JChina,1999,79(1):76-78.
    23.任洪波,李延青,程宝泉,等.丝裂原活化蛋白激酶信号转导通路抑制剂对重症急性胰腺炎治疗作用的实验研究[J].中华消化杂志,2006,26(5):343-345.
    24. Pereda J,Sabater L,Cassinello N,et a1.Effect of simultaneous inhibition ofTNF-α production and xanthine oxidase in experimental acute pancreatitis: the roleof mitogen activated protein kinases[J].Ann Surg,2004,240(1):108-116.
    25. Guan Z, Baier LD, Morrison AR. p38mitogen-activated-protein kinasedown-regulates nitric oxide and up regulate-sprostaglandin E2biosynthesis stimulatedby interleukin-1beta[J].J Biol Chem,1997,272(12):8083-8089.
    26. JiangY, Ulevitch RJ. The signal transduction of celactivation by LPS: Thestudies from CD14to p38MAPK[J]. Prog Physiol Sci,1999,30(1):29-34.
    27. SaarfM, ThuilliezC, Richard V,et al. Pressure independent contribution of Sodium tolagre artey resturcture and function in hypertension[J]. Cardiovase Res,2003,19(3):120-127.
    28. Guangyong li,MS,a ning Xi,et al. investigation of angiotensionⅡ type1receptorby atomic force microscopy with functionalized tip[J]. Nanomedicine.2005,(1):306-312.
    29.姚红梅.血清血管紧张素II水平与原发性高血压动脉僵硬度的相关性研究[J].细胞与分子生物学杂志,2010,26(7):689-690.
    30. Walter G,Thomas,Qian H.Arresting angiotensin type1receptors[J]. Trends inEndocrinology and Metabolism,2003,14(3):243-249.
    31.梁长清,杨志明,肖传实.血管紧张素-(1-7)、血管紧张素Ⅱ和p38丝裂原活化蛋白激酶关系的研究进展[J].心血管病学进展,2008,29(3):497-500.
    32. Lee KM, Lee HJ, Kim MK, et al. Cilostazol inhibits high glucose-andangiotensinⅡ-induced type1plasminogen activator inhibitor expression in arterywall and neointimal region after vascular injury[J]. Atherosclerosis,2009,207(2):391-398.
    33. Rius C, Abu-Taha M, Hermenegildo C, et al. Trans-but not cis-resveratrol impairsangiotensin-Ⅱ-mediated vascular inflammation through inhibition of NF-κBactivation and peroxisome proliferator-activated receptor-gamma upregulation[J]. JImmunol,2010,185(6):3718-3727.
    34.徐树楠,王文智.高血压病从络论治探析[J].中医杂志,2006,47(1):3-5.
    35. Tamura Y. Anti-skin antifungal activity of saponins in the sapindus pericarp [J].Natural Medicines,2001,55(1):11-16.
    36. Ojha P, Maikhuri J.P, Gupta G.Effect of spermicides on Lactobacillus acidophilusin vitrononoxynol-9vs. Sapindus saponins[J]. Contraception,2003,68:135-138.
    37. Keijiro Takagi. Ivy sapogenin and anti-inflammatory activity of crude saponins ofSapindus [J].Chem Pharm Bull,1980,28(4):1183.
    38. Aruluozhi D K, Veeranjaneyulu A, Bodhankar S L. et al. Pharmacologicalstudies for the aqueous extract of Sapindus trifoliatus on centra nervoussystem:possible antimigraine mechanisms[J]. Ethnopharmacology.2005,97:491-496.
    39. Adriana L, Meyer Albrero, Jayme Antonio Aboin Sertie, Elfriede Marianne Bacchi.Antiulcer activity of Sapindus saponaria L.in the rat[J]. Ethnopharmacology.2002,82:41-44.
    40. Efimova T G, Pivnenko G P, Kulsevich V A, et al. The action of Chinese soapbeingsaponins on blood pressure and cholesterol content in animals, Farm Zh,1966,21(6):45-49.
    41.王维胜,龙子江,张玲,等.无患子皂苷对肾性高血压大鼠血压及左心室血流动力学的影响[J].现代中医药,2007,27(3):63-64.
    42.刘金林,龙子江,张道福,等.无患子皂苷对脑缺血再灌注损伤模型大鼠炎症因子的影响[J].中医药临床杂志,2011,23(7):635-637.
    43.肖纯,金益强,胡随瑜,等.潜阳方对高血压肝阳上亢证大鼠模型的实验研究[J].湖南中医学院学报,1999,19(2):8-10.
    44.黄玉芳主编.病理学[M].2版.上海:中国中医药出版社,2007.
    45.徐叔云主编.药理实验方法学[M].3版.北京:人民卫生出版社,2002.
    46.田辉,樊柏林,王旌涛,等.无患子提取液安全性实验研究[J].公共卫生与预防医学,2009,20(3):84-85.
    47.张竞之,贾会欣,张汛,等.高血压病与血管内皮细胞损伤的相关性研究进展[J].中华中医学杂志,2008,32(5):377-378.
    48. Tousoulis D,Papageorgiou N,Androulakis E,et al.Novel therapeutic strategiestargeting vascular endothelium in essential hypertension.Expert Opin InvestigDrugs,2010;19(11):1395-1412.
    49.Nitenberg A. Hypertension, endothelialdysfunction and cardiovascularrisk[J].ArchMalCoeurVaiss,2006,99:915-921.
    50. Davis KL, et al. Novel effects of nitric oxide[J].Ann Rev Pharmacol2001;41:203-236.
    51. Mombouli JV,Vanhoutte PM. Kinins and endothelial control of vascular smoothmuscle[J]. Ann Rev Pharmacol Toxicol.1995;35:679.
    52. Ergul A. Hypertension in black patients. An emerging ro le of the endothelin systemin salt-sensitive hypertension[J]. Hypertension.2000,36:62~671.
    53. H Zhao. Microvascular responses to endothelin in deoxycorticosterone acetate-salthypertensive rats[J]. Am J Hypertens.2000;13(7):819-826.
    54. Vanhoutte PM.Other endothelium derived vasoactive factors[J].Circulation.1993;(SupplⅤ): Ⅴ9)
    55.刘汉.血栓前状态分子标志物研究进展[J].国外医学临床生物化学与检验学分册.2000,21:239-240.
    56. Hisch AT. Vascu lar d isease, hyperten sion, and prevention: from endothelium toclin ical even ts [J].JACC,2003,42(2):377-379.
    57.华琦,李梅,刘力松等.高血压病患者脉压与内皮功能损害的相关性.中华内科杂志,2003,42(8):574.
    58.王燕,张明升,刘宇,等.奈比洛尔对自发性高血压大鼠主动脉血管反应性的影响[J].中西医结合心脑血管病杂志,2010,10(8):1204-1207.
    59. Vanhoutte P M, Feletou M, Taddei S. Endothelium-dependent contractions inhypertension[J].Br JPharmacol,2005,144(4):449-58.
    60. Ignarro LJ, Buga GM, Wood KS, et al. Endothelium-derived relaxing factorproduced and released from artery and vein is nitric oxide[J].Proc Natl Acad Sci U SA,1987,84:9265-9269.
    61.Cockcroft JR, Chowienczyk PJ,Benjamin N, et al. PreservedEndothelium-dependent vasodilatation in patients with essentialhypertension[J].N Engl J Med,1994,330:1036-40.
    62. Johnson FK, Johnson RA,Peyton KJ, et a.l Arginase inhibition restoresarteriolar endothelial function in Dahl ratswith salt-inducedhypertension[J].Am J PhysiolRegul IntegrComp Physio,l2005,288(4):R1057-1062.
    63.刘靖,汤中敏,范倩,等.高血压病患者炎性因子、假性血管性血友病因子水平与代谢综合征[J].中华高血压杂志,2007,15(10):849-852.
    64.胡永华,李立明,曹卫华,等.城乡社区原发性高血压患病情况流行病学研究[J].中华流行病学杂志,2000,21(3):177.
    65. Altindag O,Karakoc M,Kocyigit A,et al.Increased DNA damage and oxidativestress in patients with rheumatoid arthritis[J]. Clin Biochem,2007,40(3/4):167-171.
    66.李自微,赵妍,周惠华.代谢综合征患者血管内皮损伤标志物、C反应蛋白与胰岛素抵抗的关系[J].微循环学杂志,2007,17(4):47-48.
    67. Lele RD, Joshi SR, Gupte A. Association of adipocytokines (leptin, adiponectinTNF-αlpha), insulin and proinsulin with diabetes--the Mumbai Obesity Project.JAssoc Physicians India,2006,54:685-6.
    68. Vongpatanasin W,Thomas GD,Schwartz R,et al. C-reactive pro-tein causesdownregulation of vascular angiotensin subtype2recep-tors and systolichypertension in mice[J].Circulation,2007,115(8):1020-1028.
    69. Sun M,Chen M,Dawood F,et al. Tumor necrosis fa-ctor-αmediates cardiacremodeling and ventricular dysfunction after pressure overload state[J].Circulat-ion,2007,115(11):1398.
    70.李倩,蒋更如.炎症标志物在动脉粥样硬化性脑血管病中的应用[J].放射免疫学杂志,2005,18(3):217-220.
    71. ZhangJian-chu,ZhangXiao-jiu,YangWei-bing,et al.Effect of safflor and ICAM-1in pulmonary vascular endothelium of rat[J].J Chin Microcirc,2007,11(1):5-8.
    72.戴晓明,蒋凤荣,张旭,等.麦冬不同提取物对过氧化氢损伤人血管内皮细胞ICAM-l、 VEGF、 Bel-2表达的影响[J].现代生物医学进展,2008,8(12):2041-2043.
    73.詹雪亮,郭金霞.高血压病患者血清细胞间黏附分子-1和C-反应蛋白的变化及临床意义.中国实用医药,2008,3(6):20.
    74. Psilopanagioti A,Papadaki H,Kranioti E F,et al. Expression of ad-iponectin andadiponectin receptors in human pituitary gland andbrain[J].Neuroendocrinology,2009,89(1):38-47.
    75.毛振彪,肖明兵,黄介飞,等.血管内皮生长因子在胃癌血清中的表达意义[J].世界华人消化杂志,2002,10(10):1220-1221.
    76. Haugen F,Drevon CA. Activation of Nuclear Factor-(?)B by High MolecularWeight and Globular Adiponectin[J]. Endocrinology,2007,148(11):5478-5486.
    77. Huang M,Hu YY,Dong XQ. High concentrations of pro-coagulant microparticles inthe cerebrospinal fluid andperipheral blood of patients with acute basalgangliahemorrhage are associated with poor outcome[J].SurgNeurol,2009,72(5):481-489.
    78. Creemers EE,Pinto YM. Molecular mechanisms that control intersti-tial fibrosis inthe pressure-overloaded heart[J].Cardiovasc Res,2011,89(2):265-272.
    79.臧运华,唐明,郭瑞友,等.含溶栓颗粒血清对TNF-α损伤人脐静脉内皮细胞VEGF的影响[J].中西医结合心脑血管病杂志,2010,8(2):191-194.
    80.陈美娟,江励华,席蓓莉,等.加减清营汤对H2O2损伤的人脐静脉内皮细胞ECV304VEGF表达的影响[J].中华中医药学刊,2008,26(12):2267-2269.
    81. KISH O O, KENSU KE E, KEN-ICHI H, et al. Bl ockag e of vascular endothelialgrow th f act or supp ress es exp eriment alrest enosi s af ter in tralum inal injury byinhibit in g recruitment of monocyt e l ineage cells[J]. Ci rcu lat ion,2004,110:2444-2452.
    82.李彦飞,董果雄,张社华,等.全反式维甲酸对兔颈动脉内皮损伤后内膜增殖和VEGF及VCAM-1表达的影响[J].青岛大学医学院学报,2009,45(2):101-103.
    83.王丽.TGF-β的生物学效应及其在某些疾病中的作用.国外医学.免疫学分册,1995,18(1):18.
    84. Liao W,Yu C,Wen J,et al. Adiponectin induces inter-leukin-6production andactivates STAT3in adult mousecardiac fibroblasts[J].Biol Cell,2009,101(5):263-272.
    85. Wilkinson M, Brown R, Imran SAet al. Adipokine gene expression in brain andpituitary gland.Neuroendocrinology,2007,86(3):191-209.
    86. Psilopanagioti A,Papadaki H,Kranioti E F,et al. Expression of ad-iponectin andadiponectin receptors in human pituitary gland andbrain[J].Neuroendocrinology,2009,89(1):38-47.
    87. Brown R,Thompson HJ,Imran SAet al. Traumatic brain injury induces adipokinegene expression in rat brain.Neurosci Lett,2008,432(1):73-78.
    88.陈兰英.高血压心肌肥厚研究机制[J].引进国外医药技术与设备,1999,5(7):12-14.
    89.王曙霞.心肌肥厚信号传导通路的研究进展[J].中国分子心脏病学杂志,2006,6(6):363-365.
    90.和亚萍,曲鹏,李桂华. Toll样受体在Goldblatt鼠左室心肌中的表达-炎症与左心室肥厚相关的一个证据[J].高血压杂志,2005,13(8):483-485.
    91. Gardin JM,Lauer MS. Left ventricular hypertrophy:the next treatable,silent killer[J]. JAMA,2004,292(19):2396-2398.
    92. Devereux RB,Wachtell K,Gerdts E,et al. Prognostic significance of left ventricularmass change during treatment of hypertension [J]. JAMA,2004,292(19):2350-2356.
    93.吴松,王华,李佳,粱凤霞,等.电针不同穴位对心肌肥厚模型大鼠炎症细胞因子的比较研究[J].中华中医药学刊,2012,30(2):260-262.
    94.史君,王静,王星,等.肿瘤坏死因子-α、白细胞介素-6在高血压心肌肥厚大鼠实验中的意义[J].中国医药导报,2012,9(6):23-26.
    95. Nakamura K,Fushimi K,Kouchi H,et al. Inhibitory effects of antioxidants onneonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alphaand angiotensin Ⅱ[J]. Circulation,1998,98(8):794-799.
    96. Xu T,Ju Z,Tong W,et al. Relationship of C-reactive protein withhypertension andinteractions between inereased C-reactive protein andother risk factors onhypertension in Mongolian people,China[J].CircJ,2008,72(8):1324-1328.
    97. PERTICONE F,MAIOR, SCIACQU AA, et al. Endothelial dys-function andC-reactive protein are risk factors for diabetes in es-sential hypertension[J].Diabetes,2008,57(1):167-171.
    98. Sarkar S,Vellaichamy E,Young D,et al. Influence of cytokines and growth factorsin ANG II-mediated collagen upregulation by fibroblasts in rats:role of myocytes[J]. Am J Physiol Heart Circ Physiol,2004,287(1):107-117.
    99. Peng J,Gurantz D,Tran V,et al. Tumor necrosis factor-alpha-inducedAT1receptor upregulation enhances angiotensin II-mediated cardiac fibroblastresponses that favor fibrosis [J]. Circ Res,2002,91(12):1119-1126.
    100. Sivasubramanian N,Coker ML,Kurrelmeyer KM,et al. Left ventricularremodeling in transgenic mice with cardiac restricted overexpression of tumornecrosis factor[J]. Circulation,2001,104(7):826-831.
    101. Bradham WS, Moe G, Wendt KA, Scott AA, Konig A, Romanova M,et al. TNF-αand myocardial matrix metalloproteinases in heart failure: relationship to LVremodeling[J]. Am J Physiol Heart Circ Physiol,2002;282:H1288-95.
    102.王桂君,姚玉胜,王洪新.Ca2+/CaMKⅡ信号通路在肿瘤坏死因子-α诱导心肌肥大中的作用[J].中国药理学通报,2010,26(3):387-391.
    103. Flesh M,Hoper A,Dell'Italia L,et al. Activation and functional significance of therenin-angiotension system in mice with cardiac restricted over expression of tumornecrosis factor [J]. Circulation,2003,108(5):598-604.
    104. Janczewski AM,Kadokami T,Lemster B,Frye CS,McTiernan CF,FeldmanAM.Morphological and functional changes in cardiac myocytes isolated from miceoverexpressing TNF-α lPha.Am J Physiol Heart Circ Physiol,2003,284(3):H960.
    105. Ramani R,Mathier M,Wang P,et al. Inhibition of tumor necrosis factorreceptor-1-mediated pathways has beneficial effects in a murine model ofpostischemic remodeling [J]. Am J Physiol Heart Circ Physiol,2004,287(3):H1369-H1377.
    106. Diwan A,Dibbs Z,Nemoto S,et al. Targeted overexpression of noncleavableand secreted forms of tumor necrosis factor provokes disparate cardiacphenotypes[J]. Circulation,2004,109(2):262-268.
    107. GONZALEZ W, CHEN Z, DEBORAH H, et al. Transforming growth factor-betaregulation of endothelin expression in rat vascular cell and organ cultures [J].Jcardiovasc pharmacol,2001,37(20):219-266.
    108.李龙英,肖谦.转化生长因子-β1/Smdas信号转导通路与糖尿病心肌病变[J].国外医学·老年医学分册,2007,28(3):118-121.
    109. BROOKS W W, CONRAD C H. Myocardial fibrosis in transforming growthfactor heterozygous mice[J].J Mol Cell Cardiol,2000,32(2):187-195.
    110. Qi G,Jia L,Li Y,et al. Angiotensin II infusion-induced inflam-mation,monocyticfibroblast precursor infiltration,and cardiac fi-brosis are pressuredependent.Cardiovasc Toxicol,2011,11:157-167.
    111. LI J M, BROOKS G, Differential pretein expression and subcellular distribution ofTGF beta1, beta2, beta3in cardiomyocytes during pressure overload inducedhypertrophy[J].J Moll Cell Cardiol,1997,29(8):2213-2224.
    112. F Lang,C Bohmer,M Palmada,G Seebohm,N Strutz-Seebohm,V Vallon.(Patho)physiological significance of the serum-and glucocorticoid-inducible kinaseisoforms.Physiol Rev,2006,86:1151-1178.
    113. Watanabe K,Sukumaran V,Veeraveedu PT,et al. Regulationof inflammation andmyocardial fibrosis in experimental autoim-mune myocarditis.Inflamm AllergyDrug Targets.2011,10:218-225.
    114. Cheng J,WangY,Ma Y,et al. The mechanical stress-activatedserum-glucocorticoid-regulated kinase1contributes to neointimaformation in veingrafts.Circ Res,2010,107:1265-1274
    115.石永英,陈广原,刘世明,等.转化生长因子β1与高血压左心室肥厚相关性研究的荟萃分析[J].岭南心血管病杂志,2011,17(4):276-279.
    116. TaiUe C, Ei-Benna J, Lanone S, et al. Mitochondrial respirato-chain and NAD(P)Hoxidase are targets for the an tiproliferation effect of carbon monoxide in humanairway smooth muscle [J]. BiolChem,2005,280(27):25350-25360.
    117. Robert0, Martin B, Ffla E, et al. Bilimbin:a natural inhibitor of vascular smoothmuscle cell proliferation[J]. Grculation,2005,112(7):1030-1039.
    118. Kraja AT, Province MA, Arnett D,et al. Do inflammation and procoagulationbiomarkers contribute to the metabolic syndrome cluster[J]. Nutr Metab(Lond),2007,4(1):28.
    119. ROHDE G, BORG I, WIETHEGE A, et al. Inflammatory response in acute viralexacerbations of COPD[J]. Infection,2008,36(5):427-433.
    120.赵玉兰,王婷,称劲松,等.阿托伐他汀对大鼠肥厚心肌组织HIF-1α、VEGF表达的影响[J].郑州大学学报,2009,44(2):402-405.
    121. Thackaberry EA,Gabaldon DM,WalkerMK, eta.l Arylhyocarbon receptor nullmicedevelop cardiac hypertrophy and increased hypoxia-inducible factor-1alpha in theabsence of cardiac hypoxia[J]. Cardiovasc Toxico,l2002,2(4):263.
    122. Shyu KG, Liou JY,Wang BW, et a.l Carvedilol prevents cardiac hypertrophy andoverexpression of hypoxia-inducible factor-1a and vascular endothelial growthfactor in pressure-overloaded ratheart[J]. J Bio Sc,i2005,12(2):409.
    123.黄政德,李鑫辉,谢雪姣,等.活血化瘀药对血瘀证心肌缺血再灌注损伤家兔内源性活性因子及炎症因子的影响[J].中华中医药学刊,2007,25(7):1319-1321.
    124. HUNYADY L,TURU G.The role of theAT1angiotensin receptor in cardiachypertrophy: angiotensin II receptor or stretch sensor[J].TrendsEndocrinolMetab,2004,15(9):405-408.
    125. FREY N,KATUSH A,OLSON E N,et al.Hypertrophy of the hear:t a newtherapeutic target[J].Circulation,2004,109(13):1580-1589.
    126. Guo RW,Yang LX,Li MQ,et al.Angiotensin II induces NF-kappaB activation inHUVEC via the p38MAPK pathway[J]. Peptides,2006,27(12):3269-3275.
    127. Takeuehi K.Signal transduction systems of angiotensinⅡreceptors[J].NipponRinsho,1999,57(5):1070-1077.
    128. Tian W,Zhang Z,Cohen DM.MAPK signaling and the kidne[J].Am J Physiol RenalPhysiol,2000,279(4):F593-F604.
    129. Kennedy R A, Kemp T J, Sugden P H, et al. Using U0126to dissect the roleof the extracellular signal-regulated kinase1/2(ERK1/2) cascade in the regulationof gene expression by endothelin-1in cardiac myocytes [J]. J Mol Cell Cardiol,2006,41(2):236-247.
    130. Ando K. Oxidative stress[J]. Nippon Rinsho,2003,61(7)1130.
    131.NakagamiH,TakemotoM,LiaoJK.NADPHoxidasederivedsuPeroxideanionmediatesangiotensin11一indueedeardiachyPertroPhy[J〕.J MolCellCardiol,2003,35(7):851.
    132.CrabtreeGR.GenetiesignalsandsPeeifieouteome:signalingthroughCa2+ealeineurin,and NF-κB[J].AnnNYAeadsei,1999,96:611.
    133.梁长清,杨志明,肖传实.血管紧张素-(1-7)、血管紧张素Ⅱ和p38丝裂原活化蛋白激酶关系的研究进展[J].心血管病学进展,2008,29(3):497-500.
    134.顾玉梅,吴扬.氧化应激在心肌肥厚中的作用及其机制[J].南通大学学报(医学版),2005,25(3):233.
    135. Engberding N, Spickemann S, Schacfer A, Wiencke A, et al. Allopurinolattenuates left ventricular remodeling and dysfunction after experimentalmyocardial infarction:a new action for an old drug[J].J Circulation,2004,110:175-179.
    136. Seshiah PN,Weber DS,Rocic P, et al. AngiotensinⅡstimulation of NAD(P)Hoxidase activity:upstream mediators[J].Circ es,2002,91(5):406.
    137. Ritchie RH, Delbridge LMD. Cardiac hypertrophy, substrate utilization andmetabolic remodelling: cause or effect[J]. Clin Exp Pharmacol Physiol,2006,33(122):159.
    138. Cheng TH, Shih NL, Chen CH, et a1. Role of mitogen activated protein Kinasepathway in reactive oxygen species mediated endothelin-1induced Myosin heavychaingene expression and cardiomyocyte hypertrophy[J]. J Bio med.Sci,2005,12(1):123.
    139. Yasuhiro I, Shokei K, Yasukatsu I, et a1. Apoptosis signal regulating kinase1plays a pivotal role in angiotensinII induced cardiac hypertrophy and remodeling[J].Circ Res,2003,93(9):?874.
    140. Tsujimoto I, Hikoso S, Yamaguchi O, et a1. The antioxidant edaravone attenuatespressure overload induced left ventricular hypertrophy[J].Hypertension,2005,45(5):921.
    141. Liu H,Nishitoh H, Ichijo H,et al. Activation of apoptosis signal-regulatingkinase1(ASK1) by tumor necrosis factor receptor associated factor2requires priordissociationof the ASK1inhibitor thioredoxin[J].MolCell Biol,2000,20(6):2198-2208.
    142. ChenCC, Sun YT, Chen JJ, et al. Tumor necrosis factor-αinducedcyclooxygenase-2expression via sequential activation of ceramide dependentmitogenactivated protein kinase,and IkB kinase1/2in human alveolar epithelialcells[J].Molpharmacol,2001,59(3):493-500.
    143. McDermott E P,ONeill L A. Ras participates in the activation of p38MAPKbyinterleukin-1by associating with IRAK, IRAK2,TRAF6and TAK-1[J].J BiolChem,2002,277(10):7808-7815.
    144. Maller J L.Signal transduction:fishing at the cell surface[J].Science,2007,300(5619):594-595.
    145. Lamarca B B, Cockrell K, Sullivan E, et al. Role of endothelin in mediating tumornecrosis factors induced hypertension in pregnant rats[J]. Hypertension,2005,46(1):82-86.
    146.VinodM AA. Cardiovascular effects of asymmetric dimethy larginine[J].Circulation,2004,109(25):327.
    147. SUGDEN PH. Signaling pathways in cardiac myocyte hypertrophy[J].AnnMed,2001,33:611-622.
    1. Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis frompathophysiology to practice[J]. J Am Coll Cardiol,2009,54:2129–2138.
    2. Tonetti MS, D’Aiuto F, Nibali L, et al. Treatment of periodontitis and endothelialfunction. N Engl J Med,2007,356:911–920.
    3. Van Leuven SI, Franssen R, Kastelein JJ, et al. Systemic inflammation as a riskfactor for atherothrombosis[J]. Rheumatology,2008,47:3–7.
    4. Gonzalez-Gay MA, Gonzalez-Juanatey C, Pineiro A, et al. High-grade C-reactiveprotein elevation correlates with accelerated atherogenesis in patients withrheumatoid arthritis[J]. J Rheumatol,2005,32:1219–1223.
    5. Rho YH,Chung CP,Solus JF, et al. Adipocytokines,insulin resistance,andcoronary atherosclerosis in rheumatoid arthritis[J]. Arthritis Rheum,2010,62(5):1259-1264.
    6. Dergren A,Karp K,Boman K, et al. Atherosclerosis in early rheumatoidarthritis: very early endothelial activation and rapid progression of intima mediathickness [J]. Arthritis Res Ther,2010,12(4): R158.
    7. Ahmed HM, Youssef M, Mosaad YM, et al. Antibodies againstoxidizedlow-density lipoprotein are associated with subclinical atherosclerosis inrecent-onset rheumatoid arthritis[J]. Clin Rheumatol,2010,29(11):1237-1243.
    8. Elkan AC,Hakansson N,Frostegard J, et al. Rheumatoid cachexiais associated with dyslipidemia and low levels of atheroprotective natural antibodiesagainst phosphorylcholine but not with dietary fat in patients with rheumatoidarthritis: a cross-sectional study[J].Arthritis Res Ther,2009,11(2): R37.
    9. La Montagna G,Cacciapuoti F,Buono R, et al. Insulin resistance is anindependent risk factor for atherosclerosis in rheumatoid arthriti[sJ].Diab Vasc DisRes,2007,4(2):130-135.
    10. Davignon J, Ganz P. Role of endotheial dysfunction in atherosclerosis. Circulatioro,2004,109:27.
    11. Pamuk ON,Unlu E,Cakir N, et al. Role of insulin resistance in increasedfrequency of atherosclerosis detected by carotid ultrasonography in rheumatoid arthritis[J]. J Rheumatol,2006,33(12):2447-2452.
    12. Mitchell GF. Arterial stiffness and wave reflection: biomarkers of cardiovascularrisk[J]. Artery Res,2009,3:56–64.
    13. Szekanecz Z,Kerekes G,Der H, et al. Accelerated atherosclerosis in rheumatoidarthritis[J]. Ann N Y Acad Sci,2007,1108:349-358.
    14. Lüscher TF, Steffel J, Eberli FR, et al. Drugeluting stent and coronary thrombosis:biological mechanisms and clinical implications[J]. Circulation,2007,115:1051–1058.
    15.胡珂,晏新民,胡志雄,等.关于冠心病冠状动脉粥样硬化氧化应激方面指标的研究进展[J].中国医药导报,2010,7(25):9-11.
    12. Hamid T, Gu Y, Ortines RV, et al. Divergent tumor necrosis factorreceptor-related remodeling responses in heart failure: role of nuclear factor-kappaBand inflammatory activation[J].Circulation,2009,119:1386–1397.
    13. Pauschinger M, Chandrasekharan K, Schultheiss HP, Myocardial remodeling inviral heart disease: possible interactions between inflammatory mediators andMMP-TIMP system[J]. Heart Fail Rev,2004,9:21–31.
    14.刘丹,孙品兰,罗明军,等.葡萄糖酸锌对心肌缺血/再灌注损伤保护作用的动物实验研究[J].重庆医学,2012,41(5):461-463.
    15. Snow MH,Mikuls TR.Rheumatoid arthritis and cardiovascular disease: the role ofsystemic inflammation and evolving strategies of prevention[J]. Curr OpinRheumatol,2005,17(3):234-241.
    16. Piot C, Croisille P, Staat P, et al. Effect of cyclosporine on reperfusion injury inacute myocardial infarction[J]. N Engl J Med,2008,359:473–481.
    17. Püntmann VO, Hussain MB, Mayr M, et al.Role of oxidative stress in angiotensin-IImediated contraction of human conduit arteries in patients with cardiovasculardisease[J]. Vascul Pharmacol,2005,43:277–282.
    18. Grisar J,Aletaha D,Steiner CW, et al. Endothelial progenitor cells in activerheumatoid arthritis: effects of tumour necrosis factor and glucocorticoid therapy[J]. Ann Rheum Dis,2007,66(10):1284-1288.
    19. Altindag O,Karakoc M,Kocyigit A, et al. Increased DNA damage and oxidativestress in patients with rheumatoid arthritis[J]. Clin Biochem,2007,40(3/4):167-171.
    20. Chung CP,Oeser A, Solus JF, et al. Prevalence of the metabolic syndrome isincreased in rheumatoid arthritis and is associated with coronary atherosclerosis[J].Atherosclerosis,2008,196(2):756-763.
    21. Kerekes G,Soltész P,Dér H, et al. Effects of biologics on vascular function andatherosclerosis associated with rheumatoid arthritis[J]. Ann N Y Acad Sci,2009,1173:814-821.
    22. Libby P,Ridker PM,Hansson G.Progress and challenges in translating the biologyof atherosclerosis[J]. Nature,2011,473:317-325.
    23. Libby P,Crea F. Clinical implications of inflammation for cardiovascular primaryprevention[J]. Eur Heart J,2010,31:777-783.
    24. Li JJ,Zhu CG,Li YS,et al. Increased peripheral circulating inflammatory cellsand inflammatory markers in patients with variant angina[J]. Coron Artery Dis,2008,19:293-297.
    25. Roifman I,Beck P,Anderson TJ,et al. Chronic inflammatory disease andcardiovascular risk: a systemic review[J]. Can J Cardiol,2011,27:174-182.
    26. Welsh P,Murray HM,Ford I,et al. Circulating interleukin-10and risk ofcardiovascular events: a prospective study in the elderly at risk[J]. ArteriosclerThromb Vasc Biol,2011,31:2338-2344.
    27. Li JJ,Li YS,Hui RT,et al. Effects of simvastatin within two weeks onantiinflammatory cytokine interleukin-10in patients with unstable angina[J].Heart,2006,92:529-530.
    28. Cavusoglu E,Marmur JD,Hojjati MR,et al. Plasma interleukin-10levels andadverse outcomes in acute coronary syndrome[J]. Am J Med,2011,124:724-730.
    29. Li JJ,Fang CP,Nie SP,et al.Elevated plasma C-reactive protein and interleukin-6levels in patients with slow coronary flow[J]. Clin Chim Acta,2007,385:43-47.
    30. Shin MH,Moon YJ, Seo JE, et al. Reactive oxygen species produced byNADPH oxidase,xanthine oxidase,and mitochondrial electron transport systemmediate heat shock-induced MMP-1and MMP-expression[J]. Free Radic BiolMed,2008,44(4):635-645.
    31. Libby P. Role of Inflammation in Atherosclerosis Associated with RheumatoidArthritis[J]. Am J Med,2008,121(10Suppl1):S21-S31.
    32.于欣,杨震,徐方芳,等.高血压肾损害患者TNF-α水平的变化研究[J].新医学,2010,41(12):783-785.
    33.蒋波勇,任晓华.原发性高血压患者外周血单个核细胞炎症因子水平的变化[J].中国卫生检验杂志,2010,20(12):3358-3360.
    34.晋凌云,刘嘉瀛,杨增仁,等. TNF-α在冻融嗜中性粒细胞介导血管内皮细胞损伤中的作用[J].中国应用生理杂志,2005,21(4):393-395.
    35.陈昕琳,顾仁樾,章怡祎.丹参多酚酸B对动脉粥样硬化大鼠炎症细胞因子的影响[J].上海中医药大学学报,2011,25(1):63-65.
    36.藏运华,唐明,郭瑞友,等.溶栓颗粒含药血清对TNF-α损伤血管内皮细胞VEGF表达影响的研究[J].中国中医药科技,2011,18(1):15-17.
    37.史君,王静,王星,等.肿瘤坏死因子-α、白细胞介素-6在高血压心肌肥厚大鼠实验中的意义[J].中国医药导报,2012,9(6):23-26.
    38. Xu T,Ju Z,Tong W,et al. Relationship of C-reactive protein withhypertension andinteractions between inereased C-reactive protein andother risk factors onhypertension in Mongolian people,China[J].CircJ,2008,72(8):1324-1328.
    39. PERTICONE F,MAIOR, SCIACQU AA, et al. Endothelial dys-function andC-reactive protein are risk factors for diabetes in es-sential hypertension[J].Diabetes,2008,57(1):167-171.
    40. Sarkar S,Vellaichamy E,Young D,et al. Influence of cytokines and growth factorsin ANG II-mediated collagen upregulation by fibroblasts in rats:role of myocytes [J].Am J Physiol Heart Circ Physiol,2004,287(1):107-117.99.
    41. Peng J,Gurantz D,Tran V,et al. Tumor necrosis factor-alpha-inducedAT1receptor upregulation enhances angiotensin II-mediated cardiac fibroblastresponses that favor fibrosis [J]. Circ Res,2002,91(12):1119-1126.
    42. Sivasubramanian N,Coker ML,Kurrelmeyer KM,et al. Left ventricularremodeling in transgenic mice with cardiac restricted overexpression of tumornecrosis factor[J]. Circulation,2001,104(7):826-831.
    43. Bradham WS, Moe G, Wendt KA, Scott AA, Konig A, Romanova M,et al. TNF-αand myocardial matrix metalloproteinases in heart failure: relationship to LVremodeling[J]. Am J Physiol Heart Circ Physiol,2002;282:H1288-95.
    44.王桂君,姚玉胜,王洪新.Ca2+/CaMKⅡ信号通路在肿瘤坏死因子-α诱导心肌肥大中的作用[J].中国药理学通报,2010,26(3):387-391.
    45. Janczewski AM,Kadokami T,Lemster B,Frye CS,McTiernan CF,FeldmanAM.Morphological and functional changes in cardiac myocytes isolated from miceoverexpressing TNF-α lPha.Am J Physiol Heart Circ Physiol,2003,284(3): H960.
    46. TaiUe C, Ei-Benna J, Lanone S, et al. Mitochondrial respirato-chain and NAD(P)Hoxidase are targets for the an tiproliferation effect of carbon monoxide in humanairway smooth muscle [J]. BiolChem,2005,280(27):25350-25360.
    47. Robert0, Martin B, Ffla E, et al. Bilimbin:a natural inhibitor of vascular smoothmuscle cell proliferation[J]. Grculation,2005,112(7):1030-1039.
    48. Kraja AT, Province MA, Arnett D,et al. Do inflammation and procoagulationbiomarkers contribute to the metabolic syndrome cluster[J]. Nutr Metab(Lond),2007,4(1):28.
    49. ROHDE G, BORG I, WIETHEGE A, et al. Inflammatory response in acute viralexacerbations of COPD[J]. Infection,2008,36(5):427-433.
    50.李自微,赵妍,周惠华.代谢综合征患者血管内皮损伤标志物、C反应蛋白与胰岛素抵抗的关系[J].微循环学杂志,2007,17(4):47-48.)
    51. Lele RD, Joshi SR, Gupte A. Association of adipocytokines (leptin, adiponectinTNF-αlpha), insulin and proinsulin with diabetes--the Mumbai Obesity Project.JAssoc Physicians India,2006,54:685-6.
    52. Vongpatanasin W,Thomas GD,Schwartz R,et al. C-reactive pro-tein causesdownregulation of vascular angiotensin subtype2recep-tors and systolic hypertensionin mice[J].Circulation,2007,115(8):1020-1028.
    53. Sun M,Chen M,Dawood F,et al. Tumor necrosis fa-ctor-αmediates cardiacremodeling and ventricular dysfunction after pressure overload state[J].Circulat-ion,2007,115(11):1398.
    54.李倩,蒋更如.炎症标志物在动脉粥样硬化性脑血管病中的应用[J].放射免疫学杂志,2005,18(3):217-220.
    55. TD Bradley,JS Floras. Obstructive sleep apnoea and its cardiovascularconsequences.Lancet,2009,373:82-93.
    56. Liao W,Yu C,Wen J,et al. Adiponectin induces inter-leukin-6production andactivates STAT3in adult mousecardiac fibroblasts[J].Biol Cell,2009,101(5):263-272.
    57.任敏,曾智,刘小菁,等. TGF-β1和TV型胶原在冠心病患者血清中的含量及与血管内皮细胞损伤的关系[J].成都中医药大学学报,2001,24(3):33-35.
    58. Wilkinson M, Brown R, Imran SAet al. Adipokine gene expression in brain andpituitary gland.Neuroendocrinology,2007,86(3):191-209.
    59. Psilopanagioti A,Papadaki H,Kranioti E F,et al. Expression of ad-iponectin andadiponectin receptors in human pituitary gland andbrain[J].Neuroendocrinology,2009,89(1):38-47.
    60. Brown R,Thompson HJ,Imran SAet al. Traumatic brain injury induces adipokinegene expression in rat brain.Neurosci Lett,2008,432(1):73-78.
    61.李龙英,肖谦.转化生长因子-β1/Smdas信号转导通路与糖尿病心肌病变[J].国外医学·老年医学分册,2007,28(3):118-121.
    62. BROOKS W W, CONRAD C H. Myocardial fibrosis in transforming growth factorheterozygous mice[J].J Mol Cell Cardiol,2000,32(2):187-195.
    63. Qi G,Jia L,Li Y,et al. Angiotensin II infusion-induced inflam-mation,monocyticfibroblast precursor infiltration,and cardiac fi-brosis are pressuredependent.Cardiovasc Toxicol,2011,11:157-167.
    64. F Lang,C Bohmer,M Palmada,G Seebohm,N Strutz-Seebohm,V Vallon.(Patho)physiological significance of the serum-and glucocorticoid-inducible kinaseisoforms.Physiol Rev,2006,86:1151-1178.
    65. Watanabe K,Sukumaran V,Veeraveedu PT,et al. Regulationof inflammation andmyocardial fibrosis in experimental autoim-mune myocarditis.Inflamm Allergy DrugTargets.2011,10:218-225.
    66.ChengJ,WangY,MaY,etal.Themechanicalstress-activatedserum-,glucocorticoid-regulated kinase1contributes to neointimaformation in vein grafts.Circ Res,2010,107:1265-1274.
    67.石永英,陈广原,刘世明,等.转化生长因子β1与高血压左心室肥厚相关性研究的荟萃分析[J].岭南心血管病杂志,2011,17(4):276-279.
    68. Haugen F,Drevon CA. Activation of Nuclear Factor-(?)B by High MolecularWeight and Globular Adiponectin[J]. Endocrinology,2007,148(11):5478-5486.
    69. Huang M,Hu YY,Dong XQ. High concentrations of pro-coagulant microparticles inthe cerebrospinal fluid andperipheral blood of patients with acute basalgangliahemorrhage are associated with poor outcome[J].SurgNeurol,2009,72(5):481-489.
    70. Creemers EE,Pinto YM. Molecular mechanisms that control intersti-tial fibrosis inthe pressure-overloaded heart[J].Cardiovasc Res,2011,89(2):265-272.
    71.臧运华,唐明,郭瑞友,等.含溶栓颗粒血清对TNF-α损伤人脐静脉内皮细胞VEGF的影响[J].中西医结合心脑血管病杂志,2010,8(2):191-194.
    72.陈美娟,江励华,席蓓莉,等.加减清营汤对H2O2损伤的人脐静脉内皮细胞ECV304VEGF表达的影响[J].中华中医药学刊,2008,26(12):2267-2269.
    73. KISH O O, KENSU KE E, KEN-ICHI H, et al. Bl ockag e of vascular endothelialgrow th f act or supp ress es exp eriment alrest enosi s af ter in tralum inal injury byinhibit in g recruitment of monocyt e l ineage cells[J]. Ci rcu lat ion,2004,110:2444-2452.
    74.李彦飞,董果雄,张社华,等.全反式维甲酸对兔颈动脉内皮损伤后内膜增殖和VEGF及VCAM-1表达的影响[J].青岛大学医学院学报,2009,45(2):101-103.
    75. ZhangJian-chu,ZhangXiao-jiu,YangWei-bing,et al.Effect of safflor and ICAM-1in pulmonary vascular endothelium of rat[J].J Chin Microcirc,2007,11(1):5-8.
    76.戴晓明,蒋凤荣,张旭,等.麦冬不同提取物对过氧化氢损伤人血管内皮细胞ICAM-l、 VEGF、 Bel-2表达的影响[J].现代生物医学进展,2008,8(12):2041-2043.
    77.詹雪亮,郭金霞.高血压病患者血清细胞间黏附分子-1和C-反应蛋白的变化及临床意义.中国实用医药,2008,3(6):20.
    78. Brown R,Thompson HJ,Imran SAet al. Traumatic brain injury induces adipokinegene expression in rat brain.Neurosci Lett,2008,432(1):73-78.
    79. Blacher J, Guerin A, Pannier B,et al. Impact of aortic stiffness on survival in endstage renal disease[J]. Circulation,2005,99(12):2434-2439.
    80. Psilopanagioti A,Papadaki H,Kranioti E F,et al. Expression of ad-iponectin andadiponectin receptors in human pituitary gland andbrain[J].Neuroendocrinology,2009,89(1):38-47.
    81.戴晓明,蒋凤荣,张旭,等.麦冬不同提取物对过氧化氢损伤人血管内皮细胞ICAM-l、 VEGF、 Bel-2表达的影响[J].现代生物医学进展,2008,8(12):2041-2043.
    82. Vaverkova H,Karasek D,Novotny D,et al. Positive associ-ation of adiponectin withsoluble vascular cell adhesionmolecule sVCAM-1levels in patients with vasculardiseaseor dyslipidemia[J].Atherosclerosis,2008,197(2):725-731.
    83. El Bouchti I,Sordet C,Kuntz JL,et al. Severe atherosclerosis in rheumatoidarthritis and hyperhomocysteinemia: is there a link[J]. Joint Bone Spine,2008,75(4):499-501.
    84. Banday AA,Lokhandwala MF. Oxidative stress-induced renal angiotensin AT1receptor upregulation causes increased stimulation of sodium transporters andhypertension[J]. Am J Physiol Renal Physiol,2008,295(3): F698-F706.
    85. Puntmann VO. How-to guide on biomarkers biomarker definitions, validation andapplications with examples from cardiovascular disease[J]. Postgrad Med J,2009,85:538–545.
    86. Mayr M, Grainger D, Mayr U, et al. Proteomics, metabolomics, and immunomicson microparticles derived from human atherosclerotic plaques[J]. Circ CardiovascGenet,2009,2:379–388.
    87.Puntmann VO, Taylor PC, Barr A, et al. Towards understanding the phenotypes ofmyocardial involvement in the presence of self-limiting and sustained systemicinflammation: a magnetic resonance imaging study[J]. Rheumatology,2010,49:528–535.
    88. Mosedale DE, Chauhan A, Schofield PM, Grainger DJ, A pattern ofanti-carbohydrate antibody responses present in patients with advancedatherosclerosis[J]. J Immunol Methods,2006,309:182–191.
    89. Prokopi M, Pula G, Mayr U, et al. Proteomic analysis reveals presence of plateletmicroparticles in endothelial progenitor cell cultures[J]. Blood,2009,114:723–732.
    90. Xu QB, Oberhuber G, Gruschwitz M, et al. Immunology of atherosclerosis: cellularcomposition and major histocompatibility complex class II antigen expression inaortic intima, fatty streaks, and atherosclerotic plaques in young and aged humanspecimens[J].Clin Immunol Immunopathol,1990,56:344–359.
    91. Mayr M, Grainger D, Mayr U, et al. Proteomics, metabolomics, and immunomicson microparticles derived from human atherosclerotic plaques[J]. Circ CardiovascGenet,2009,2:379–388.
    92. Mosedale DE, Chauhan A, Schofield PM, et al. A pattern of anti-carbohydrateantibody responses present in patients with advanced atherosclerosis[J]. J ImmunolMethods,2006,309:182–191.
    93. Hussain MB, Puntmann VO, Mayr M, et al. The role of oxidant stress in angiotensinII-mediated contraction of human resistance arteries in the state of health and thepresence of cardiovascular disease[J]. Vascul Pharmacol,2006,45:395–399.
    94. Prokopi M, Pula G, Mayr U, et al. Proteomic analysis reveals presence of plateletmicroparticles in endothelial progenitor cell cultures[J]. Blood,2009,114:723–732.
    95. Pham T, Gregg CJ, Karp F, et al. Evidence for a novel human-specificxeno-auto-antibody response against vascular endothelium[J]. Blood,2009,114:5225–5235.
    96. Padler-Karavani V, Yu H, Cao H, et al. Diversity in specificity, abundance, andcomposition of anti-Neu5Gc antibodies in normal humans: potential implications fordisease[J]. Glycobiology,2008,18:818–830.
    97. Binder CJ, Dewan A, Chang MK, et al. Pneumococcal vaccination decreasesatherosclerotic lesion formation: molecular mimicry between Streptococcuspneumoniae and oxidized LDL[J]. Nat Med,2003,9:736–743.
    98. Mayr M, Kiechl S, Tsimikas S, et al. Oxidized low-density lipoproteinautoantibodies, chronic infections, and carotid atherosclerosis in a population-basedstudy[J]. J Am Coll Cardiol,2006,47:2436–2443.
    99. Xu Q, Dietrich H, Steiner HJ, et al. Induction of arteriosclerosis innormocholesterolemic rabbits by immunization with heat shock protein65[J].Arterioscler Thromb,1992,12:789–799.
    100. Maron R, Sukhova G, Faria AM, et al. Mucosal administration of heat shockprotein-65decreases atherosclerosis and inflammation in aortic arch of low-densitylipoprotein receptor-deficient mice[J]. Circulation,2002,106:1708–1715.
    101. Mayr M, Kiechl S, Willeit J, et al. Infections, immunity, and atherosclerosis:associations of antibodies to Chlamydia pneumoniae, Helicobacter pylori, andcytomegalovirus with immune reactions to heatshock protein60and carotid orfemoral atherosclerosis[J]. Circulation,2000,102:833–839.
    102. Wick G, Knoflach M, Xu Q.Autoimmune and inflammatory mechanisms inatherosclerosis[J]. Annu Rev Immunol,2004,22:361–403.