胰腺癌患者外周血调节性T细胞检测及RetroNectin法培养NK细胞对于胰腺癌细胞杀伤作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:肿瘤免疫治疗是肿瘤治疗的重要手段之一。调节性T细胞(regulatory T, Treg)是一种免疫抑制性细胞,在肿瘤免疫中起重要作用。明确免疫抑制性细胞与肿瘤患者的临床病理特点及治疗效果的关系。有效地体外扩增获得杀伤广谱的效应细胞,一直是肿瘤免疫治疗中亟待解决的主要问题。本研究通过检测外周血Treg表达水平,探讨胰腺癌患者外周血Treg细胞水平的变化及其临床意义;同时通过RetroNectin法培养高效的效应细胞,探讨其在体外对于胰腺癌细胞的杀伤效应。
     材料和方法:收集2006年10月至2009年3月我院胰腺癌患者外周血标本62例,健康人志愿者外周血标本30例。用流式细胞仪检测CD4+CD25high调节性T细胞比率变化差异,并分层分析探讨Treg细胞表达与胰腺癌分期和预后的关系;以免疫磁珠法获取外周血CD56+T细胞后用RetroNectin法培养获得NK效应细胞,并用MTS法对于JF-305人胰腺癌细胞株进行体外杀伤实验。通过表型检测、增殖测定以及杀伤率测定,分析RetroNectin法获得的NK细胞对于胰腺癌细胞杀伤作用的影响。
     结果:胰腺癌患者外周血CD4+CD25+Foxp3调节性T细胞富含于CD4+CD25high调节性T细胞群中,其占CD4+T细胞的比率为(15.16±13.97)%,明显高于健康人群(3.38±1.70)%(P<0.001)。胰腺癌Ⅰ-Ⅱ期患者,其外CD4+CD25high调节性T细胞占CD4+T细胞的比率为(14.53±6.95)%(n=13):III期为(17.75±18.66)%(n=31);Ⅳ期为(18.48±21.27)%(n=18)。各期CD4+CD25high调节性T细胞占CD4+T细胞的比率均显著高于健康人群水平(P<0.001);进一步分析显示其与患者的年龄、性别及胆红素水平、CA199水平、TNM分期无关;同时将其术前、术后外周血的水平进行比较结果显示:治疗性手术后比率下降具有统计学差异;生存分析显示其与预后无关,TNM分期为独立预后因素。
     RetroNectin法培养效应细胞结果显示:RetroNectin法协同抗CD3抗体培养可以更高效的获得的效应细胞,2周时的增殖倍数可以达到371倍。表型的检测发生明显变化,RetroNectin法获取的NK效应细胞明显高于其他两组。体外杀伤实验结果显示:RetroNectin组培养获得的效应细胞在各效靶比杀伤下,杀伤活力明显高于另外两组。
     结论:对CD4+CD25high调节T细胞的鉴定显示其富含Foxp3+细胞,本实验条件下的CD4+CD25high调节T细胞可以代表功能性的Treg细胞水平。胰腺癌患者外周血CD4+CD25high调节T细胞水平较健康对照者明显升高。非脾切除的治疗性手术后外周血treg细胞水平较术前明显下降。胰腺癌患者术前外周血Treg水平与预后无关。进一步的实验显体外实验显示RetroNectin法培养效应细胞NK细胞表型发生改变。联合CD3抗体培养增殖活性明显增强。RetroNectin法培养的NK细胞对于胰腺癌JF305细胞株的杀伤效率明显提高。因而如果能去除Treg细胞并联合应用高效的RetroNectin法培养的效应细胞,通过这两种免疫影响方式对胰腺癌进行治疗,未来可能成为胰腺癌免疫治疗新模式。
[English Abstract]
     Research o f Detecting Regulatory T Cell in the Peripheral Blood of Patients and adoptive transfer RetroNectin activated NK cells in vitro in Pancreatic cancer M.D. Student:zhou jian guo Supervisor:zhao ping
     Abdominal Surgery Department, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
     [Background and Purpose]
     Immunotherapy is an important mode of treatment for cancer. Regulatory T cells (Treg) is an immunosuppressive cell, which plays an important role in tumor immunity. How to define immunosuppressed state of the tumor-bearing individuals associated with clinicopathologic features and therapeutic efficacy, and How to effectively acquire proliferation and broad-spectrum effector cells in vitro have been the main problems in cancer immunotherapy. In this study, the impact and significance of immunosuppressed state of pancreatic cancer is discussed by detecting the expression level of Treg in peripheral blood of pancreatic cancer and inhibitory effect of the highly efficient natural killer cells cultured by RetroNectin method in vitro.
     [Materials and Methods]
     62 peripheral blood samples of pancreatic cancer patients and 30 samples of healthy volunteers were collected from October 2006 to March 2009 in our hospital. Ratio difference of CD4+CD25high regulatory T cells was determined by flow cytometry. The relationship between the prevalence of Treg cells and pancreatic cancer staging and prognosis were Analysed. CD56+T cells of peripheral blood were acquired by immunomagnetic bead separation, and then NK cell were cultured by RetroNectin method. killing assay in vitro with JF-305 human pancreatic cancer cells was detected by MTS method. The impact of RetroNectin method for the killing of effector cells was Analysed by detecting phenotype, proliferation and anti-determined kill rate.
     [Results]
     The prevalence of CD4+CD25high regulatory T cells in CD4+T cells in the peripheral blood of patients with pancreatic carcinoma was(15.16±13.97)%, which was significantly higher than the level of healthy controls (3.38±1.70)%(P<0.001).The proportions of Treg cells in the patients with pancreatic carcinoma in stageⅠ-Ⅱ(14.53±6.95)%(n=13) stageⅢ(17.75±18.66)%(n=31), stageⅣ(18.48±21.27)% (n=18), were all significantly higher when compared with healthy controls (P<0.01). Univariate analysis showed that there was no relationship between the prevalence of Treg cells with age, sex, CA199, bilirubin level and TNM staging. The proportion of CD4+CD25high regulatory T cells at the the 7th day after operation was signigicanfly lower than that level before operation with radical resection or palliation treatment. Univariate analysis didn't showed that it's the relationship with prognosis. Multivariate analysis indicated that only TNM stage was independent prognostic factor that influenced survival.
     Results in vitro showed that Proliferative activity of effector cells increased 371-folds, which cultured by Anti-CD3 antibody and RetroNectin method. while the detection changed significantly in phenotype. CD56+T/CD56+CD16+T cell ratio was significantly higher than control group and Anti-CD3 antibody+RetroNectin group. Killing assay was observed with effector:target ratios from 10 to 40.The results of showed that RetroNectin group's kill rate were significantly different compared with other groups on every different effector target ratio.
     [Conclusion]
     Prevalence of Treg cells in peripheral blood of patients with pancreatic cancer significantly increased when compared with normal donors. Immunosuppression in patients with pancreatic cancer may be closely related to the increase in Treg cells. In compare with the proportion before resection and at first week after operation,the proportion of CD4+CD25high regulatory T cells descends by radical resection or palliation treatment. The proportion of CD4+CD25high regulatory T in peripheral blood was not related to prognosis.Further experiments showed that the immune killing effect of the NK cells cultured by RetroNectin method.be enhanced significantly. When added Anti-CD3 antibody, Proliferative activity of effector cells increased. RetroNectin method can be more efficient access to effector cells. This study shows good prospect of Culturing effector cells by combining removal of Treg cells and efficiently RetroNectin method for immunotherapy is a feasible idea. It may provide theoretical and experimental basis for building a new adoptive immunotherapy model for pancreatic cancer in future.
引文
1. Bayraktar S, Bayraktar UD, Rocha-Lima CM.Recent developments in palliative chemotherapy for locally advanced and metastatic pancreas cancer[J]. World J Gastroenterol.2010 Feb 14;16(6):673-682.
    2. Jermal A,Tiwai RC,Murray T,et a.l Cancer statistics,2005[J]. CA Cancer J Clin. 2005;55(1):10-30
    3. Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains(CD25). Breakdown of as single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol,1995,155(3):1151-1164
    4. Toubi E. The role of CD4+CD25+ T regulatory cells in autoimmune diseases[J]. Clin Rev Allergy Immunol.2008 Jun;34(3):338-434.
    5. M. Beyer and J.L. Schultze, Regulatory T cells in cancer [J], Blood 2006,108. 804-811.
    6. Fontenot JD, Rudensky AY. A well adapted regulatory contrivance:regulatory T cell development and the forkhead family transcription factor Foxp3. [J]. Nat Immunol,2005,6(4):331-337
    7. Sakaguchi S, Ono M, Setoguchi R, et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease[J]. Immunol Rev.2006 Aug;212:8-27.
    8. Kosmaczewska A, Ciszak L, Potoczek S. The significance of Treg cells in defective tumor immunity[J]. Arch Immunol Ther Exp (Warsz).2008 May-Jun;56(3):181-191
    9. Jens Dannull, Zhen Su, David Rizzieri. Enhancement of vaccine-mediated antitumor immunity in cancer patientsafter depletion of regulatory T cells[J] J. Clin. Invest.2005;115:3623-3633.
    10. Stephens GL, McHugh RS, Whitters MJ, et al. Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells[J]. J Immunol 2004; 173:5008-5020.
    11. Nair S Boczkowski D, Fassnacht M, et al. Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity[J]. Cancer Res.2007 Jan 1;67(1):371-380.
    12. Puccetti P, Grohmann U. IDO and regulatory T cells:a role for reverse signalling and non-canonical NF-kappaB activation. Nat Rev Immunol[J].2007;7:817-823.
    13. Huang CT, Workman CJ, Flies D,et al. Role of LAG-3 in regulatory T cells[J]. Immunity 2004;21:503-513.
    14. Hawrylowicz, C.M.& O'Garra, A. Potential role of interleukin-10 in the regulation of T cells in allergy and asthma. Nature Rev. Immunol[J].2005;5. 271-283
    15. Annacker, O., Asseman, C., Read, S., et al. Interleukin-10 in the regulation of T cell-induced colitis. J. Autoimmun.[J] 2003,20,277-279.
    16. Nakamura K, Kitani A, Strober W. Cell contact dependent immunosuppression by CD4(+) CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta[J]. J Exp Med.2001;194:629-644
    17. Hara M, Kingsley CI, Niimi M, et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo[J]. J Immunol.2001;166:3789-3796
    18. Collison, L. W. The inhibitory cytokine IL-35 contributes to regulatory T cell function[J]. Nature2007; 450,566-569.
    19. Gavin MA, Rasmussen JP, Fontenot JD, et al. FOXP3-dependent programme of regulatory T-cell differentiation. Nature [J].2007;455,771-775
    20. Borsellino, G. Expression of ectonucleotidase CD39 by FOXP3+ Treg cells: hydrolysis of extracellular ATP and immune suppression[J]. Blood 2007;10, 1225-1232
    21. Kobie, J. J. T regulatory and primed uncommitted CD4 T cells express CD73,which suppresses effector CD4 T cells by converting 5'-adenosine monophosphate to adenosine[J].. J. Immunol.2006; 177,6780-6786
    22. Bopp, T. Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression[J].. J. Exp. Med.2007; 204,1303-1310
    23. de la Rosa, M., Rutz, S., Dorninger, H.,et al. Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur. J. Immunol[J].2004,34,2480-2488
    24. Grossman, W. J. et al. Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and Tregulatory cells [J]. Blood 2004; 104, 2840-2848
    25. McHugh, R. S. CD4+CD25+ immunoregulatory T cells:gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor[J]. Immunity 2002,16,311-323.
    26. Gondek, D. C., Lu, L. F., Ouezada, S.A., et al. Cutting edge:contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism[J]. J. Immunol.2005,174,1783-1786
    27. Cao X, Cai SF, Fehniger TA, et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance[J]. Immunity 2007,27, 635-646.
    28. Ren, X. Involvement of cellular death in TRAIL/DR5-dependent suppression induced by CD4+CD25+ regulatory T cells [J]. Cell Death. Differ.2007,14, 2076-2084.
    29. Woo EY, Chu CS, Goletz TJ, et al Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer[J].. Cancer Res 2001; 61:4766-4772
    30. Liyanage UK, Moore TT, Joo HG, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma[J].. J Immunol 2002; 169:2756-2761
    31. Woo EY, Yeh H, Chu CS, et al Cutting edge:Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation[J].. J Immunol 2002; 168: 4272-4276
    32. Curiel TJ, Coukos G, Zou L, et al Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival[J].. Nat Med 2004; 10:942-949
    33. Ormandy LA, Hillemann T, Wedemeyer H, et al Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma[J].. Cancer Res 2005; 65:2457-2464
    34. Onizuka S, Tawara I, Shimizu J, et al. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody[J]. Cancer Res 1999; 59:3128-3133
    35. Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+CD4+ T cells:a common basis between tumor immunity and autoimmunity[J]. J Immunol 1999; 163:5211-5218
    36. Jens Dannull, Zhen Su, David Rizzieri. Enhancement of vaccine-mediated antitumor immunity in cancer patientsafter depletion of regulatory T cells[J] J. Clin. Invest.2005;115:3623-3633.
    37. Hidalgo M. Pancreatic cancer[J].N Engl J Med.2010 Apr 29;362(17):1605-1617.
    38. Bramhall SR, Allum WH, Jones AG, et al.Treatment and survival in 13,560 patients with pancreatic cancer, and incidence of the disease, in the West Midlands:an epidemiological study[J]. Br J Surg.1995 Jan;82(1):111-5.
    39. Younes A.Novel treatment strategies for patients with relapsed classical Hodgkin
    lymphoma[J].Hematology Am Soc Hematol Educ Program.2009:507-19.
    40. Kolb HJ. Graft-versus-leukemia effects of transplantation and donor lymphocytes[J] Blood.2008 Dec 1;112(12):4371-83.
    41. Bhatia S, Tykodi SS, Thompson JA. Treatment of metastatic melanoma:an overview [J].Oncology (Williston Park).2009 May;23(6):488-96. Review
    42. Bouet F, Catros V.Immune anticancer response:recent advances in the treatment of renal cell carcinoma[J].Ann Biol Clin (Paris).2004 May-Jun;62(3):257-68. Review.
    43. Laheru D, Biedrzycki B, Jaffee EM. Immunologic approaches to the management of pancreatic cancer[J]. Cancer J.2001 Jul-Aug;7(4):324-337. Review.
    44. Linehan DC, Goedegebuure PS.CD25+CD4+regulatory T-cells in cancer[J]. Immunol Res.2005;32(1-3):155-168.
    45. Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression[J]. Immunity.2009 May;30(5):636-45. Review.
    46. Sarah L. Clarkel.a, Gareth J, et al. T CD4+CD25+FOXP3+ Regulatory T Cells Suppress Tumor Immune Responses in Patients with ColorectalCancer[J] Anti-Immunity.2009 May;30(5):636-645. Review.
    47. Earle, Q Tang, X. Zhou, W. Liu,, et al. In vitro expanded human CD4+CD25+ regulatory T cells suppress effector T cell proliferation, Clin. Immunol.2005,115: 3-9.
    48. Shen LS, Wang J, Shen DF, et al. CD4(+)CD25(+)CD127(low/-) regulatory T cells express Foxp3 and suppress effector T cell proliferation and contribute to gastric cancers progression[J]. Clin Immunol.2009 Apr;131(1):109-118.
    49. Sato E, Olson SH, Ahn J et al. Intraepithelial CD8+ tumor infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer[J]. Proc Natl Acad Sci 2005; 102:18538-18543.
    50. Ladoire S, Arnould L, Apetoh L, et al. Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating foxp3+ regulatory T cells[J]. Clin Cancer Res. 2008 Apr 15;14(8):2413-2420
    51.朱金国,熊利华.脾切除对心脏移植大鼠外周血淋巴细胞凋亡及调节性T淋巴细胞的影响[J].中华器官免疫杂志.2009 30(3):133-136
    52. Sakakura M, Wada H, Tawara I, et al.Reduced Cd4+Cd25+ T cells in patients with idiopathic thrombocytopenic purpura[J].Thromb Res.2007;120(2):187-193.
    1. Gibbings D, Befus AD.CD4 and CD8:an inside-out coreceptor model for innate immune cells. Leukoc Biol[J].2009 Aug;86(2):251-259
    2. Rubin B. Natural immunity has significant impact on immune responses against cancer[J].Scand J Immunol.2009 Mar;69(3):275-290.
    3. Powell DJ Jr, de Vries CR, Allen T,et al. Inability to mediate prolonged reduction of regulatory T Cells after transfer of autologous CD25-depleted PBMC and interleukin-2 after lymphodepleting chemotherapy.J Immunother[J].2007 May-Jun;30(4):438-447.
    4. Erbayraktar Z. Adoptive T-cell therapy of cancer.J BUON[J].2009 Sep;14 Suppl 1:S193-201. Review
    5. Fatourou EM, Koskinas JS. Adaptive immunity in hepatocellular carcinoma: prognostic and therapeutic implications[J]:Expert Rev Anticancer Ther.2009 Oct;9(10):1499-1510. Review
    6.Morse MA, Hobeika AC, Osada T,,et al. Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines[J].Blood.2008 Aug 1;112(3):610-618.
    7. Wieder T, Braumuller H, Kneilling M,,et al. T cell-mediated help against tumors[J].Cell Cycle.2008 Oct;7(19):2974-2977. Review.
    8. Knutsori KL, Disis ML.Tumor antigen-specific T helper cells in cancer immunity and immunotherapy[J].Cancer Immunol Immunother.2005 Aug;54(8):721-8. Review.
    9. Gismondi A, Morrone S, Humphries MJ,,et al. Human natural killer cells express VLA-4 and VLA-5, which mediate their adhesion to fibronectin. J Immunol. 1991 Jan 1;146(1):384-392
    10. Lamers CH, van Elzakker P, van Steenbergen SC, et al. Retronectin-assisted retroviral transduction of primary human T lymphocytes under good manufacturing practice conditions:tissue culture bag critically determines cell yield Cytotherapy[J].2008;10(4):406-416.
    11. Mao Y, Schwarzbauer JE. Fibronectin fibrillogenesis, a cell-mediated matrix assembly process[J]. Matrix Biol.2005 Sep;24(6):389-399. Review.
    12.李琤,万云霞,马洁等.联合重组人纤维连接蛋白活化的杀伤细胞过继性治疗肾癌的实验研究[J].中华泌尿外科杂志2007,28(10):656-659.
    13. Vitale M, Illario M, Di Matola T,et al. Integrin binding to immobilized collagen and fibronectin stimulates the proliferation of human thyroid cells in culture[J]. Endocrinology.1997 Apr; 138(4):1642-1648.
    14. Harima A, Nakaseko C, Yokota A, et al Fibronectin promotes cell proliferation of human pre-B cell line via its interactions with VLA-4 and VLA-5[J] Hematology. 2008 Aug;13(4):236-243.
    15. Wagner C, Burger A, Radsak M,et al Fibronectin synthesis by activated T lymphocytes:up-regulation of a surface-associated isoform with signalling function[J]. Immunology.2000 Apr;99(4):532-539.
    16. Franitza S, Grabovsky V, Wald O, et al.Differential usage of VLA-4 and CXCR4 by CD3+CD56+ NKT cells and CD56+CD16+ NK cells regulates their interaction with endothelial cells[J]. Eur J Immunol.2004 May;34(5):1333-1341
    17. Williams NS, Klem J, Puzanov IJ,,et al. Natural killer cell differentiation: insights from knockout and transgenic mouse models and in vitro systems[J].Immunol Rev.1998 Oct; 165:47-61.
    18. Lipsky PE.The induction of human B-cell activation, proliferation and differentiation by anti-CD3-stimulated T cells--a model of T cell/B cell collaboration[J]. Res Immunol.1990 May-Jun;141(4-5):424-427.
    19. Sentman CL, Barber MA, Barber A, et al NK cell receptors as tools in cancer immunotherapy[J]. Adv Cancer Res.2006;95:249-292
    20. Sinkovics JG, Horvath JC.Human natural killer cells:a comprehensive.review[J]. Int J Oncol.2005 Jul;27(1):5-47.
    21. Berzofsky JA, Terabe M. The contrasting roles of NKT cells in tumor immunity[J]. Curr Mol Med.2009 Aug;9(6):667-672.
    22. Kawano T, Cui J, Koezuka Y,,et al. CD1d-restricted and TCR-mediated activation of valphal4 NKT cells by glycosylceramides[J].Science.1997 Nov 28;278(5343):1626-1629.
    1. Kosmaczewska A, Ciszak L, Potoczek S. The significance of Treg cells in defective tumor immunity[J]. Arch Immunol Ther Exp (Warsz).2008 May-Jun;56(3):181-191
    2. Toubi E. The role of CD4+CD25+ T regulatory cells in autoimmune diseases[J]. Clin Rev Allergy Immunol.2008 Jun;34(3):338-434.
    3. Gershon RK, Kondo K. Infectious immunological tolerance[J]. Immunology 1971; 21:903-914.
    4. Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains(CD25). Breakdown of as single mechanism of self-tolerance causes various autoimmune diseases [J]. J Immunol,1995,.155(3):1151-1164
    5. Stephens LA, Mottet C, Mason D, et al Human CD4(+)CD25(+) thymocytes and peripheral T cells have immune suppressive activity in vitro[J]. Eur J Immunol.2001 Apr;31(4):1247-1254
    6. Taams LS, Smith J, Rustin MH, et al.Human anergic suppressive CD4(+)CD25(+) T cells:a highly differentiated and apoptosis-prone population[J]. Eur J Immunol. 2001 Apr;31(4):1122-1131.
    7. Levings MK, Sangregorio R, Roncarolo MG Human CD25(+)CD4(+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function[J].J Exp Med.2001 Jun 4; 193(11):1295-302.
    8. Takahashi T, Kuniyasu Y, Toda M, et al.Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells:induction of autoimmune disease by breaking their anergic/suppressive state[J]. Int Immunol.1998 Dec;10(12):1969-1980.
    9. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+regulatory T cells in immunological tolerance to self and non-self[J]. Nat Immunol.2005;6:345-352
    10. Annunziato F, Cosmi L, Liotta F, et al localization, and mechanism of suppression of CD4(+)CD25(+) human thymocytes [J]. J Exp Med.2002 Aug 5;196(3):379-387.
    11. Burchill MA, Yang J, Vogtenhuber C,et al. IL-2 receptor-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells[J]. J Immunol.2007; 178:280-290.
    12. Lio CW, Hsieh CS. A two-step process for thymic regulatory T cell development[J]. Immunity.2008;28:100-111
    13. livingsMK, Sangregorio R,Sartirana C, et al. Human CD25+CD4+T suppressor cell clones produce transforming growth factor beta, but not interleukin 10, and are distinct from type 1T regulatory cells[J]. J Exp Med,2002,196:1335-1346.
    14. Barrat FJ, Cua DJ, Boonstra A, et al In vitro generation of interleukin 10-producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Thl)-and Th2-inducing cytokines[J]. J Exp Med.2002 Mar 4;195(5):603-616.
    15. Jordan MS, Boesteanu A, Reed AJ, et al Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide[J]. Nat Immunol.2001 Apr;2(4):301-306.
    16. Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells [J]. Nat Rev Immunol.2003 Mar;3(3):253-257. Review
    17. Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. [J]. Nat Gcnet,2001,27(1):68-73
    18. Fontenot JD, Rudensky AY. A well adapted regulatory contrivance:regulatory T cell development and the forkhead family transcription factor Foxp3. [J]. Nat Immunol, 2005,6(4):331-337.
    19. Sakaguchi S, Ono M, Setoguchi R, et al Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease[J]. Immunol Rev.2006 Aug;212:8-27.
    20. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells[J]. Nat Immun 2003;4:330-336.
    21. Tran,D. O., Ramsey, H.& Shevach, E.M. Induction of Foxp3 expression in naive human CD4+Foxp3 T cells by T-cell receptor stimulation is transforming growth factor-β-dependent but does not confer a regulatory phenotype[J]. Blood 2007; 110, 2983-2990.
    22. Allan SE, Crome SQ, Crellin NK, et al. Activation-induced Foxp3 in human Teffector cells does not suppress proliferation or cytokine production Activation-induced Foxp3 in human Teffector cells does not suppress proliferation or cytokine production[J]. Int. Immunol.2007; 19.345-354.
    23. Wang, J., Loan-Facsinay, A., vander voort, et al. Transient expression of FOXP3 in human activated nonregulatory CD4+T cells [J]. Eur. J. Immunol.2007;37,129-138.
    24. Li-Song Shen, Jian Wang, Ding-Feng Shen,et al CD4+CD25+CD1271ow/-regulatory T cells express Foxp3 and suppress effector T cell proliferation and contribute to gastric cancers progression[J].Clinical Immunology (2009) 131,
    109-118.
    25. Martin B, BaNz A, Bienvenu B, et al. Suppression of CD4+ T lymphocyte effector functions by CD4+CD25+ cells in vivo. [J]. J Immunol,2004,172(6):3390-3398.
    26. Sutmuller RP, van Duivenvoorde LM, van Elsas A, et al. Synergism of cytotoxic T lymphocyteassociated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 2001; 194:823-832.
    27. Ino K, Yamamoto E, Shibata K, et al. Inverse correlation between tumoral indoleamine 2,3-dioxygenase expression and tumor-infiltrating lymphocytes in endometrial cancer:its association with disease progression and survival[J].Clin Cancer Res.2008 Apr 15;14(8):2310-2317.
    28. Hartigan-O'Connor DJ, Poon C, Sinclair E, et al Human CD4+ regulatory T cells express lower levels of the IL-7 receptor alpha chain (CD127), allowing consistent identification and sorting of live cells [J]. J Immunol Methods.2007 Jan 30;319(1-2):41-52.
    29. Finney OC, Riley EM, Walther M.Phenotypic analysis of human peripheral blood regulatory T cells (CD4+Foxp3+CD1271ow/-) ex vivo and after in vitro restimulation with malaria antigen[J]s. Eur J Immunol.2010 Jan;40(l):47-60.
    30. Yin XX, Liu CF, Li LZ, Significance of CD4+ CD25+ CD127(low) regulatory T cells and notch1 pathway in the pathogenesis of aplastic anemia[J] Zhonghua Xue Ye Xue Za Zhi.2008 May;29(5):308-311.
    31. Vang KB, Yang J, Mahmud SA, et al. IL-2,-7, and-15, but not thymic stromal lymphopoeitin, redundantly govern CD4+Foxp3+ regulatory T cell developmen[J]t. J Immunol.2008 Sep 1;181(5):3285-3290.
    32. McHugh RS, Whitters MJ, Piccirillo CA, et al CD4(+)CD25(+) immunoregulatory T cells:gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor[J]. Immunity.2002 Feb;16(2):311-323
    33..Boczkowski D, Lee J, Pruitt S, et al.Dendritic cells engineered to secrete anti-GITR antibodies are effective adjuvants to dendritic cell-based immunotherapy[J]. Cancer Gene Ther.2009 Dec;16(12):900-911.
    34. van Olffen RW, Koning N, van Gisbergen KP, et al. GITR triggering induces expansion of both effector and regulatory CD4+ T cells in vivo[J]. J Immunol.2009 Jun 15;182(12):7490-7500
    35. Imai N, Ikeda H, Tawara I, et al Glucocorticoid-induced tumor necrosis factor receptor stimulation enhances the multifunctionality of adoptively transferred tumor antigen-specific CD8+ T cells with tumor regression[J].Cancer Sci.2009 Jul;100(7):1317-1325.
    36. De la Rosa M, Rutz S, Dorninger H, et al Eur Interleukin-2 is essential for CD4(+)CD25(+)regulatory T cell function[J].Jlmmunol.2004 Sep;34(9):2480-2488.
    37. Wuest TY, Willette-Brown J, Durum SK, et al. The influence of IL-2 family cytokines on activation and function of naturally occurring regulatory T cells [J]. J Leukoc Biol.2008 Oct;84(4):973-980.
    38. Furtado GC, Curotto de Lafaille MA, Kutchukhidze N, et al. Interleukin 2 signaling is required for CD4(+) regulatory T cell function[J]. J Exp Med.2002 Sep 16;196(6):851-857.
    39. Passerini L, Allan SE, Battaglia M,et al STAT5-signaling cytokines regulate the expression of Foxp3 in CD4+CD25+ regulatory T cells and CD4+CD25-effector T cells. Int Immunol[J].2008 Mar;20(3):421-431.
    40. Huber S, Schramm C.TGF-beta and CD4+CD25+ regulatory T cells[J]. Front Biosci. 2006 Jan 1;11:1014-1023.
    41. Enk AH DCs and cytokines cooperate for the induction of tregs[J]. Ernst Schering Res Found Workshop.2006;(56):97-106.
    42. Chen ZM, O'Shaughnessy MJ, Gramaglia I,et al. IL-10 and TGF-beta induce alloreactive CD4+CD25-T cells to acquire regulatory cell function[J]. Blood.2003 Jun 15;101(12):5076-5083.
    43. Schramm C, Herz U, Podlech J, et al Blessing M.TGF-beta regulates airway responses via T cells a role for reverse signalling and non-canonical [J]. J Immunol. 2003 Feb 1;170(3):1313-1319.
    44. Puccetti P, Grohmann U. IDO and regulatory T cells:a role for reverse signalling and non-canonical NF-kappaB activation[J]. Nat Rev Immunol.2007;7:817-823
    45. Annacker, O., Asseman, C., Read, S. et al. Interleukin-10 in the regulation of T cell-induced colitis[J]. J. Autoimmun.2003; 20,277-279
    46. Nakamura K, Kitani A, Strober W. Cell contact dependent immunosuppression by CD4(+) CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta[J]. J Exp Med.2001; 194:629-644
    47. Hara M, Kingsley CI, Niimi M, et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo[J]. J Immunol.2001;166:3789-3796
    48. Rubtsov YP, Rasmussen JP, Chi EY,et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces[J]. Immunity 2008; 28,546-558
    49. Ostroukhova M, Qi Z, Oriss TB,,et al. Treg-mediated immunosuppression involves activation of the Notch-HES1 axis by membrane-bound TGF-beta[J]. J Clin Invest. 2006 Apr; 116(4):996-1004.
    50. Collison LW, Workman CJ, Kuo TT,et al. The inhibitory cytokine IL-35 contributes to regulatory T cell function[J]. Nature 2007; 450,566-569
    51. Gavin MA, Rasmussen JP, Fontenot JD, et al. Foxp3-dependent programme of regulatory T-cell differentiation [J]. Nature 2007; 455,771-775
    52. Grossman WJ, Verbsky JW, Tollefsen BL et al. Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and Tregulatory cells[J]. Blood 2004; 104,2840-2848.
    53. Ghiringhelli F, Menard C, Martin F, et al. The role of regulatory T cells in the control of natural killer cells:relevance during tumor progression[J]. Immunol Rev.2006 Dec;214:229-238.
    54. Cao X, Cai SF, Fehniger TA, et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance[J]. Immunity 2007; 27, 635-646
    55. Ren, X.. Involvement of cellular death in TRAIL/DR5-dependent suppression induced by CD4+CD25+ regulatory T cells[J].. Cell Death. Differ.2007; 14, 2076-2084
    56. Grossman WJ, Verbsky JW, Barchet W, et al. Human T regulatory cells can use the perforin pathway to cause autologous target cell death[J]..Immunity.2004 Oct;21(4):589-601.
    57. Borsellino, G. Expression of ectonucleotidase CD39 by FOXP3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 2007; 10,1225-1232
    58. Kobie, J. J. T regulatory and primed uncommitted CD4 T cells express CD73,which suppresses effector CD4 T cells by converting 5'-adenosine monophosphate to adenosine[J].. J. Immunol.2006; 177,6780-6786
    59. Bopp, T. Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression [J].. J. Exp. Med.2007; 204,1303-1310
    60. Woo EY, Chu CS, Goletz TJ, et al Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer[J].. Cancer Res 2001; 61:4766-4772
    61. Liyanage UK, Moore TT, Joo HG, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma[J].. J Immunol 2002; 169:2756-2761
    62. Woo EY, Yeh H, Chu CS, et al Cutting edge:Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation[J].. J Immunol 2002; 168: 4272-4276
    63. Curiel TJ, Coukos G, Zou L, et al Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival[J].. Nat Med 2004; 10:942-949
    64. Ormandy LA, Hillemann T, Wedemeyer H, et al Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma[J].. Cancer Res 2005; 65:2457-2464
    65. Ichihara F, Kono K, Takahashi A, et al blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers[J]. Clin Cancer Res 2003; 9:4404-4408
    66. Sasada T, Kimura M, Yoshida Y,et al CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies:possible involvement of regulatory T cells in disease progression[J]. Cancer 2003; 98:1089-1099
    67. Kawaida H, Kono K, Takahashi A, et al Distribution of CD4+CD25high regulatory T-cells in tumor-draining lymphnodes in patients with gastric cancer[J]. J Surg Res 2005;124:151-157
    68. Matsuura K, Yamaguchi Y, Osaki A, et al Foxp3 expression of micrometastasis-positive sentinel nodes in breast cancer patients[J]. Oncol Rep.2009Nov;22(5):1181-1187.
    69. Viguier M, Dreno B. Absence of amplification of CD4+CD25(high) regulatory T cells during in vitro expansion of tumor-infiltrating lymphocytes in melanoma patients[J]. Exp Dermatol.2008 May;17(5):436-445.
    70. Wolf A, Wolf D, Steurer M, et al Increase of regulatory T cells in the peripheral blood of cancer patients[J]. Clin Cancer Res,2003,9(2):606-612
    71. Knol AC, Lemaitre F, Pandolfino MC, et al Absence of amplification of CD4+CD25(high) regulatory T cells during in vitro expansion of tumor-infiltrating lymphocytes in melanoma patients[J].Exp Dermatol.2008 May; 17(5):436-445.
    72. Liyanade UK, Moore TT. Joo HG. et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor micro environment of patients with pancreas or breast adenocarcinoma[J]. J Immunol,2002,169(5):2756-2761.
    73. Correale P, Rotundo MS, Del Vecchio Regulatory (Foxp3+) T-cell tumor infiltration is a favorable prognostic factor in advanced colon cancer patients
    undergoingchemoimmunotherapy[J].Immunother.2010 May;33(4):435-441.
    74. Battaglia A, Buzzonetti A, Monego G, et al.Immunology. Neuropilin-1 expression identifies a subset of regulatory T cells in human lymph nodes that is modulated by preoperative chemoradiation therapy in cervical cancer[J]. Immunology.2008 Jan;123(1):129-138.
    75. Haas M, Dimmler A, Hohenberger W, et al.Stromal regulatory T-cells are associated with a favourable prognosis in gastric cancer of the cardia[J]. BMC Gastroenterol. 2009 Sep 4;9:65.
    76. Fattorossi A, Battaglia A, Ferrandina G, et al.Neoadjuvant therapy changes the lymphocyte composition of tumor-draining lymph nodes in cervical carcinoma. Cancer[J].2004 Apr 1;100(7):1418-1428
    77. Sato E, Olson SH, Ahn J et al. Intraepithelial CD8+ tumor infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer[J]. Proc Natl Acad Sci 2005; 102:18538-18543.
    78. Shen Z, Zhou S, Wang Y, et al. Higher intratumoral infiltrated Foxp3+ Treg numbers and Foxp3+/CD8+ ratio are associated with adverse prognosis in resectable gastric cancer [J]. J Cancer Res Clin Oncol 2010 Mar 11.
    79. Onizuka S, Tawara I, Shimizu J, et al. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody[J]. Cancer Res 1999; 59:3128-3133
    80. Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+CD4+ T cells:a common basis between tumor immunity and autoimmunity[J]. J Immunol 1999; 163:5211-5218
    81. Jens Dannull, Zhen Su, David Rizzieri. Enhancement of vaccine-mediated antitumor immunity in cancer patientsafter depletion of regulatory T cells[J] J. Clin. Invest. 2005;115:3623-3633.
    82. Stephens GL, McHugh RS, Whitters MJ, et al. Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells[J]. J Immunol 2004; 173:5008-5020.
    83. Nair S Boczkowski D, Fassnacht M, et al. Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity[J]. Cancer Res.2007 Jan 1;67(1):371-380.
    84. Zhou G, Drake CG, Levitsky HI. Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines[J]. Blood 2006,107:628-636
    85. Chen A, Liu S, Park D, et al Depleting intratumoral CD4+CD25+regulatory T cells via FasI protein transfer enhances the therapeutic efficacy of adoptive T cell transfer[J]. Cancer Res.2007;67(3):1291-1298.
    86. Ghiringhelli F,Menard C,Puig P E,et al. Metronomic cyclo-phosphamide regimen selectively depletes CD4(+)CD25(+) regulatory T cells and restores T and NK effector functions in end stage cancer patients [J]. Cancer Immunol Immunother, 2007.56(5):641-648.
    87. Berhanu A, Huang J, Watkins SC, et al.Treatment-enhanced CD4+Foxp3+ glucocorticoid-induced TNF receptor family related high regulatory tumor-infiltrating T cells limit the effectiveness of cytokine-based immunotherapy[J]. J Immunol 2007,178:3400-3408
    88. Tao R, de Zoeten EF, Ozkaynak E, et al Deacetylase inhibition promotes the generation and function of regulatory T cells[J]. Nat Med 2007,13:1299-1307
    89. Kato Y, Yoshimura K, Shin T, et al.Synergistic in vivo antitumor effect of the histone deacetylase inhibitor MS-275 in combination with interleukin 2 in a murine model of renal cell carcinoma[J]. Clin Cancer Res 2007,13:4538-4546
    90. Vahasina B, Guiducci C, Dislich H, et al.Triggering of OX40 (CD134)on CD4+CD25+T cells blocks their inhibitory activity:a novel regulatory role forOX40 and its comparisonwith GITR[J]. Blood,2005,105(7):2845-2851.