超高压结合热处理对肌球蛋白凝胶特性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高压技术是21世纪生物制品和食品领域最有潜力和发展前途的技术之一。超高压处理对肉及肉制品产生重要影响,如抑制微生物生长、改变肉的颜色、对肉品组织结构产生影响、对风味及蛋白质凝胶品质有重要影响。
     肌球蛋白是肉品中含量最高最重要的蛋白质,肌球蛋白的凝胶特性决定产品的质量,对产品的质构、赋形、保水性和保留其他食品成分有重要意义。本研究以兔腰大肌肌球蛋白为对象,研究超高压与热结合处理对肌球蛋白凝胶特性的影响,初步探讨超高压凝胶形成机理。研究内容包括:(1)研究不同加工条件及加入功能性食品胶对超高压-热凝胶特性的影响;(2)运用傅立叶红外光谱(FT-IR)技术研究超高压条件下蛋白质二级结构的变化,探讨蛋白质结构与功能特性之间的关系;(3)利用非变性电泳、扫描电镜等技术初步研究超高压肌球蛋白凝胶形成机理。为超高压技术在肉品中的应用提供技术支持和理论指导。具体研究内容和结果如下:
     1不同加工条件对超高压-热肌球蛋白凝胶特性的影响
     研究不同pH、NaCl浓度、保压时间、超高压温度对超高压-热肌球蛋白凝胶质构特性、保水性及微观结构的影响。结果显示,pH5.0和5.5时未见形成网络凝胶;pH6.0~7.0时,形成有序的丝状、多孔且孔径均一的细致网络凝胶。凝胶的硬度随pH的增加逐渐下降,pH6.0时,硬度最大。超高压凝胶保水性在pH5-7范围内,先降低后升高,在pH5.5时保水性最差。氯化钠浓度在0.1~0.5mol·L-1范围内,凝胶硬度和保水性逐渐增加,0.6mol·L-1时两者都显著下降。低离子强度(0.1~0.2mol·L-1)时,不能形成硬度较好的凝胶,0.5mol·L-1时凝胶硬度达最大,凝胶网络结构最好。保压时间对凝胶质构和保水性影响不显著。超高压处理温度在20-60℃范围内,随温度升高硬度显著增加,20℃时凝胶为颗粒状连接,40℃时凝胶孔洞均一、有序,结构光滑、细腻,保水性最高。通过主成分分析研究不同加工条件下凝胶7个质构指标和保水性的关系,结果表明,质构特性与保水性存在很强的相关性。
     2添加魔芋胶、酪蛋白酸钠对超高压-热肌球蛋白凝胶特性的影响
     模拟经典乳化肠配方,设四个处理组:肌球蛋白、肌球蛋白:酪蛋白酸钠质量比为15:4、肌球蛋白:酪蛋白酸钠:魔芋胶为15:4:2、肌球蛋白:酪蛋白酸钠:魔芋胶为15:4:4。分别进行两种处理:低压结合热处理(200MPaa,5min+80℃,40min)与超高压处理(500MPa,60℃,30min),比较两种凝胶特性的差异。结果表明,魔芋胶和酪蛋白酸钠结合使用,改善凝胶质构,提高保水性。肌球蛋白:酪蛋白酸钠:魔芋胶比例为15:4:2时凝胶质构特性最好。扫描电镜结果显示,加入酪蛋白酸钠,凝胶微结构发生显著改变,呈小孔状,结构有序、均一、光滑、结实的网络结构。加入魔芋胶的凝胶结构粗糙、孔径变大。比较低压-热结合凝胶与超高压凝胶差异结果显示,低压-热结合凝胶质构特性更好,保水性更高。
     3不同压力对肌球蛋白凝胶特性及蛋白质二级结构的影响
     肌球蛋白溶液先经100~600MPa压力预处理10min,处理温度20℃,后加热制备凝胶,以未超高压处理组为对照组,测定凝胶质构和保水性,采用傅立叶红外光谱法测定肌球蛋白二级结构变化,然后通过相关系数矩阵法研究肌球蛋白7种质构特性、保水性与各二级结构含量的关系。结果表明,不同超高压处理对肌球蛋白凝胶硬度的影响不显著,对凝胶保水性影响显著,随着压力升高,凝胶保水性逐渐下降。与对照组相比,100、200MPa处理的凝胶保水性无显著差异;与对照组相比,300MPa以上处理的凝胶保水性显著减少。超高压致使肌球蛋白分子结构展开,使蛋白质p-折叠等有序结构减少而p-转角等无序结构增加。
     从相关性分析结果得出,凝胶的粘附性、弹性、保水性与各二级结构之间存在显著的相关性。
     4超高压肌球蛋白凝胶形成机理的初步研究
     肌球蛋白溶液(20mg·mL-1,0.6mol·L-1NaCl.pH6.5)在各种压力(100~400MPa)下处理10min,温度20℃,以未超高压处理组为对照。通过测定蛋白质表面疏水性、自由巯基含量、分子变化(native-page电泳法)和超微结构(扫描电镜法)揭示凝胶形成机理。结果表明,表面疏水性在100MPa变化不显著,200MPa以上,疏水性显著增加;自由巯基含量在300MPa以上增加显著。超微结构显示,200MPa以下的肌球蛋白凝胶呈丝状结构,孔洞小而多,300MPa以上的凝胶呈球状聚集。Native-page电泳结果显示,肌球蛋白重链参与了凝胶化过程。
     初步研究超高压肌球蛋白凝胶形成机理为:超高压改变肌球蛋白二、三级、四级结构,暴露出巯基和疏水基团,减少与水分子的接触,同时增加蛋白质和蛋白质之间的相互作用,然后蛋白质分子相互聚集形成凝胶。
The ultra-high pressure technology is considered as one of the most potential and promising technologies in the field of biological products and food filed in the21st century. Ultra-high pressure processing has important effects on meat and meat products such as the inhibition of microbial growth, changing the color of the meat, impacting on the organizational structure,flavor of meat and changing protein gel quality.
     Myosin which has highest content is the most important protein in meat. The quality of meat is determined by property of myosin gel in that it contributes to textural properties, shaping the product, retaining water, and holding other food components in the product. The material was rabbit psoas myosin. This research studied the effects of ultra-high pressure combining with heating on myosin gel properties and the mechanism of ultra-high pressure induced gels formation. The contents of this research included:(1) studying the effects of ultra-high pressure combining with heating on myosin gel properties with different processing conditions and adding functional foods gum;(2) studying changes of secondary structure of myosin by Fourier transform infrared spectroscopy (FT-IR) after ultra-high pressure pretreatment10min at20℃from100to600MPa then heating and studying the relationship of the protein structure and functional properties of myosin gel;(3) studying the preliminary mechanism of ultra-high pressure induced myosin gels formation with various pressure processing by determining changes of chemical force, native-page electrophoresis, scanning electron microscopy.
     The aim was to provide technical support and theoretical guidance for ultra-high pressure processing used in the meat industrial production.The detailed contents and results are shown as follows:
     1Effects of different processing conditions on the characteristics of ultra-high pressure-heating myosin gel properties
     The effect of various pH, concentration of NaCl,keeping time of ultra-high pressure and ultra-high pressure temperature on textural properties (TPA), water holding capacity (WHC) and micro-structure of myosin gels was investigated. The results showed that at pH5.0and5.5there are not well formed network gel. At pH6.0-7.0, the gels have ordered filaments, porous and uniform pore size network structure. Hardness of gels increased with pH decrease. The hardness was highest in pH6.0. WHC of ultra-high pressure gel in the pH5-7, was first decreased then increased. The worst WHC myosin gels were at isoelectric points of pH5.5. Hardness and WHC of gels gradually increased when concentration of sodium chloride at0.1~0.5mol·L-1range. At sodium chloride concentration0.6mol·L-1, WHC and hardness were both decreased significantly. Low ionic strength (0.1-0.2mol·L-1), good gel was cannot form while at0.5mol·L-1, the gel hardness and WHC was highest. Keeping time of high pressure did not significantly affect gel textures and WHC. With the increase of ultra-high pressure processing temperature from20to60℃, hardness increased significantly.20℃gels had filament link while40℃gels had good network, uniform, orderly holes with smooth and delicate structure, accompanied maximum water holding capacity. The relationship of the7kinds of TPA variables and WHC were determined by principal component analysis.Significant correlations were found between TPA and WHC.
     2Effects of adding konjac glucomannan and sodium caseinate on ultra-high pressure-heating gels properties of myosin
     This experiment with simulated the classic sausage formulations, was divided into four treatment groups:myosin;myosin:sodium caseinate (SC) mass ratio of15:4; myosin: sodium caseinate (SC):konjac glucomannan(KGM),15:4:2;myosin:sodium caseinate (SC):konjac glucomannan (KGM) is15:4:4.Two kinds of processing respectively:low pressure-heating gel(200MPa,5min+80℃,40min)and ultra-high pressure (500MPa,60℃,30min),in order to compare the differences of two gel properties.The results showed that SC and KGM can greatly improve TPA and WHC of the myosin gel.When the ratio of gel of myosin:sodium caseinate (SC):Konjac glucomannan(KGM) was15:4:2,the properties of gels was best. Results of scanning electron microscopy showed SC significantly improved the structure of gels, showing a small,porous,and orderly, uniform, smooth,and strong network structure. Adding KGM, gel structure was coarse with big pore size. Comparing with low pressure-heating and the ultra-high pressure gels, different gel properties was found:low pressure-heating of gel had good TPA properties and higher WHC.
     3Effects of various pressures on gel properties and the secondary structure of myosin
     TPA, WHC and secondary structure of the gel was determined after ultra-high pressure pretreatment10min at20℃,from100to600MPa then heated, the not ultra-high pressure treated sample as the control. Secondary structure, TPA and WHC of the gel were determined with the Fourier transform infrared spectroscopy methods. The relationship of the protein structure and functional properties of myosin gel was determined by correlation matrix. The results showed that the hardness of gel did not change significantly with various ultra-high pressure treatments. WHC decreased with the pressure increased. Compared with the control, the WHC of100and200MPa have no significant difference. Compared with the control, the WHC of above300MPa have a significant decrease.
     The structure of myosin was unfolded by ultra-high pressure. The order structure such β-sheet decreased while disordered structure such as β-turn increased.
     Significant correlations were found among in springiness, adhesiveness, WHC, the secondary structure of gels.
     4The preliminary mechanism of high pressure-induced myosin gels
     Myosin (20mg·mL-1of0.6mol·L-1NaCl, pH6.5) was subjected to various pressures (0.1~400MPa) at20℃for10min to investigate pressure-induced gels mechanism by measurements of protein surface hydrophobicity, free sulfhydryl contents, molecular size by native polyacrylamide gel electrophoresis and ultra-structure using SEM. Surface hydrophobicity had no significant increase at100MPa but had significant increase upon200MPa. Free sulfhydryl groups had little increase below200MPa,but had significant increase at300and400MPa. Ultra-structure revealed that gels below200MPa were filament structure with many small cavities,while gels upon300MPa were globular aggregates with big cavities.Native-page electrophoresis showed that myosin heavy chain was involved in the process of gelation.
     Preliminary mechanism of myosin gels formation in ultra-high pressure treatment was that the secondary, tertiary, quaternary of myosin were changed by ultra-high pressure, and the sulfhydryl and hydrophobic groups were exposed. The contact between myosin and water were reduced, while the interaction of protein molecules with each other was increased. Then the protein molecules were aggregated to form a gel.
引文
[1]陈复生,张雪,钱向明.食品超高压加工技术[M].北京:化学业出版社,2005
    [2]Hugas M, Garriga M, Monfort J M. New mild technologies in meat processing:high pressure as a model technology [J]. Meat Science,2002,62:359-371
    [3]Cheftel J C, Culioli J. Effects of high pressure on meat:a review [J]. Meat Science,1997,46(3): 211-236
    [4]Carlez A, Rosec J P, Richard N, et al. High pressure inactivation of Citrobacter freundii, Pseudomonas fluorecens and Listeria innocua in minced beef muscle [J]. Lebensmittel-Wissenchaft und-Technologie, 1993,26:357-363
    [5]Carballo J, Cofrades S, Solas M T, et al. High pressure/thermal treatment of meat batters prepared from freeze-thawed pork [J]. Meat Science,2000,54:357-364
    [6]Shigehisa T, Ohmori T, SaitoA, et. al. Effect of high hydrostatic pressure on characteristics of pork slurries and inactivation of microorganisms associated with meat and meat products [J]. International Journal of Food Microbiology,1991,12 (2-3):207-216
    [7]靳烨,南庆贤,车荣征.高压处理对鲜牛肉感官性能的影响[J].肉类研究,1998,(4):19-21
    [8]Jung S, Ghoul M, de Lamballerie-Anton M. Influence of high pressure on the color and microbial quality of beef meat [J]. LWT-Food Science and Technology,2003,36 (6):625-631
    [9]施忠芬,肖蓉.高压技术在肉品加工中的应用[J].食品研究与开发,2007,28(4):177-181
    [10]Carlez A, Veciana-Nogues T, Cheftel J C. Colour and myoglobin changes in minced meat processed by high pressure [J]. LWT-Food Science and Technology,1995,28:528-538
    [11]韩衍青,张秋勤,徐幸莲,等.超高压处理对烟熏切片火腿保质期的影响[J].农业工程学报,2009,25(8):305-311
    [12]段旭昌,李绍峰,张建新,等.超高压处理对牛肉加工特性的影响[J].西北农林科技大学学报(自然科学版),2005,33(10):62-66
    [13]白艳红,杨公明,德力格尔桑.高压处理对牛、羊肌肉感官特性及显微结构的影响[J].食品工业科技,2004,25(5):67-69
    [14]马汉军.高压和热结合处理对僵直后牛肉品质的影响[D].南京农业大学博士学位论文,2004
    [15]靳烨,南庆贤.高压处理对牛肉感官特性与食用品质的影响[J].农业工程学报,2004,20(5):196-199
    [16]Ma H J, Zhou G H, Xu X L, et al. Effect of combined high pressure and thermal treatment on free amino acids in beef muscl [C]. Proceedin gs of 53rd international congress of meat science and technology. Beijing:China Agricultural University Press,2007,477-478
    [17]Egelandsdal B. Heat-induced gelling in solutions of ovalbumin [J]. Journal of Food Science,1980, 45:570
    [18]郝磊勇,李汴生,阮征,等.高压与热结合处理对鱼糜凝胶质构特性的影响[J].食品与发酵工业,2005,31(7):35-38
    [19]马力量,陈从贵,崔敏,等.高静压对鸡肉凝胶品质影响的试验研究[J].肉类工业,2007,(12):23-26
    [20]王苑,朱学伸,周光宏,等.高压处理对肌原纤维和大豆分离混合凝胶特性的影响[J].江西农业学报,2007,19(5):105-108
    [21]Yoshioka K, Kage Y, Omur H. Effect of high pressure on texture and ultrastrueture of fish and chicken museles and their gels [J]. High Pressure and Biotechnology,1992,325-327
    [22]Yoshino A, Haga S. Effeets of curing agents on proeessing properties of high pressure treatment porcine minced meat [J]. High pressure Bioseience,1994,264-277
    [23]McDonough F, Hargrove R, Mattingly W, et al. Composition and properties of whey protein concentrates from ultrafiltration [J]. Journal of Dairy Science,1974,57(12):1438-1443
    [24]Sternberg M, Chiang J P, Eberts N J. Cheese whey proteins isolated with polyacrylic acid [J]. Journal of Dairy Science,1976,59(6):1042-1050
    [25]Offer G, Trinick J. On the mechanism of water holding in meat:the swelling and shrinking of myofibrils [J]. Meat Science,1983,8(4):245-281
    [26]Toldra F. Muscle foods:water, structure and functionality [J]. Food Science and Technology International,2003,9(3):173-177
    [27]Offer G, Knight P. The structural basis of water-holding in meat Part 1:General principles and water uptake in meat processing [M]. Lawrie R. Developments in Meat Science. London:Elsevier Applied Science,1988,63-172
    [28]Offer G, Knight P. The structural basis of water-holding in meat Part 2:Driplosses [M]. Lawrie R. Developments in Meat Science. London:Elsevier Applied Science,1988,172-243
    [29]Honikel K O. Reference methods for the assessment of physical characteristics of meat [J]. Meat Science, 1998,49(4):447-457
    [30]Tanaka T. Gels [J]. Scientific American,1981,244(1):124-138
    [31]Hermanson A M. Water and fat holding [M]. Mitchell J R, Ledward D A. Functional Properties of Food Macromolecules. New York:Elsevier Applied Science Publishing Co,1986,273-314
    [32]Kocher P N, Foegeding E A. Microcentrifuge-based method for measuring water-holding of protein gels [J]. Journal of Food Science,1993,58(5):1040-1046
    [32]Crehan C, Troy D, Buckley D. Effects of salt level and high hydrostatic pressure processing on frankfurters formulated with 1.5 and 2.5% salt [J]. Meat Science,2000,55(1):123-130
    [34]Sikes A L, Tobin A B, Tume R K. Use of high pressure to reduce cook loss and improve texture of low-salt beef sausage batters [J]. Innovative Food Science and Emerging Technologies,2009,10(4): 405-412
    [35]Culioli J, Boyer C, Vignon X, et al. Heat-induced gelation properties of myosin:Influence of purification and muscle type [J]. Sciences des Aliments,1993, (13):249-255
    [36]Iwasaki T, Noshiroya K, Saitoh N, et al. The effect of hydrostatic pressure pretreatment on thermal gelation of chicken myofibrils and Pork meat Patty [J]. Food Chemistry,2006, (95):474-483
    [37]Ikeuchi Y, Tanji H, Kim K, et al. Mechanism of heat-induced gelation of pressurized actomyosin: Pressure-induced changes in actin and myosin in actomyosin [J]. Journal of Agricultural and Food Chemistry,1992b,40(10):1756-1761
    [38]Foegeding E A. Thermally induced changes in muscle proteins [J]. Food Technology,1988,42(6):58-64
    [39]Weeds A G, Lowey S. Substructure of the myosin molecule Ⅱ. The light chains of myosin [J]. Journal of Molecular Biology,1971,61(3):701
    [40]卓益忠,赵同军.分子马达与布朗马达[J].物理,2000,29(12):712-718
    [41]赵春青,彭增起.肌球蛋白功能特性的研究进展[J].肉类研究,2002,(1):17-19
    [42]Acton J C, Ziegler G R, Burge Jr D L. Functionality of muscle constituents in the processing of comminuted meat products [J]. Critical Reviews in Food Science and Nutrition,1983,18(2):99
    [43]Samejima K, Hashimoto Y, Yasui T, et al. Heat gelling properties of myosin, actin, actomyosin and myosin-subunits in a saline model system [J]. Journal of Food Science,1969,34(3):242-245
    [44]Siegel D G, Schmidt G R. Ionic, pH, and temperature effects on the binding ability of myosin[J]. Journal of Food Science,1979,44(6):1686-1689
    [45]Kinsella J E, Reetor D J, PhilliPs L G. Physieoehemical properties of proteins:texturization viagelation, glass and filmformation [M]. In:Protein Strueture Function Relationship in foods (edited by R.Yada, R.L.Jacknlan &J.L.Smith). Cambridge:Blaekie eademie.1994,1-21
    [46]韩敏义,徐幸莲,周光宏.肌球蛋白及其凝胶特性[J].江苏农业科学,2003,(3):67-70
    [47]李明清,孔保华.影响鲤鱼肌原纤维蛋白凝胶特性的理化因素[J].农产品加工学刊,2009,(10):58-61
    [48]Klistinsson H, Hultin H O. Effeet of low and pH treatment on the fulletional properties of cod muscle proteins [J]. Journal of Agrieultural and Food Chemistry,2003,51:5103-5110
    [49]Javier F, Alli I, Rosario G. Effects of high pressure and microware on pronase and α-chymotrypsin hydrolysis of P-lactoglobulin [J]. Food Chemistry,2005,92:713-719
    [50]Torrezan R, Tham W P, Bell A E, et al. Effects of high pressure on functional properties of soy protein [J]. Food Chemistry,2007,104(1):140-147
    [51]徐幸莲,周光宏,黄鸿兵,等.蛋白质浓度、pH值、离子强度对兔骨骼肌肌球蛋白热凝胶特性的影响[J].江苏农业学报,2004,20(3):159-163
    [52]罗永康,潘道东,沈慧星,等.蛋白质浓度、pH、离子强度对鳝鱼肌原纤维蛋白粘度[J].食品与发酵工业,2004,30(7):52-54
    [53]Kristinsson H G, Hultin H O. Role of pH and ionic strength on water relationships in washed minced chincken breast musclegels [J].Journal of Food Science,2003,68(3):917-922
    [54]Boye J I, Alli I, Ismail A A, et al. Factors affecting molecular characteristics of whey protein gelation [J]. International Dairy Journal,1995,5(4):337-353
    [55]Toldra F. Muscle foods:water, structure and functionality [J]. Food Science and Technology International,2003,9(3):173-177
    [56]Hamm R. Biochemistry of meat hydration [J]. Advance in Food Research,1960,10:355-392
    [57]Hamm R. Functional properties of the myofibrillar system and their measurements [M]. Bechtel P J. Muscle as food. New York:Academic Press,1986,135-199
    [58]Nick Parsons P K. Origin of variable extraction of myosin from myoflbrils treated with salt and pyrophosphate [J]. Journal of the Science of Food and Agriculture,1990,51(1):71-90
    [59]Offer G, Trinick J. On the mechanism of water holding in meat:the swelling and shrinking of myofibrils [J]. Meat Science,1983,8(4):245-281
    [60]Lesiow T, Xiong Y L. Chicken muscle homogenate gelation properties:effect of pH and muscle fiber type [J]. Meat Science,2003,64(4):399-403
    [61]Liu G, Xiong Y L. Contribution of lipid and protein oxidation to rheological differences between chicken white and red muscle myofibrillar proteins [J]. Journal of Agricultural and Food Chemistry,1996,44 (3): 779-784
    [62]Fretheim K, Samejima K, Egelandsdal B. Myosins from red and white bovine muscles:Part 1-Gel strength (elasticity) and water-holding capacity of heat-induced gels [J]. Food Chemistry,1986,22 (2): 107-121
    [63]Xiong Y L. Myofibrillar protein from different muscle fiber types:implications of biochemical and functional properties in meat processing [J]. Critical Reviews in Food Science and Nutrition,1994,34(3): 293-320
    [64]Xiong Y L. Structure-function relationships of muscle protein [M]. Damodaran S, Paraf A. Food Protein and Their Application. New York:Marcel Dekker, Inc.1997,341-391
    [65]Rosenvold K, Andersen H J. Factors of significance for pork quality a review [J]. Meat Science,2003, 64(3):219-237
    [66]Trout G R. Techniques for measuring water-binding capacity in muscle foods a review of methodology [J]. Meat Science,1988,23(4):235-252
    [67]殷露琴,徐宝才,杨明.胶体在斩拌型高温火腿肠中的应用[J].肉类研究,2007,95(1):15-17
    [68]胡国华.功能性食品胶[M].北京:化学工业出版社,2004
    [69]黄琼,陈龙全.魔芋的保健功能及其加工[J].保健医学研究与实践,2008,5(2):55-56
    [70]Dave V, Sheth M, McCarthy S P, et al. Liquid crystalline, rheological and thermal properties of konjac glucomannan [J]. Polymer,1998,39,1139-1148
    [71]Pang J. Progress in the application and studies on functional material of konjac glucomannan [J]. Chinese Journal of Structural Chemistry,2003,22:633-642
    [72]Zhang Y, Xie B, Gan X. Advance in the applications of konjac glucomannan and its derivatives [J]. Carbohydrate Polymers,2005,60,27-31
    [73]Lin K W, Huang C Y. Physicochemical and textural properties of ultrasound-degraded konjac flour and their influences on the quality of low-fat Chinese-style sausage [J]. Meat Science,2008,79(4):615-622
    [74]Angel Iglesias-Otero M, Borderias J, Asuncin Tovar C. Use of konjac glucomannan as additive to reinforce the gels from low-quality squid surimi [J]. Journal of Food Engineering,2010,101(3):281-288
    [75]Chin K, Keeton J, Miller R, et al. Evaluation of konjac blends and soy protein isolate as fat replacements in low-fat bologna [J]. Journal of Food Science,2000,65(5):756-763
    [76]Kao W, Lin K. Quality of reduced-fat frankfurter modified by konjac-starch mixed gels [J]. Journal of Food Science,2006,71(4):S326-S332
    [77]Pietrasik Z, Jarmoluk A. Effect of sodium caseinate and k-carrageenan on binding and textural properties of pork muscle gels enhanced by microbial transglutaminase addition [J]. Food Research International, 2003,36:285-294
    [78]Atughonu A G, Zayas J F, Herald T J, et al. Thermorheology, quality characteristics, and microstructure of frankfurters prepared with selected plant and milk additives [J]. Journal of Food Quality,1998,21(3): 223-238
    [79]Silva J I, Morais H A, Oliveira A L, et al. Addition effects of bovine blood globin and sodium caseinate on the quality characteristics of raw and cooked ham pate [J]. Meat Science,2003,63:177-184
    [80]Yamamoto K, Hayashi S, Yasu T. Hydrostatsic pressure-induced aggregation of mysoin molecules in 0.5M KCI at pH 6 [J]. Biosei. Bioteehnol. Bioehem.,1993,57:383-389
    [81]Yamamoto K, Miura T, Yasui T. Gelation of myosin filament under high hydrostatic pressure [J]. Food structure,1990,9(4):269-277
    [82]Suzuki A, Masuta M, Ikeuehi Y. Effeet of high pressure treatment on isolated Sarcoplasmic retieulum [J]. High Pressure Bioseienee and Teehnology,1997,141-148
    [83]王媛,乌云娜,李金桩,等.高压处理对肌球蛋白质的影响[J].农产品加工.学刊,2009,(6):4-7
    [84]胡飞华.梅鱼鱼糜超高压凝胶化工艺及凝胶机理的研究[D].浙江工商大学硕士学位论文,2010
    [85]罗晓玲.马鲛鱼鱼糜超高压凝胶化工艺研究[D].江南大学硕士学位论文,2010
    [86]Angsupanich K, Edde M, Ledward D. Effects of high pressure on the myofibrillar proteins of cod and turkey muscle [J]. Journal of Agricultural and Food Chemistry,1999,47(1):92-99
    [87]Uresti R M, Velazquez G, Vazquez M, et al. Restructured products from arrowtooth flounder (Atheresthes stomias) using high-pressure treatments [J]. European Food Research and Technology, 2005,220(2):113-119
    [88]Joseph D, Lanier T C, Hamann D D. Temperature and pH affect transglutaminase-catalyzed Setting of crude fish actomyosin [J]. Journal of Food Science,1994,59(5):1018-1023
    [89]Wan J, Kimura I, Satake M, et al. Effect of calcium ion concentration on the gelling properties and transglutaminase activity of walleye pollack surimi paste [J]. Fisheries Science,1994, (60):107
    [90]Visessanguan W, Ogawa M, Nakai S, et al. Physicochemical changes and mechanism of heat-induced gelation of arrowtooth flounde myosin [J]. Journal of Agricultural and Food Chemistry,2000,48(4): 1016-1023
    [91]Zhang H K, Li L, Tatsumi E, et al. Influence of high pressure on conformational changes of soybean glycinin [J]. Innovative Food Science and Emerging Technologies,2003,4:269-275
    [92]Morita J I, Yasui T. Involvement of hydrophobic residues in heat-induced gelation of myosin tail subfragments from rabbit skeletal muscle [J]. Agricultural and Biological Chemistry,1991,55(2): 597-599
    [93]Visessanguan W, Ogawa M, Nakai S, et al. Physicochemical Changes and Mechanism of Heat-Induced Gelation of Arrowtooth Flounder Myosin [J]. Journal of Agricultural and Food Chemistrym,2000,48(4):1016-1023
    [94]GillT A, ConwayJ T. Thermal aggregation of (Gadus morhud) muscle proteins using 1-Ethyl-3-(3-Dimethylaminopropyl) carbodiimide as a zero length coss-linker [J]. Agricultural and Biological Chemistry,1989,53(10):2553-2562
    [95]Hayakawa S, Nakai S. Contribution of hydrophobicity, net charge and sulfhydryl groups to thermal properties of ovalbumin [J]. Canadian Institute of Food Science and Technology Journal,1985, 18(4):290-295
    [96]Zhang H K, Li L, Tatsumi E, et al. Influence of high pressure on conformational changes of soybean glycinin [J]. Innovative Food Science and Emerging Technologies,2003,4:269-275
    [97]Alvarez P A, Ramaswamy H S, Ismail A A. High pressure gelation of soy proteins:Effect of concentration, pH and additives [J]. Journal of Food Engineering,2008,88,331-340
    [98]Chapleau N J, de Lamballerie-Anton M I. Changes in myofibrillar proteins interactions and rheological properties induced by high-pressure processing [J]. European Food Research and Technology, (2003), 216,470-476
    [99]Mozhaev V V, Heremans K, Frank J, et al. High pressure effects on protein structure and function [J]. Proteins:Structure, Function, and Bioinformatics,1996,24(1):81-91
    [100]徐幸莲.兔骨骼肌肌球蛋白热诱导凝胶特性及成胶机制研究[D].南京农业大学博士学位论文,2003
    [101]Hwang J S, Lai K M, Hsu K C. Changes in textural and rheological properties of gels from tilapia muscle proteins induced by high pressure and setting [J]. Food Chemistry,2007,104(2):746-753
    [102]Balny C, Masson P. Effect of high pressures on proteins [J]. Food Reviews International,1993,9: 611-628
    [103]Huppertz T, Fox P F, Kelly A L. High pressure treatment of bovine milk:Effects on casein micelles and whey proteins [J]. Journal of Dairy Research,2004,71:97-106
    [104]韩敏义.肌原纤维蛋白结构与热诱导凝胶功能特性相关性研究[D].南京农业大学博士学位论文,2009
    [105]魏福祥.现代仪器分析技术及应用[M].北京:中国石化出版社,2011
    [106]范松灿.傅立叶变换红外光谱仪的原理与特点[J].高分子材料研究,2007,11,40-41
    [107]刘媛.红外对蛋白质二级结构的指认[D].北京师范大学博士学位论文,2002
    [108]章银良,夏文水.海藻糖对盐渍海鳗肌动球蛋白影响的研究[J].食品科学,2007,28(7):39-43
    [1]Acton J C. Ziegler G R, Burge D L. Functionality of muscle constituents in the processing of comminuted meat products [J]. Critical Reviews in Food Science and Nutrition,1983,18(2):99
    [2]董秋颖,杨玉玲,许婷.从质构学角度研究肌原纤维蛋白凝胶形成的作用力[J].食品与发酵工业,2009,35(5):45-49
    [3]Nauss K M, Kitagawa S, Gergelsy J. Pyrophosphate binding to and adenosine triphosphatase activity of myosin and itsproteolytic fragment [J]. Journal of Biological Chemistry,1969,244(3):755-765
    [4]Heremans K, and Smeller L. Review:Protein structure and dynamics at high pressure [J]. Biochimica et Biophysica Acta,1998,1386:353-370
    [5]Wang S F, Smith D M. Dynamic rheological properties and secondary structure of chicken breast myoisn as influenced by isothermal heating [J]. Journal of Agriculture Food Chemistry,1994,42: 1434-1439
    [6]Gornall A G, Bardawill C J, David M M. Determination of serum proteins by means of the biuret reaction [J]. Journal of Biological Chemistry,1949,177(2):751-766
    [7]Kocher P N, Foegeding E A. Microcentrifuge-based method for measuring water-holding of protein gels [J]. Journal of Food Science,1993,58(5):1040-1046
    [8]费英,周光宏,徐幸莲,等.pH对肌原纤维蛋白二级结构及其热诱导凝胶特性的影响[J].中国农业科学,2010,43(1):164-170
    [9]Liu G, Xiong Y L. Gelation of chicken muscle myofibrillar proteins treated with protease inhibitors and phosphates [J]. Journal of Agricultural and Food Chemistry,1997,45(9):3437-3442
    [10]Han M Y, Xu X L, Zhou G H, et al. Effect of microbial transglutaminase on NMR relaxometry and microstructure of pork myofibrillar protein gel [J]. European Food Research and Technology,2009, 228(4):665-670
    [11]Westphalen A D, Briggs J L, Lonergan S M. Influence of pH on rheological properties of porcine myofibrillar protein during heat induced gel [J]. Meat Science,2005,70:293-299
    [12]Liu R, Zhao S M, Xiong S B, et al. Role of secondary structure in the gelation of porcine myosin at different pH values [J]. Meat Science,2008,80:632-639
    [13]Offer G, Knight P. The structure basis of water-holding in meat [M]. Part 1. Developments in meat science. London:Elsevier Applied Science,1988,63-171
    [14]Ramirez-Suarez J C, Xiong Y L. Effect of transglutaminase-induced cross-linking on gelation of myofibrillar/soy protein mixtures [J]. Meat Science,2003,65(2):899-907
    [15]韩敏义.肌原纤维蛋白结构与热诱导凝胶功能特性相关性研究[D].南京农业大学博士学位论文,2009
    [16]王鹏.血液蛋白的凝胶性质及其对肌原纤维蛋白凝胶的影响[D].南京农业大学博士学位论文,2009
    [17]Kinsella J E, Reetor D J, PhilliPs L G. Physieoehemical Properties of Proteins:texturization viagelation, glass and film formation [M]. In:ProteinStrueture Funetion Relationship in foods (edited by R.Yada, R.L.Jacknlan and J.L.Smith). Cambridge:Blaekie eademie.1994,1-21
    [18]韩敏义,徐幸莲,周光宏.肌球蛋白及其凝胶特性[J].江苏农业科学,2003,(3):67-70
    [19]Ishioroshi M, Samejima K, Yasui T. Heat-indueed gelation of myosin filaments at a low salt concentration [J].Agrie.Biol.Chem.,1983,47(12):2809-2816
    [20]胡飞华,陆海霞,陈青,等.超高压处理对梅鱼鱼糜凝胶特性的影响[J].水产学报,2010,34(3):329-335
    [21]李煜等.食盐与超高压对低脂猪肉糜凝胶品质及热特性的影响[J].肉类研究,2011,25(4):12-16
    [22]马力量.超高压及亲水胶体对鸡肉凝胶品质的影响[D].合肥工业大学硕士学位论文,2007
    [1]王苑,杨玉玲,周光宏,等.高压预处理及加热方式对混合蛋白凝胶特性的影响[J].食品与发酵工业,2007,(7):18-21
    [2]黄琼,陈龙全.魔芋的保健功能及其加工[J].保健医学研究与实践,2008,5(2):55-56
    [3]Dave V, Sheth M, McCarthy S P, et al. Liquid crystalline, rheological and thermal properties of konjac glucomannan [J]. Polymer,1998,39,1139-1148
    [4]Pang J. Progress in the application and studies on functional material of konjac glucomannan [J]. Chinese Journal of Structural Chemistry,2003,22:633-642
    [5]Zhang Y, Xie B, Gan X. Advance in the applications of konjac glucomannan and its derivatives [J]. Carbohydrate Polymers,2005,60,27-31
    [6]Chin K B, Go M Y, Xiong Y L. Konjac flour improved textural and water retention properties of transglutaminase-mediated, heat-induced porcine myofibrillar protein gel:Effect of salt level and transglutaminase incubation [J]. Meat Science,2009,81:565-572
    [7]Angel Iglesias-Otero M, Borderias J, Asuncin Tovar C. Use of konjac glucomannan as additive to reinforce the gels from low-quality squid surimi [J]. Journal of Food Engineering,2010,101(3):281-288
    [8]Chin K, Keeton J, Miller R, et al. Evaluation of konjac blends and soy protein isolate as fat replacements in low-fat bologna [J]. Journal of Food Science,2000,65(5):756-763
    [9]Kao W, Lin K. Quality of reduced-fat frankfurter modified by konjac-starch mixed gels [J]. Journal of Food Science,2006,71(4):S326-S332
    [10]胡国华.功能性食品胶.[M].北京:化学工业出版社,2004
    [11]Pietrasik Z, Jarmoluk A. Effect of sodium caseinate and k-carrageenan on binding and textural properties of pork muscle gels enhanced by microbial transglutaminase addition [J]. Food Research International, 2003,36:285-294
    [12]Yoshino A, Haga S. Effeets of curing agents on proeessing properties of high pressure treatment porcine minced meat [J]. High pressure Bioseience,1994,264-277
    [13]Atughonu A G, Zayas J F, Herald T J, et al. Thermorheology, quality characteristics, and microstructure of frankfurters prepared with selected plant and milk additives [J]. Journal of Food Quality,1998,21(3): 223-238
    [14]Silva J I, Morais H A, Oliveira A L, et al. Addition effects of bovine blood globin and sodium caseinate on the quality characteristics of raw and cooked ham pate [J]. Meat Science,2003,63:177-184
    [15]Chin K B, Go M Y, Xiong Y L. Konjac flour improved textural and water retention properties of transglutaminase-mediated, heat-induced porcine myofibrillar protein gel:Effect of salt level and transglutaminase incubation [J]. Meat Science,2009,81(3):565-572
    [16]Xiong G, Cheng W, Ye L, et al. Effects of konjac glucomannan on physicochemical properties of myofibrillar protein and surimi gels from grass carp (Ctenopharyngodon idella) [J]. Food Chemistry, 2009,116(2):413-418
    [17]陈建良,芮汉明,邱志敏.高静压下添加酪朊酸钠鸡肉肠制品保水性与质构特性的相关性研究[J].食品科学,2010,31(5):52-57
    [18]Herranz B, Tovar C A, Solo-de-Zaldivar B, et al. Effect of alkalis on konjac glucomannan gels for use as potential gelling agents in restructured seafood products [J]. Food Hydrocolloids,2012,27(1):145-153
    [19]Hermansson A M, Harbitz O, Langton M. Formation of two types of gels from bovine myosin [J]. Journal of Science Food Agriculture,1986,37:69-84
    [20]吕兵,张静.肉制品保水性的研究[J].食品科学,2000,(4):23-26
    [21]Su Y k, Bowers J A, Zayas, J F. Physical characteristics and microstructure of reduced-fat frankfurters as affected by salt and emulsified fats stabilized with nonmeat proteins [J]. Journal of Food Science,2000, 65,123-128
    [22]黄德智.肉制品添加物的性能与应用[M].北京:中国轻工业出版社,2002
    [23]赵全,陈奇.酪蛋白钠稳定肉糜机理的研究[J].食品与机械,2006,(4):52-53
    [24]孙远明,丁金龙,乐学义.魔芋葡甘聚糖与大豆分离蛋白复合凝胶作用研究[J].中国食品学报,2002,2(4):65-69
    [25]刘虎成,李洪军,刘勤晋,等.魔芋胶在低脂肉糜制品中的应用研究[J].肉类工业,2000,(7):44-46
    [26]唐学燕,李博,顾小红,等.魔芋葡甘露聚糖对肌肉蛋白质性质的影响[J].食品与机械,2000,4:25-26
    [1]蛋白质的结构[EB/OL] 2009.5.1, http://www.food-info.net/cn/protein/structure.htm
    [2]Huppertz T, Fox P F, Kelly A L. High pressure treatment of bovine milk:Effects on casein micelles and whey proteins [J]. Journal of Dairy Research,2004,71:97-106
    [3]Balny C, Masson P. Effect of high pressures on proteins [J]. Food Reviews International,1993,9: 611-628
    [4]Kresic G, Lelas V, Herceg Z, et al. Effects of high pressure on functionality of whey protein concentrate and whey protein isolate [J]. Dairy Science and Technology,2006,86(4):303-315
    [5]刘媛.红外对蛋白质二级结构的指认[D].北京:北京师范大学博士学位论文,2002
    [6]章银良,夏文水.海藻糖对盐渍海鳗肌动球蛋白影响的研究[J].食品科学,2007,28(7):39-43
    [7]刘斌,马海乐,李树君,等.应用FTIR研究超声对牛血清白蛋白二级结构的影响[J].光谱学与光谱分析,2010,30(8):2072-2076
    [8]王鹤尧,卜凤荣,陈琳.聚合牛血红蛋白二级结构初步研究[J].生物技术通讯,1999,10(2):134-137
    [9]胡飞华,陆海霞,陈青,等.超高压处理对梅鱼鱼糜凝胶特性的影响[J].水产学报,2010,34(3):329-334
    [10]Kajiyama N, Isobe S, Uemura K, et al. Changes of soy protein under ultra-high hydraulic pressure [J]. Food Science and Technology,1995,30:147-158
    [11]王苑,杨玉玲,周光宏,等.高压预处理及加热方式对混合蛋白凝胶特性的影响[J].食品与发酵工业,2007,33(7):18-21
    [12]张宏康,李里特,辰巳英三.超高压对大豆分离蛋白凝胶的影响[J].中国农业大学学报,2001,6(2):87-91
    [13]李煜,孙高军,余霞,等.食盐与超高压对低脂猪肉糜凝胶品质及热特性的影响[J].肉类研究,2011,25(4):12-16
    [14]邱志敏,芮汉明.超高压处理对添加变性淀粉鸡肉糜制品品质的影响[J].现代食品科技,2010,26(7):688-692
    [15]方红美,陈从贵,马力量,等.大豆分离蛋白及超高压对鸡肉凝胶色泽、保水和质构的影响[J].食品科学,2008,29(10):129-132
    [16]章银良,安巧云,杨慧.脂肪氧化对蛋白质结构的影响[J].食品科学,2012,33(1):25-30
    [17]胡飞华.梅鱼鱼糜超高压凝胶化工艺及凝胶机理的研究[D].浙江工商大学硕士学位论文,2010
    [18]韩敏义.肌原纤维蛋白结构与热诱导凝胶功能特性相关性研究[D].南京农业大学博士学位论文,2009
    [1]Joseph D, Lanier T C, Hamann D D. Temperature and pH affect transglutaminase-catalyzed setting of crude fish actomyosin [J]. Journal of Food Science,1994,59(5):1018-1023
    [2]Lee H, Lanier T C. The role of covalent crosslinking in the texturizing of muscle protein sols [J]. Journal of Muscle Foods,1995,6(2):125-138
    [3]Ahmed J, Ramaswamy H S, Alli I, et al. Effect of high pressure on rheological characteristics of liquid egg [J]. Lebensmittel Wissenschaft and Technologie,2003,36(5):517-524
    [4]Hsu K. C, Ko W C. Effect of hydrostatic pressure on aggregation and viscoelastic properties of tilapia orechromis niloticus) myosin [J]. Journal of Food Science,2001,66(8):1158-1162
    [5]Ko W C, Jao C L, Hsu K C. Effect of hydrostatic pressure on molecular conformation of tilapia orechromis niloticus) myosin [J]. Journal of Food Science,2003,68(4):1192-1195
    [6]Hayakawa S, Nakai S. Relationships of hydrophobicity and net charge to the solubility of milk and soy protein [J]. Journal of Food Science,1985,50:486-491
    [7]Elhnan G L. Tissue sulfhydryl groups [J]. Archives of Biochemistry and Biophysics,1959,74:443-450
    [8]Zhang H K, Li L, Tatsumi E, et al. Influence of high pressure on conformational changes of soybean glycinin [J]. Innovative Food Science and Emerging Technologies,2003,4:269-275
    [9]Boatright W. L, Hettiarachchy, N S. Soy protein isolate solubility and surface hydrophobicity as affected by antioxidants [J]. Journal of Food Science,1995,60(4):798-800
    [10]Ikeuchi Y, Nakagawa K, Endo T, et al. Pressure-induced denaturation of monomer β-lactoglobulin is partially irreversible:coMParison of monomer form highly acidic (pH) with dimer form neutral pH [J]. Journal of Agricultural and Food Chemistry,2001,49(8):4052-4059
    II1] Yang J, Powers J R, Clark S, et al. Ligand and flavor binding functional properties of β-lactoglobulin in the molten globule state induced by high pressure [J]. Journal of Food Science,2003,68(2):444-452
    [12]Nakai S, Li-Chan E. Hydrophobicity-functionality relationship of food proteins. Hydrophobic interactions in food systems [C]. Boca Raton:CRC Press, pp,1998,43-61
    [13]Wicker L, Lanier T C, Hamann D. D, et al. Thermal transitions in myosin-ANS fluorescence and gel rigidity [J]. Journal of Food Science,1986,51:1540-1562
    [14]Ikeuchi Y, Tanji H, Kim K, et al. Mechanism of heat-induced gelation of pressurized actomyosin: Pressure-induced changes in actin and myosin in actomyosin [J]. Journal of Agricultural and Food Chemistry,1992b,40(10):1756-1761
    [15]Galazka V B, Ledward D A, Sumner I G, et al. Influence of high pressure on bovine serum albumin and its complex with dextran sulphate [J]. Journal of Agricultural and Food Chemistry,1997,45(9): 3465-3471
    [16]Alvarez P A, Ramaswamy H S, Ismail A A. High pressure gelation of soy proteins:Effect of concentration, pH and additives [J]. Journal of Food Engineering,2008,88:331-340
    [17]Ikeuchi Y, Tanji H, Kim K, et al. Dynamic rheological measurements on heat-induced pressurized actomyosin gels [J]. Journal of Agricultural and Food Chemistry,1992a,40(10):1751-1755
    [18]Chapleau N J, de Lamballerie-Anton M I. Changes in myofibrillar proteins interactions and rheological properties induced by high-pressure processing [J]. European Food Research and Technology,2003,216: 470-476
    [19]Huppertz T, Fox P F, Kelly A L. High pressure treatment of bovine milk:Effects on casein micelles and whey proteins [J]. Journal of Dairy Research,2004,71:97-106
    [20]Kajiyama N, Isobe S, Uemura K, et al. Changes of soy protein under ultra-high hydraulic pressure [J]. International Journal of Food Science and Technology,1995,30:147-158
    [21]Pauling L C. The nature of the chemical bond and the structure of molecules and crystals and intr. to modern structural chemistry [M]. Cornell University Press,1960
    [22]Morild E. The theory of pressure effects on enzymes [J]. Advances in protein chemistry,1981,34, 93-166
    [23]Meyers Chawla. Mechanical Behavior of Materials [M]. Prentice-Hall,1999,98-103
    [24]Van Camp J, Messens W, Clement J. et al. Influence of pH and sodium chloride on the high pressure-induced gel formation of a whey protein Concentrate [J]. Food Chemistry,1997,60(3):417-424
    [25]Smyth A B, Smith D M, Neill O. Disulfide bonds influence the heat-indueed gel properties of chicken breast musele myosin [J]. Journal of FoodScienee,1998,63(4):584-587
    [26]Mohan M, Ramaehandran D, Sankar T V, et al. Influenceof pH on the solubility and conformational characteristics of musele proteins from mullet (Mugil cephalus) [J]. Proeess Biochemistry,2007, 42:1056-1062