流体运动对相平衡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的主要目的是从宏观可见的角度研究了流体运动对相平衡的影响,重点分析研究了流体运动对二氧化碳-水体系吸收-解吸平衡的影响和流体振荡对纯液体汽液相平衡压力的影响。
     在温度和压强相同时,两相的化学势相同(相平衡)。相平衡原理对传统的化工传质单元操作有非常重要的实际意义,然而传统的相平衡极限是两相在静态下达到的传质极限,实际生产中物质处于不断的运动状态,因而达到的相对稳定相平衡状态可能与静态时存在不同。
     本文首先以二氧化碳—水体系为研究对象,使饱和二氧化碳溶液在管路中流动,观察液相流动时二氧化碳溶解度的变化,探索流动状态对二氧化碳—水体系吸收—解吸平衡的影响规律;接着以纯物质乙醇、异丙醇和水为研究对象,通过恒温水浴振荡器使达到热力学汽液相平衡的纯液体产生回旋运动,观察运动状态下纯液体的汽液相平衡压力变化情况,探索运动液体的汽液相平衡压力的变化规律,从而使宏观的实验现象可以指导实践。
     本论文得到的实验结果如下:
     1.流体的运动使得二氧化碳-水体系的吸收-解吸平衡发生明显的偏移,使二氧化碳从其饱和溶液中解吸出来并且达到一个新的吸收-解吸平衡状态。不同雷诺数下解吸程度与时间成指数关系,液相湍动得越剧烈二氧化碳从其饱和溶液中吸出的越多,到达新的吸收-解吸平衡状态所需要的时间越短,温度为16±0.5℃,原有溶解在水中的二氧化碳最大约有18%解吸出来,二氧化碳在液相中的溶解度减小为34.77mol·m-3;雷诺数为4.5×104体系达到动态吸收-解吸平衡时,11±0.5℃时二氧化碳的溶解度减小为41.23mol·m-3,最大解吸度是13%,然而14±0.5℃时二氧化碳的溶解度是37.01mol·m-3,最大解吸度是17%,符合高温有利于解吸,低温有利于吸收的特性;雷诺数为3.8×104和温度为16±0.5℃下体系达到动态平衡时,反转时二氧化碳的溶解度是35.65mol·m-3,最大解吸度是15%,正转时二氧化碳的溶解度为35.07mol·m-3,最大解吸度是16%,说明了管路的解析能力大于泵。
     2.流体的振荡使纯物质乙醇、异丙醇和水的汽液相平衡压力发生明显偏移,使封闭体系液相上方的压力变大,在3min左右达到一个新的平衡状态,不同振荡频率下偏移程度与时间成指数关系,实验条件下物系的最大偏移程度可达14.5%;同种物质在不同温度下偏移程度不同,温度越高,偏移程度越大,振荡频率130min-1,乙醇在30℃时最大偏移程度是3.9%,35℃时最大偏移程度是6.3%,符合高温有利于蒸发的特性;不同物质在相同对比温度下偏移程度不同,对比温度0.59和振荡频率130min-1时,乙醇的最大偏移程度是6.3%,而异丙醇的最大偏移程度为5.1%;振荡后乙醇达到动态汽液相平衡时终压的对数与温度的倒数具有非常好的线性关系。
     3.流体的运动无论对二氧化碳-水体系吸收-解吸平衡还是纯液体汽液相平衡压力都有明显的影响,当液体处于运动的状态下,无论进行工程计算或设计时都应当考虑流体流动的影响。
The main purpose of the present dissertation is to study the influences ofliquid motion on phase equilibrium in macroscopic, especially the absorption-desorption equilibrium and the gas–liquid equilibrium.
     Principle of phase equilibrium is very significant to unit operation.Thelimit of traditional phase equilibrium is that the rate of mass transfer reachszero on static state. In actual production, the substances are incessantmovement, so the contrary stable condition which the substances may achievemay be different from static phase equilibrium.
     In the dissertation, the absorption-desorption equilibrium of carbondioxide-water system has been firstly studied. When the saturated solution ofcarbon dioxide flows in the pipeline, solubility of carbon dioxide has beenobserved.Then the gas-liquid equilibrium pressure of ethanol, isopropanoland water have been studied.When liquid is forced to wave with certainfrequency by an oscillator, the pressures have been observed. So the macroexperiment phenomenon may direct the practice.
     The main experimental results are as follows:
     1The liquid motion can make the carbon dioxide escape from the saturated solution of carbon dioxide, and achieve a new absorption-desorptionequilibrium. Under different Reynolds number, the desorption degree andtime accord with exponential function. The more carbon dioxide escape fromthe liquid and the less time is needed with higher intensity of turbulence whenachieving the dynamic equilibrium. At16±0.5, about18%dissolved carbondioxide escapes from the system and the solubility of carbon dioxidedecreases to37.40mol·m-3. Under Reynolds number4.5×104, the dynamicsolubility of carbon dioxide decreases to41.23mol·m-3and the maximumdesorption degree is13%at11±0.5, but at14±0.5the dynamic solubilityof carbon dioxide decreases to37.01mol·m-3and the maximum desorptiondegree is17%. The dynamic absorption-desorption equilibrium of carbondioxide-water system still accord with that low temperature is helpful toabsorption.Under Reynolds number3.8×104, the dynamic solubility of carbondioxide decreases to35.65mol·m-3and the maximum desorption degree is15%by reverse at16±0.5, but the solubility of carbon dioxide decreases to35.07mol·m-3and the maximum desorption degree is16%by corotation at thesame temperature. The result shows that the desorption ability of pipeline ishigher than that of pump.
     2The oscillation of liquid can make gas-liquid equilibrium pressures ofethanol, isopropanol and water away from saturation pressures. The pressuresabove liquid level increase and stop rising within about3minutes. Underdifferent oscillation frequency, the deviation degree and time accord with exponential function. Under210min-1, the differential pressure of ethanol is1996Pa and the maximum deviation degree is14.5%at35. At differenttemperature, the deviation degree of material is different under the sameoscillation frequency. The deviation degree would be bigger with highertemperature. Under130min-1, the deviation degree of ethanol is3.9%at30and is6.3%at35. The dynamic gas-liquid equilibrium still accord with thathigh temperature is helpful to evaporation. At the same reduced temperature,different materials have different the deviation degree. Under130min-1, thedeviation degree of ethanol is6.3%and the deviation degree of isopropanol is5.1%at the reduced temperature0.59. The logarithm of a dynamic gas-liquidpressure and the reciprocal of temperature have a very good linearrelationship.
     3Flow rate can make either the absorption-desorption equilibrium ofcarbon dioxide-water system or the gas-liquid equilibrium away fromprimitively static equilibrium. On the condition of liquid motion, engineeringcalculation or designing should consider the influence of flow rate.
引文
[1]马沛生.化工热力学[M].化学工业出版社,2005:127-181
    [2]天津大学物理化学教研室.物理化学上册[M].高等教育出版社,2006:251
    [3]郑德馨,刘芙蓉.多组分气体分离[M].西安交通大学出版社,1988:2-8
    [4]陈钟秀等.化工热力学[M].化学工业出版社,2001:159
    [5]J.M史密斯.化工热力学导论[M].化学工业出版社,1982:200
    [6]N.斯密斯.化工热力学(下册)[M].晓园出版社,1995:343-349
    [7]朱自强.化工热力学[M].化学工业出版社,1980:218-293
    [8]陈常贵,刘邦孚,刘国维,等.化工原理下册[M].天津科学技术出版社,2006:75
    [9]王恺雄,姚铭.亨利定律及其在环境科学与工程中应用[J].江树人大学学报,2004,(6):85-89
    [101陈尊庆.气相色谱法与汽液相平衡研究[M].天津大学出版社,1991:259-318
    [11]张晓鹏,卢永志.顶空气相色谱法测定酒精中微量甲醇的探讨[J].酿酒,2000,137(2):78-80
    [12]Mackay D, Shiu W Y, Sutherland R P. Determination of air-water Henry's Law Constants for hydrophobic pollutants[J]. Environmental Science&Technology.1979,13(3):333-337
    [13]李建权,沈成银,王鸿梅,等.质子转移反应质谱动态测量苯系物的亨利常数[J].物理化学学报,2008,24(4):705-708
    [14]Brennan R A, Nirmalakhandan N, Speece R E. C omparison of predictive methods for Henry's Law Coefficients of organic chemicals [J]. Water Research,1998,32(6):1901-1911
    [15]武传杰,付嘉,孙淮.A002N2在丙醇中亨利常数的分子模拟计算中有关问题[J].化学工程与装备,2006,1:17-24
    [16]Austin L J, Banczyk L, Sawistowski H. Effect of electric field on mass transfer across a plane interface [J]. Chemical Engineering Science,1971,26:2120-2121
    [17]Orell A, Westwater J M. Spontaneous interfacial cellular convection accompanying mass transfer: Ehthylene Glycol-Acetic Acid-Ethyl Acetate [J]. AICHE J,1962,8(3):350-356
    [18]Bakker C A, Van Buytenen P M, Bekk W J. Interfacial Phenomena and Mass Transfer [J]. Chemical Engineering Science,1966,21:1039-1045
    [19]Dijkstra H A, Drinkenburg A A H. Enlargement of wetted area and mass transfer due to surface tension gradients:The creeping film phenomenon [J]. Chemical Engineering Science,1990,45(4):1079-1088
    [20]Okhotsimskii A, Hozawa M. Schlieren visualization of natural convection in binary gas-liquid system [J]. Chemical Engineering Science,1998,53(14):2547-2573
    [21]于艺红,沙勇,成弘,等.单组分扩散过程中界面湍动对流结构的观察[J].高校化学工程学报,2003,17(2):212215
    [22]沙勇,李樟云,林芬芬,等.气液传质界面湍动现象投影观察[J].化工学报,2010,61(14):844-847
    [23]付博,袁希钢,陈淑勇,等.Rayleigh对流及其对界面传质影响的模拟的格子Boltzmann方法[J].化工学报,2011,62(11):2993-3000
    [24]周超凡,余黎明,曾爱武,等.气液界面Marangoni效应对传质系数的影响[J].高校化学工程学报,2005,19(14):433-436
    [25]沙勇,成弘,袁希钢,等.伴有Marangoni效应的传质动力学[J].化工学报,2003,54(11):1518-1523
    [26]沙勇,叶李艺.界面湍动对湿壁塔液相传质系数的影响[J].厦门大学学报,2005,44(5):672-674
    [27]林芬芬.界面湍动现象的实验研究[D].厦门:厦门大学,2009
    [28]代静.关于气液传质中的Marangoni效应的实验研究[D].天津:天津大学,2010
    [29]耿皎,洪梅,肖剑,等.规整填料塔精馏的Marangoni效应[J].化工学报,2002,53(11):600-606
    [30]耿皎,洪梅,张锋,等Marangoni效应对填料塔精馏传质过程的影响[J].化学工程,2003,31(2):7-12
    [31]高文忠,柳建华,邬志敏,等.溶液调湿过程气液界面RBM效应的实验研究[J].制冷学报,2011,32(5):14-19
    [32]聂传继.基于Marangoni效应的数控化学抛光工艺研究[D].浙江:浙江大学,2007
    [33]苗容生,王树楹,余国琮.运动气泡近界面湍流场的激光测量及其湍流结构特性[J].化工学报,1992,43(5):635
    [34]马友光,余国琮,何明霞.多组分相际传质近界面浓度场的测定[J].化工学报,1994,45(5):636-640
    [35]马友光,汪晓红,成弘,等.气泡传质过程近界面非稳态特性及其热力学研究[J].化学工程,2000,28(3):6-9
    [36]马友光,汪晓红,成弘,等.气泡传质过程近界面非稳态特性及其热力学研究[J].化学工程,2000,28(4):7-9
    [37]郭莹,袁希钢,曾爱武,等.基于浓度/速度场测量的吸收过程液相传质系数[J].化工学报,2006,57(6):1277-1283
    [38]谢蕊.乙醇解吸气液界面传质的研究[D].天津:天津大学,2007:27-47
    [39]陈钟秀等.化工热力学[M].化学工业出版社,2001:276-279
    [40]Majer V. Heats of Vaporization of Fluids [M]. Amsterdam:Elsavier,1989,52-65
    [41]马沛生.石油化工基础数据手册编[M].化学工业出版社,1993,18-21
    [42]复旦大学编.物理化学实验(上册)[M].高等教育出版社,1979:54
    [43]聂丽,雷群芳,宗汉兴,等.多组分系统饱和蒸汽压的测定[J].石油化工,1997,26(9):626-631
    [44]刘林森,刘其松,周楠,等.全氟甲基乙烯基醚蒸汽压测定和关联[J].高校化学工程学报,2007,21(5):875-877
    [45]Markarian S A, Zatikyan A L, Grigoryan V V, et al. Vapor Pressures of Pure Diethyl Sulfoxide from(298.15to318.15) K and Vapor-liquid Equilibria of Binary Mixtures of Diethyl Sulfoxide with Water[J]. Journal of Chemical and Engineering Data,2005,50(1):23-25
    [46]Robert D. Vapor pressure of n-Alknes Revisited, New High-precision Vapor Pressure Data on n-Decan, n-Eicosane, and n-Ockacosane[J]. Journal of Chemical and Engineering Data,1989,34(2):149-155
    [47]Joseph A. Measurement of Vapor Pressure—A gas staturation method [J]. Journal of Chemical Education,1960,37(3):149-150
    [48]张晓辉,莫汉宏,杨克武,等.单甲脒饱和蒸汽压的测定和估算[J].环境科学,1998,17(1):50-54
    [49]梁英华,马沛生,陈军.纯物质低蒸汽压的测定[J].天然气化工,1996,21(5):49-53
    [50]衣守志,马沛生,阮永嗣.七种有机物极微蒸汽压数据的测定[J].化工学报,1994,45(1):102-105
    [51]衣守志,马沛生,阮永嗣.Knudsen隙透法测定有机物极微蒸汽压数据的研究[J].吉林化工学院学报,1993,10(3):22-26.
    [52]陈军,梁英华,马沛生.五种酯类化合物极微蒸汽压的扭转法测定[J].化工学报,1997,48(5):622-625
    [53]衣守志,王强,马沛生.饱和蒸汽压测定方法评述[J].天津轻工业学院学报,2001,37(2):1-2
    [54]王遵敬,陈民,过增元.汽液界面动力学行为与热力学性质的分子动力学研究[J].工程热物理学报,2001,22(1):70-73
    [55]Schrage R W. A Theoretical Study of Interphase Mass Transfer[M]. New York:Columbia University Press,1953:13-18
    [56]王遵敬,陈民,过增元.Lennard-Jones流体汽液界面的分子动力学研究[J].清华大学学报(自然科学版),2001,41(2):80-83
    [57]王德明.应用分形理论及分子动力学模拟方法对气液界面现象的研究[D].重庆:重庆大学,2004
    [58]蔡治勇.界面微观特性的分子动力学模拟研究[D].重庆:重庆大学,2008,4
    [59]Tsuruta T, Tanaka H, Masuoka T. Condensation/evaporation coefficient and velocity distributions at liquid-vapor interface [J]. International Journal of Heat and Mass Transfer,1999,42:4107-4166
    [60]Matasumoto M, Yasuoka K, Kataoka Y. Molecular simulation of evaporation and condensation [J]. Fluid Phase Equilibria,1995,104:431-439
    [61]王遵敬,陈民,过增元.汽液界面动力学行为与热力学性质的分子动力学研究[J].工程热物理学报,2001,22(1):70-73
    [62]Lee G Y, Kin S K, Yoon W S. Oscillatory vaporization and acoustic response of droplet at high pressure[J]. International Communication in Heat and Mass Transfer,2008,35(10):1302-1306
    [63]Chiang C H,Raju M S, Sirignano W A. Numerical analysis of convecting vaporizing fuel droplet with variable properties [J]. International Journal of Heat and Mass Transfer,1992,35(5):1307
    [64]Saito M, Hoshikawa M, Sato M. Enhacement of evaporation/combustion rate coefficient of a single fuel droplet by acoustic oscillation [J]. Fuel,1996,75(6):669-674
    [65]Sujith R I, Waldherr G A, Jagoda J I, et al. Experimental investigation of the evaporation of droplets in axial acoustic fields [J]. Journal of Propulsion and Power,2000,16:278-285
    [66]庄逢辰,陈新华.燃料液滴高压蒸发理论[J].工程热物理学报,1982,3(3):277-283
    [67]王中伟,庄逢辰.高压不稳定环境中的燃料液滴蒸发[J].推进技术,1994,4:54-57
    [68]刘卫东,周进,王振国.振荡环境下推进剂液滴亚临界蒸发响应特性[J].航空动力学报,2001,16(1):52-54
    [69]丁继贤,孙风贤,姜任秋.对流条件下环境压力对液滴蒸发的影响研究[J].哈尔滨工程大学学报,2007,28(10):1104-1107
    [70]苏凌宇,于江飞,刘卫东.乙醇液体蒸发过程对压力振荡动态响应的实验研究[J].推进技术,2009,30(3):186-291
    [71]苏凌宇,刘卫东.低频压力振荡环境下静止液滴蒸发过程的准稳态模型[J].推进技术,2010,31(3):281-288
    [72]苏凌宇.基于液滴蒸发过程的空气加热器低频不稳定燃烧研究[D].长沙:国防科技大学,2009
    [73]Harvey E A, Smith W. The absorption of carbon dioxide by a quiescent liquid [J]. Chemical Engineering Science,1959,10:274-280
    [74]马丽丽,张珍稹,郭锴.二氧化碳-水体系动态溶解平衡的探索性研究[J].北京化工大学学报(自然科学版),2009,36(6):11-15
    [75]郑萍,陈明元.相平衡与CO2在水中的扩散速率—CO2排水集气法[J].贵州教育学院学报(自然科学),2004,04(15):6970
    [76]Versteeg G F, van Swaaij W P M. Solubility and diffusivity of acid gases (C02, N20) in aqueous alkanolamine solutions [J]. Journal of Chemical and Engineering Data,1988,33(1):29-34
    [77]周涛等.化工原理[M].科学出版社,2010:29
    [78]《化学工程手册》编辑委员会.流体流动[M].北京:化学工业出版社,1987:27
    [79]卢焕章.石油化工基础数据手册[M].北京:化学工业出版社,1982:988-1012
    [80]陈六平,童叶翔.物理化学[M].北京:科学出版社,2010:169
    [81]钱学森.物理学讲义.北京:科学出版社,1962:246
    [82]张克武.液体的微观结构与汽化热[J].石油化工,1982,11(2):113-119
    [83]张宇英,张克武.论物质的分子结构与液体汽化热理论方程[J].应用基础与工程科学学报,2002,10(1):8-17
    [84]张宇英,张克武.预测不同温度下有机纯质汽化热的新方程[J].化工学报,2005,56(12):2259-2264