苎麻过碳酸钠脱胶工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苎麻原产于中国,主要分布在长江流域,我国年产量约占世界年总产量的90%,故有“中国草”之称。苎麻纤维具有良好的穿着服用性能,是一种优良的纺织原料。苎麻原料主要成分是纤维素。除此之外,还含有半纤维素、果胶、水溶物和木质素等胶质。在纺纱之前需将苎麻原麻中的胶质去除以满足纺纱要求,即“脱胶”。
     目前,苎麻脱胶方法主要有微生物脱胶和化学脱胶。微生物脱胶按其脱胶形式可分为传统微生物脱胶、细菌脱胶和生物酶脱胶三种。细菌脱胶、生物酶脱胶和化学脱胶均在一定程度上改善了传统微生物脱胶的精干麻品质。化学脱胶速度快、时间短、脱胶彻底、精干麻质量稳定。但是,化学脱胶工艺流程长、能耗大、污染大。细菌脱胶和生物酶脱胶时间长,脱胶不彻底,精干麻质量不稳定。但是,细菌脱胶和生物酶脱胶作用条件温和、环境污染小。
     本课题根据微生物脱胶和化学脱胶的特点,对当前苎麻传统化学脱胶工艺进行研究分析,针对化学脱胶工艺存在的流程长、能耗大和污染大等问题,使用新型的环境友好型过氧化物——过碳酸钠对苎麻进行脱胶处理,研究温度、时间、过碳酸钠浓度等因素对苎麻脱胶效果的影响。实验结果表明,过碳酸钠脱胶的最优工艺为:煮练温度95℃,煮练时间150min,过碳酸钠浓度18%,螯合剂(EDTA)2%,三聚磷酸钠2%,耐碱渗透剂2%,浴比1:12。本课题分别在安徽省华龙麻业有限公司和湖南省沅江明星麻业有限公司对过碳酸钠脱胶的最优工艺进行了实验验证,结果表明,精干麻纤维的断裂强度能够达到传统化学脱胶(“二煮一漂”)工艺92%左右的水平。而且,过碳酸钠脱胶的精干麻并丝情况也优于传统化学脱胶。XRD分析表明,过碳酸钠脱胶的精干麻纤维的结晶度小于传统化学脱胶的精干麻纤维的结晶度,由此也可以对过碳酸钠脱胶的精干麻断裂强度低于传统化学脱胶作出解释。从SEM图片可以看出,过碳酸钠脱胶后包覆在苎麻纤维周围的胶质基本去除,苎麻纤维的横节和竖纹都能够清晰的看到,但纤维素表面有裂缝,纤维受到了损伤。过碳酸钠脱胶的精干麻Na元素测试结果也证明,过碳酸钠脱胶的精干麻中纤维素受到了损伤,产生了氧化纤维素和碱纤维素。ATR图谱分析表明,过碳酸钠脱胶后精干麻中的胶质基本去除,但精干麻中还含有半纤维素和木质素。过碳酸钠脱胶的精干麻化学组成测试结果也证明精干麻中含有较多的半纤维素。煮练废液的COD、pH和色度测试结果表明,过碳酸钠脱胶对环境的污染程度远低于传统化学脱胶工艺。
     过碳酸钠在水溶液会产生碳酸钠和过氧化氢,因此,过碳酸钠的分解速度,以及过氧化氢分解速度的研究对于提高过碳酸钠的脱胶效果具有十分重要的意义。实验发现,中性条件下,过氧化氢在温度低于70°C时能够保持较为稳定的状态。同时,过氧化氢的分解速度随着过氧化氢浓度的增加而增加。碱性条件下,过氧化氢的分解速度大于中性条件下的分解速度。当氢氧化钠浓度一定时,过氧化氢的分解速度随浓度的增加而增加。当过氧化氢浓度一定时,随着氢氧化钠浓度的增加,过氧化氢分解速度增加。因此,在中性条件下,使用过氧化氢对实验原料进行脱胶或漂白处理时,温度以不低于70°C为宜。在碱性条件下,使用过氧化氢对苎麻进行脱胶处理时,过氧化氢的浓度以不低于6g/L为佳,氢氧化钠浓度为2-4%时为佳。
     升温过程中,当过碳酸钠脱胶原液中放入苎麻原麻后,过碳酸钠的分解速度大于不放入苎麻原麻时的分解速度。这是由于苎麻原麻中含有较多的灰尘、金属等杂质,这些杂质会促进过氧化氢的无效分解;同时,过碳酸钠同原麻中的胶质也发生了作用,导致放入苎麻原麻后过碳酸钠的分解速度大于不放入苎麻原麻时的分解速度。
     此外,在升温过程中,当过碳酸钠脱胶原液中不放入苎麻原麻时,过碳酸钠在温度低于80°C的条件下能够保持较为稳定的状态。当温度从80°C升温至90°C的过程中,过碳酸钠能够发生明显的分解现象。但是,过碳酸钠脱胶原液中放入苎麻原麻后,不管温度如何变化,过碳酸钠都会发生较为明显的分解现象。而且,当温度为90°C时,保持温度不变,90min后过碳酸钠脱胶原液中过碳酸钠的浓度接近于0。因此,使用过碳酸钠对苎麻原麻进行脱胶处理时,其煮练时间以90min左右为宜。
     为了稳定过氧化氢的分解速度,避免或减小过碳酸钠脱胶过程中过氧化氢的无效分解,降低过氧化氢对纤维素的氧化程度,本课题分析了稳定剂在过碳酸钠脱胶工艺中的应用。结果表明,同不添加稳定剂的过碳酸钠脱胶工艺相比,添加稳定剂P5之后,精干麻的断裂强度和断裂伸长率都得到了改善。江西省恩达家纺的实验验证结果也表明,添加稳定剂P5之后,精干麻的性能指标都有一定的提高。
     为了降低过碳酸钠脱胶工艺中过碳酸钠的用量,减少纤维素的损伤。本课题使用碱性果胶酶对苎麻原麻进行脱胶前处理。同时,利用过碳酸钠的氧化性和漂白性对碱性果胶酶脱胶前处理后的苎麻进行煮练,并将生物酶法脱胶工艺中的“失活”、“精练”和“漂白”三道工序合并为“过碳酸钠脱胶”一道工序,缩短工艺流程、提高生产效率。实验发现,碱性果胶酶-过碳酸钠脱胶的前处理最优工艺为:温度60℃,时间3h,碱性果胶酶浓度1.0g/L,pH值8.5。根据过碳酸钠分解情况的实验结果,在过碳酸钠煮练工艺中,煮练时间减少30min,确定为120min,过碳酸钠的用量由18%降低至12%,温度由95℃降低至90℃。SEM图片表明,碱性果胶酶-过碳酸钠脱胶的精干麻中包覆在纤维周围的胶质基本被去除,纤维表面光洁。ATR图谱分析表明,碱性果胶酶-过碳酸钠脱胶的精干麻中果胶得到了有效的去除,但是精干麻中还存在有半纤维素物质。精干麻的化学组成测试结果也对该实验结果作出了证明。XRD分析结果表明,碱性果胶酶-过碳酸钠脱胶的精干麻的结晶度小于过碳酸钠脱胶的精干麻结晶度;但是,碱性果胶酶-过碳酸钠脱胶的精干麻果胶含量和残胶率下降,脱胶更加彻底,故精干麻的断裂强度和柔软度都得到提高。
     为了进一步降低精干麻中半纤维素的含量和精干麻的残胶率,降低过碳酸钠脱胶工艺中过碳酸钠的用量,减少纤维素损伤,提高产品质量,提高生产效率。本课题使用过氧乙酸对苎麻原麻进行脱胶前处理。实验发现,过氧乙酸-过碳酸钠脱胶的前处理最优工艺参数为:温度55℃,pH值5.0,时间为1.5h,过氧乙酸浓度为2%。根据过碳酸钠分解情况的实验结果,在过碳酸钠煮练工艺中,煮练时间减少30min,确定为120min,过碳酸钠的浓度由18%降低至12%,温度由95℃降低至90℃。实验结果表明,过氧乙酸-过碳酸钠脱胶的精干麻的断裂强度、断裂伸长率和断裂比功均高于传统化学脱胶工艺,但传统化学脱胶的精干麻的柔软度最好,为352.49捻/10cm。SEM图片和精干麻化学组成测试结果表明,过氧乙酸-过碳酸钠脱胶后包覆在苎麻原麻周围的胶质基本去除,精干麻中木质素和半纤维素也得到了有效的去除。ATR图谱分析表明,过氧乙酸-过碳酸钠脱胶的精干麻中半纤维素和木质素等胶质的含量都进一步得到降低。精干麻的化学组成实验结果也证明了这一分析结果。XRD测试结果表明,过氧乙酸-过碳酸钠脱胶的精干麻结晶度进一步降低,但是由于精干麻中果胶、半纤维素的含量进一步下降,残胶率也大幅降低,脱胶更加彻底,使得精干麻的断裂强度和柔软度得到了进一步的提高。
Ramie originated in China and is known as "China grass". It is major distributed in the Yangtze River basin. At present, China accounts for90percent of the world's ramie production. The ramie has good spinnability, wearability, as well as good prospect of development. It is a kind of fine material of textile industry. The major ingredient of ramie is cellulose. In addition to this, the ramie also has a lot of gum, for example, hemicellulose, pectin, lignin and water soluble substances and so on. These non-cellulosic substances are known as gum. These gum need to be removed before the process of spinning. The process of making the ramie fiber separated from each other is called degumming.
     At present, the methods of ramie degumming are retting and chemical degumming. The retting can be divided into three kinds of methods:natural fermentation, bacteria degumming and enzyme degumming. Bacteria degumming, enzyme degumming and chemical degumming improve the quality of the degummed ramie fiber of natural fermentation to a certain extent. The efficiency of the chemical degumming is high, the time is short, and the quality is stable. However, the process of the chemical degumming is long, energy consumption is large and pollution is serious. Bacterial degumming and enzymatic degumming are usually time-consuming and high-cost. What's worse, the quality is unstable. However, the bacteria degumming and enzyme degumming just require mild conditions and produce little environmental pollution.
     According to the characteristics of retting and chemical degumming, the traditional chemical degumming was researched and analyzed in this subject. There are so many problems in the chemical degumming, such as the process is long, the energy consumption is large and the pollution is high and so on. To deal with these issues, the environmentally friendly peroxide—sodium percarbonate is used in the oxidation degumming of ramie. The effects of the temperature, time and dosage of sodium percarbonate on the degumming are analyzed. The experimental results showed that the optimum process of sodium percarbonate degumming was as follows:the temperature is95℃, the time is150minutes, the dosage of sodium percarbonate is18%, chelating agent (EDTA) is2%, sodium tripolyphosphate is2%, alkali penetrating agent is2%, bath ratio is1:12. The optimal case was verified in hualong hemp industry co., LTD. Anhui province and star ramie co., LTD. Hunan province respectively. The results showed that compared with the traditional degumming, the breaking strength of degummed ramie fiber treated by sodium percarbonate degumming attained the level of92percent. Moreover, the doubling of the degummed ramie fiber is better than traditional chemical degumming. XRD analysis showed that the degree of crystallinity of the degummed ramie fiber treated by sodium percarbonate degumming is less than traditional chemical degumming. Thus, the breaking strength of the degummed ramie fiber treated by sodium percarbonate is lower than traditional chemical degumming, which can be explained by the XRD result. From the SEM pictures, readers can see that the gum coated with ramie fiber was removed after the sodium percarbonate degumming. But the cellulose surface was cracked; it meant that the fiber was damaged. The Na element test results also indicated that the cellulose was damaged and oxidized cellulose and alkali cellulose was produced. ATR analysis showed that the gum was removed after the sodium carbonate degumming. But the degummed ramie fiber contained hemicellulose and lignin. The results of the chemical composition of the degummed ramie fiber test results showed that the hemicellulose was still left. The results of the COD, pH and chromaticity test results showed that sodium percarbonate degumming pollution to the environment was far less than the traditional chemical degumming.
     Sodium percarbonate can produce sodium carbonate and hydrogen peroxide in aqueous solution. Therefore, the research on the decomposition velocity of sodium percarbonate and hydrogen peroxide plays a very important role in improving the effect of sodium percarbonate degumming. The reader found that hydrogen peroxide could maintain relatively stable state when the temperature was70℃under zero in neutral conditions. At the same time, the decomposition velocity of hydrogen peroxide rose with the increasing of the concentration of hydrogen peroxide. Alkaline condition was preferred to neutral condition in the results of the decomposition velocity of hydrogen peroxide. When the sodium hydroxide concentration was constant, the decomposition velocity of hydrogen peroxide rose with the increasing of the concentration of hydrogen peroxide. When the hydrogen peroxide concentration was constant, the decomposition velocity of hydrogen peroxide slowed down with the increasing of the concentration of sodium hydroxide. Therefore, when the hydrogen peroxide was used to bleach the raw materials, the advisable temperature was not less than70℃advisable under the neutral condition. While in alkaline condition, using hydrogen peroxide to treat the ramie, the concentration of hydrogen peroxide was no less than6g/L; along with the concentration of sodium hydroxide was2-4%.
     In the process of heating, when the ramie raw materials were put into the sodium percarbonate scouring solution, the decomposition velocity of sodium percarbonate was faster that of not adding ramie raw materials to the sodium percarbonate scouring solution. To some extent, this was due to the ramie raw materials containing more dust, metal and so on; these impurities will promoted the invalid decomposition of hydrogen peroxide. At the same time, sodium percarbonate also interacted with the ramie raw materials, thus, the decomposition of sodium percarbonate was faster that of not adding ramie raw materials to the sodium percarbonate scouring solution.
     In addition, in the process of heating, when the temperature was below80℃and when the ramie raw material was not put into the sodium percarbonate scouring solution, sodium percarbonate could maintain more stable state. As the temperature was rising from80℃to90℃, the decomposition of sodium percarbonate was significant. However, when the ramie raw materials were put into the sodium percarbonate scouring solution, no matter how the temperature changed, the decomposition of sodium percarbonate was obvious. Moreover, when the temperature was90℃, and remained the same temperature, the concentration of sodium percarbonate was close to zero after90minutes. Therefore, when using sodium percarbonate to treat the ramie raw material, the scouring time preferably was around90minutes.
     In order to make the decomposition speed of hydrogen peroxide stable, avoid or reduce hydrogen peroxide invalid decomposition and oxidation degree of cellulose during the sodium percarbonate degumming, the application of stabilizer on the sodium percarbonate degumming was analyzed in this subject. The results showed that compared with the process of not using the oxygen bleaching stabilize in sodium percarbonate degumming, breaking strength and breaking elongation of the degummed ramie fiber were improved after using the oxygen bleaching stabilizer P5. The results of the Edna group Jiangxi province also showed that the performance of the degummed ramie fiber improved after using the oxygen bleaching stabilizer P5during the process of sodium percarbonate degumming.
     In order to reduce the amount of sodium percarbonate and the damage of cellulose during the sodium percarbonate degumming, the pectate lyase was used in the process of pretreatment on the ramie degumming in this subject. At the same time, the writer used the oxidizing and bleaching property of sodium percarbonate to treat the ramie treated by pectate lyase. And the writer combined the three processes ("inactivation","scouring" and "bleaching") of the enzyme degumming of the ramie into one process ("sodium percarbonate degumming"). After these, the aim of shortening the process and improving the production efficiency was achieved. Readers found that the requirements of optimal pretreatment process of pectate Iyase-sodium percarbonate degumming were as follows:the temperature was60℃, the time was3hours, the pectate lyase was1.0g/L and the pH was8.5. According to the experimental results of the decomposition velocity of sodium percarbonate, during the process of sodium percarbonate degumming, the writer reduced the time from150minutes to120minutes, the dosage of sodium carbonate from18%to12%and the temperature from95℃to90℃. SEM images showed that the gum was removed after the ramie treated by pectate lyase-sodium percarbonate degumming. ATR analysis indicated that the pectin of the degummed ramie fiber was removed effectively after the pectate lyase-sodium percarbonate degumming. But there were still capable of hemicellulose in the degummed ramie fiber. The test results of the chemical composition of degummed ramie fiber proved the experimental results. XRD analysis results showed that the degree of crystallinity of degummed ramie fiber treated by pectate lyase-sodium percarbonate degumming was less than that of sodium percarbonate degumming. However, the amount of the pectin and the content of residual gum of the degummed ramie fiber were all reduced, and the effect of degumming was more thoroughly, so the breaking strength and the softness of the degummed ramie fiber were improved.
     To further reduce the content of hemicellulose and the content of residual gum of the degummed ramie fiber, as well as the dosage of sodium percarbonate and the cellulose damage and improve the efficiency of degumming and the quality of degummed ramie fiber, the peracetic acid was used in the process of pretreatment of the ramie degumming. Readers found the requirements of the optimum process of pretreatment of peracetic acid-sodium percarbonate degumming were as follows:the temperature was55℃; the pH was5.0; the time was1.5hours and the peracetic acid was2%. According to the experimental results of the decomposition velocity of sodium percarbonate, during the process of sodium percarbonate, the writer reduced the time from150minutes to120minutes, the dosage of sodium carbonate from18%to12%and the temperature from95℃to90℃. The experimental results showed that breaking strength, breaking elongation and specific breaking work of the degummed ramie fiber treated by peracetic acid-sodium percarbonate degumming were higher than that of the traditional chemical degumming process. But the softness of the degummed ramie fiber treated by traditional chemical degumming was the best-352.49twist/10cm. SEM images show that the gum was removed after the peracetic acid-sodium percarbonate degumming. The hemicellulose and lignin were removed effectively. ATR analysis showed that the content of hemicellulose and lignin had been further reduced. The experimental results of chemical composition have also proved these results. XRD results showed that the degree of crystallinity of degummed ramie fiber had further reduced after the peracetic acid-sodium percarbonate degumming. On account of the content of pectin and hemicellulose reducing, the content of residual gum of the degummed ramie fiber was all reduced significantly. Furthermore, the effect of degumming was more thoroughly, so the breaking strength and the softness of the degummed ramie fiber were further improved.
引文
[1]周带娣,苎麻生物脱胶研究进展,作物研究,2003,(1):60-62.
    [2]王军等,苎麻生物脱胶研究进展,安徽农业科学,2008,36(15):6517-6518.
    [3]杜兆芳等,苎麻复配生物酶脱胶工艺的研究,苏州大学学报(工科版),2008,28(2):27-29.
    [4]邬义明,植物纤维化学,中国轻工业出版社,北京,1991.
    [5]蔡再生,纤维化学与物理,中国纺织出版社,2004.
    [6]欧阳曙等,苎麻化学脱胶新技术的评述与应用,苎麻纺织科技,1993,16(1):30-32.
    [7]华东工学院,麻纺化学,手抄本,东华大学图书馆馆藏图书编号:84.383/2422.
    [8]郁崇文等,苎麻纱线生产工艺与质量控制,中国纺织大学出版社,北京,1997.
    [9]姜繁昌,苎麻纺纱学,纺织工业出版社,北京,1986.
    [10]姚穆等,纺织材料学,中国纺织出版社,第二版,北京,1990.
    [11]Tang Shuowei, Xiong Heping. The present situation of production of hemp, flax, etc. and their development strategies. Science and Technology Review:2000, (3): 44-46.
    [12]王军等,苎麻生物脱胶研究进展,安徽农业科学,2008,36(15):6517-6518.
    [13]孙庆祥,麻类作物微生物脱胶综述,中国麻作,1981,(1):38-41.
    [14]胡国全等,对苎麻厌氧微生物脱胶的研究,四川大学学报(自然科学版),2003,40(3):561-564.
    [15]张含飞,苎麻生物脱胶对纤维性能及纺纱加工影响的研究,东华大学硕士论文.
    [16]闵乃同,苎麻微生物及化学混合脱胶工艺的研究,纺织学报,1983,4(4):226-228.
    [17]罗维希等,苎麻微生物脱胶研究,江西农业科技,1987,(8):14-15.
    [18]杨英贤,麻纤维脱胶的现状与对策,山东纺织科技,2005,1,51-54.
    [19]Takuo S. Advances in applied microbiology. Analytical Chemistry.1993, (12): 247-248.
    [20]孙庆祥,麻类作物微生物脱胶综述,中国麻作,1981,(1):38-41.
    [21]彭源德等,中国麻作,1995,17(2):32-35.
    [22]Lianshuang Zheng, Yumin Du, Jiayao Zhang. Degumming of ramie fibers by alkalophilic bacteria and their polysaccharide-Degrading enzymes. Bioresource Technology.2001,78(1):89-94.
    [23]Fredi Brlmann, Marianne Leupin, Karlh, etal. Enzymatic degumming of ramie bast fibers. Journal of Biotechnology.2000,76 (1):43-50.
    [24]刘正初等,苎麻生物脱胶工艺技术与设备生产应用研究,中国农业科学,2000,33(4):68-74.
    [25]彭源德等,苎麻脱胶菌种特性的研究,中国麻作,1995,22(4):23-27.
    [26]张运雄等,不同脱胶菌株胞外酶系研究,中国麻业,2001,23(2):27-30.
    [27]何绍江等,苎麻厌氧脱胶茵研究I.脱胶菌的筛选和产酶条件试验,中国麻作,1995,17(3):34-38.
    [28]何绍江等,苎麻厌氧菌研究III.脱胶菌种的鉴定,中国麻作,1997,19(1):33-35.
    [29]曾莹等,苎麻微生物脱胶菌株的筛选,纺织学报,2007,(11):73-75.
    [30]胡国全等,苎麻的厌氧微生物脱胶条件试验,中国沼气,2003,21(4):10-12.
    [31]甄东晓等,耐热果胶裂解酶基因pe19A的克隆和表达,食品与生物技术学报,2006,25(2):112-115.
    [32]金玉娟等,芽孢杆菌和欧文菌的原生质体融合的研究,微生物学杂志,2002,(3):10-11.
    [33]金玉娟等,融合子菌株苎麻脱胶研究,纺织学报,2004,25(2):30-31.
    [34]彭源德等,亚麻快速生物技术研究I亚麻快速脱胶菌株的选育,中国麻业,2003,(25)3:135-138.
    [35]D.Fakin, V.golob, K.Stana kleinschek, and A.Majcen Le Marechal. Sorption Properties of Flax Fibers Depending on Pretreatment Processes and their Environmental Impact. Textile Research Journal.2006,76 (6):448-454.
    [36]YACHMENEV V G, NOELIE R B, EUGENE E J B. Effect of sanitation on cotton preparation with alkaline peptidase. Textile Research Journal,2001, (6): 527-533.
    [37]周文叶,酶在生态染整加工中的应用及发展前景,印染,2002,(增刊):26-27.
    [38]朱洁文等,麻类纤维脱胶工艺现状与展望,作物研究,2007,21(5):701-704.
    [39]周文龙,酶在纺织中的应用,中国纺织出版社,北京,2002.
    [40]邬显章,酶的工业生产技术,无锡轻工业学院出版社,北京,1988.
    [41]陈石根等,酶学,复旦大学出版社,上海,2001.
    [42]Liou H, Qi L M, Zong Y J, Application in the textile industry of compound enzyme. Proceedings of the Third China International Wool Textile Conference.2000, (1):644-645.
    [43]吴红玲等,罗布麻脱胶工艺的研究,兰州理工大学学报,2004,5(30):76-78.
    [44]Bruhlmann F, Leupin M, Erismann KH, etal. Enzymatic degumming of ramie bast fibers. Journal of Biotechnology.2000,76 (1):43-50.
    [45]韩慧芳等,原麻中胶质的去除,纤维素科学与技术,2003,3(11):50-54.
    [46]Akbilkumar, Charlespurtell, Mee-Yongyoon. Customised-enzyme treatment of lyocell and its blends. International Dyer.1996,181 (10):19-23.
    [47]Patra A K, Chattopadhyay D P. Application of enzymes. Textile Asia.1998, (8): 46-48.
    [48]Mashesh, Sharma. Application of enzymes In Textile Industry. Colourage.1998, (1):61-79.
    [49]黄俊丽等,脱胶关键酶基因的克隆及其在黑曲霉菌中的整合表达,微生物学通报,2005,32(3):62-67.
    [50]刘唤明等,苎麻酶法脱胶的研究,中国麻业,2006,28(2):87-90.
    [51]李德舜等,芽孢杆菌(Bacillussp.No.16A)苎麻脱胶研究,山东大学学报:理学版,2006,41(5):151-154.
    [52]储长流等,苎麻酶脱胶用菌株的筛选与性能,纺织学报,2006,27(3):27-29.
    [53]储长流等,苎麻脱胶用菌株S2的酶液稳定性,纺织学报,2007,28(10):64-66.
    [54]Van Sumere, C.F, Retting of Flax with special reference to enzyme retting. In: Sharma, H.S.S., Van Sumere, C.R (Eds.). The Biology and Processing of Flax. M Publications, Belfast, Northern Ireland.1992:157-198.
    [55]马洪雨等,黄麻生物脱胶研究进展,湖南农业科学,2009,11:11-14.
    [56]韩慧芳等,原麻中胶质的去除,纤维素科学与技术,2003,11(3):50-54.
    [57]Chongwen YU. Preparing and characterizing, Textile Research Journal.1999,10 (69):720-724.
    [58]秦淑琪等,表而活性剂在亚麻化学脱胶中的作用研究,化学世界,1996,37(11):581-586.
    [59]G S Hoondal, R P Tiwari, R Tewari, etal. Microbial alkaline pectinases and their industrial applications:A review. Appl Microbiol Biotechnol.2002.59(4-5):409-418.
    [60]郑虹等,现代无机助剂过碳酸钠性质及应用,云南民族学院学报(自然科学版),2002,11(2):103-106.
    [61]刘晓霞,苎麻预氯处理时精干麻脱胶效果与工艺参数的关系,麻纺织技术,1998,(3):26-29.
    [62]王德骥,尿氧浸泡苎麻的新型脱胶工艺研究,纺织学报,1997,(3):34-37.
    [63]杨涛等,苎麻氧化脱胶的研究,广西纺织科技,2007,36(4):13-16.
    [64]杨涛,苎麻氧化脱胶的研究,东华大学硕士论文.
    [65]丁绍敏等,生化法脱胶苎麻新产品开发,2007,36(3):2-5.
    [66]谢国炎,苎麻细菌化学联合脱胶技术,农业科技通讯,1988,4:30-31.
    [67]刘正初等,苎麻细菌化学联合脱胶技术生产应用研究报告,中国麻业,1989,4:15-20.
    [68]张书策等,扫频式超声波对苎麻纤维脱胶效果的研究,山东纺织科技,2006,(3):1-3.
    [69]崔运花,超声波技术在苎麻纤维预处理中的应用,纺织学报,1998,19(6):43-44.
    [70]陈明红,大麻工艺纤维的脱胶工艺研究,东华大学硕士论文.
    [71]丁绍敏等,超声波技术在苎麻脱胶中的应用探索,广西纺织科技,1999,28(1):6-10.
    [1]姜繁昌,苎麻纺纱学,纺织工业出版社,北京,1986.
    [2]郁崇文等,苎麻纱线生产工艺与质量控制,中国纺织大学出版社,北京,1997.
    [3]张爱龙摘译,Tenside,1978,15 (5):252-258.
    [4]伍玉碧等,过碳酸钠的开发应用,广西轻工业,2000,2:8-10.
    [5]黄天敏,过碳酸钠的生产及其在洗涤剂中的应用,化工科技市场,1999,8:17-18.
    [6]崔小明等,过碳酸钠的应用及生产技术进展,化工科技市场,2010,3(7):20-25.
    [7]于萍等,过碳酸钠杀菌效果及毒性的实验观察,医学动物防制,1999,15(6):311-313.
    [8]杨小弟等,过碳酸钠净水效果的实验观察,水处理技术,2000,26(1):30-33.
    [9]杨小弟,分析化学技能训练,化学工业出版社,北京,2008.
    [10]钱学仁等,纸浆绿色漂白技术,化学工业出版社,北京,2008.
    [11]莫淑欢,过氧化氢分解动力学研究,广西大学硕士学位论文.
    [12]王德骥,苎麻纤维素化学与工艺学:脱胶和改性,科学出版社,北京,2001.
    [13]周宏湘等,渗透剂JFC(M型)的制备和应用,江苏丝绸,1995,1:26.
    [14]杨涛等,苎麻氧化脱胶的研究,广西纺织科技,2007,36(4):13-16.
    [15]郭腊梅等,纺织品整理学,中国纺织出版社,北京,2005.
    [16]朴金顺等,过碳酸钠稳定性的研究,延边医学院学报,1989,12(4):250-255.
    [17]Yang D etc, Sodium percarbonote a convenient reagent for oxidative cleavage of a-diketones, Synth Commum,1993,23 (8):1183-1187.
    [18]曲丽君,大麻碱氧一浴一步法短流程脱胶漂白工艺参数的优化,东华大学学报,2005,12:90-93.
    [19]Richard Roesler, ManfredMathes,GerdHecken. Solid peroxo compounds and peroxy compounds stabilized by coating. US,6086785.2000-07-11.
    [20]llkka Renvall, Timo Korvela. Stabilized sodium carbonate peroxy-hydrate. US, 6262008.2001-07-17.
    [21]Andreeva Q.A, Burkova L.A, Grebenkin A.N, Grebenkin A.A, IR spectrosocopic study of prepurified flax. Russia joural of APPlied Chemistry,2002,75:1513-1516.
    [22]何建新,高级竹溶解浆粕的制备及其用于合成醋酸纤维素的研究,东华大学博士学位论文.
    [23]杨淑惠,植物纤维化学(第二版),中国轻工业出版社,北京,2001.
    [24]Roy A. K., Sen S. K, Bag S. C., Pandey S. N. Infrared Spectra of jute Stick and Alkali-treated Jute Stick. Journal of Applied Polymer Science,1991,42:2943-2950.
    [25]Sinha E., Rout S. K. Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute of Materials Science,2008,43:2590-2601.
    [26]Ouajai S., Shanks R. A. Composition Structure and Thermal Degradation of Hemp Cellulose afrer Chemical Treatments. Polymer Degradation and Stability,2005, 89:327-355.
    [27]夏兆鹏,精细化黄麻纤维制备、纺纱技术及力学性能研究,东华大学博士学位论文.
    [28]喻红芹,亚麻的品质及生物处理的研究,东华大学博士学位论文.
    [1]Gratzl J. Recations of Polysccharides and Lignins in Bleaching. Pulp Bleaching-Principles and Practices. Edited by D. W. Reeve and C.W. Dence. Atlanta:TAPPI Press,1996:125-160.
    [2]钱学仁等,纸浆绿色漂白技术,化学工业出版社,北京,2008.
    [3]窦正远,过氧化氢漂白参数的控制,纸和造纸,1993,1:19-20.
    [4]刘桂南等,高得率浆过氧化氢漂白,中国造纸,1992,3:46-54.
    [5]谢来苏等,制浆原理与工程,第二版,北京,中国轻工业出版社,2001,255.
    [6]刘明友等,硫酸盐浆H202漂白的研究,黑龙江造纸,1999,1:2-4.
    [7]王海松编译,废纸浆漂白技术,国际造纸,2003,22,3:8-14.
    [8]Colodette J, Fairbank M G, Whiting P. The Effect of pH Control on Peroxide Brightening of Stoneground Wood Pulp. J Pulp Paper Sci,1990,16,2, J53.
    [9]Gierer J. Basic Principles of Bleaching. Part 2. Anionic Process. Holzforschun, 1990,44,6:395-400.
    [10]Dence C W. Chemistry of Mechanical Pulp Bleaching. Pulp Bleaching Principles and Practices. Edited by D. W. Reeve and C. W. Dence. Atlanta. TAPPI Press,1996:161-177.
    [11]Sjogren B, Engstrand P, Htun M. Some Aspects of High Consistency Peroxide Bleaching Acting Process Efficiency and Pulp Properties. Int Mechanical Pulping Conf,1993,409.
    [12]莫淑欢,过氧化氢分解动力学研究,广西大学硕士论文.
    [13]谢来苏等,制浆原理与工程,第二版,中国轻工业出版社,北京,2001.
    [14]Galbacs Z M, Csanyl L J. Alkali-induced Decomposition of Hydrogen Peroxide. J Chem Soc Daltcn Trand,1983:2353-2356.
    [15]张健扬等,金属离子对过氧化氢的催化分解作用研究,唐山师范学院院报,2005,27(5):10-13.
    [16]窦正远。漂白过程中过氧化氢的分解与控制。纸和造纸。1997,1:36-37.
    [17]Gierer J, Yang E, Reitberger T. Formation.of Hydroxyl Radicals from Hydrogen Peroxide and Their Effect on Bleaching of Mechanical Pulps. J Wood Chem Tech, 1993,13 (4):561-581.
    [18]Gierer J, Yang E, Reitberger T. The Role of Superoxide Anion Radicals (O2) in Delignification. Int Symp Wood Pulp Chem.1993,1:240.
    [19]Sjogren B, Denielsson J, Engstrand P, etal. The Importance of Radical Recactions for Brightness Increase in Hydrogen Peroxide Bleaching of Mechanical Pulps. TAPPI Proceeding, Wood Pulping Chem,1989:161-166.
    [20]杨涛等,苎麻氧化脱胶的研究,广西纺织科技,2007,36(4):13-16.
    [21]杨涛,苎麻氧化脱胶的研究,东华大学硕士论文.
    [1]姜繁昌,苎麻纺纱学,纺织工业出版社,北京,1986.
    [2]寻民传,论苎麻脱胶的主攻对象,纺织学报,1984,5(8):487-489.
    [3]王德骥,苎麻纤维素化学与工艺学:脱胶和改性,科学出版社,北京,2001.
    [4]王德骥等,对苎麻脱胶质量检验指标——残胶率及半纤维素的分析研究,纺织学报。1984,5(9):531-535.
    [5]陈石根,酶学,复旦大学出版社,上海,2001.
    [6]Rupinder Tewari, Ram P. Tewari, and Gurinder S. Hoondal. Microbial Pectinases, Methods in Biotechnology, Vol.17, Microbial Enzymes and Biotransformations,2005: 194.
    [7]Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem,1959,31 (3):426-428.
    [8]郭尧君,蛋白质电泳实验技术,科学出版社,北京,1999.
    [9]Laemmli Y K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature,1970,227:680-685.
    [10]Hames B D, Rickwood D著,刘敏秀和程桂芳译,蛋白质的凝胶电泳与实践方法,科学出版社,北京,1986.
    [11]Simpson R J. Proteins and Proteomics:A Laboratory Manual. New York:Cold Spring Harbor Laboratory Press,2003:52-62.
    [12]Nothwang H G, Schindler J. Two-dimensional separation of membrane proteins by 16-BAC-SDS-PAGE//Peirce M J, Wait R. Membrane Proteomics:Methods and Protocols. New York:Human Press,2009:269-277.
    [13]代龙军等,巴西橡胶树橡胶粒子蛋白质的16-BAC/SDS-PAGE双向电泳及质谱分析,中国农业科学,2012,45(11):2328-2338.
    [14]何忠效等,电泳,科学出版社,北京,1999.
    [15]Williams J G, Gratzer W B. Limitation of the detergent polyacrylamidegel electrophoresis method for molecular weight determination of protein. J Chromatograpgy,1971,57:121-125.
    [16]赵明等,猪精子中与卵透明带糖蛋白ZP3结合的蛋白质,生物化学与生物物理学报,1996,28(2):145-152.
    [17]尹汉萍等,菜心中高等电点高活性的乙醇酸氧化酶同工酶的纯化和特性,中国生物化学与分子生物学报,2004,20(5):690-695.
    [18]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem, 1976,72:248-254.
    [19]陈坚等,新型纺织酶制剂的发酵和应用,化学工业出版社,北京,2007.
    [20]郁崇文等,苎麻纱线生产工艺与质量控制,中国纺织大学出版社,北京,1997.
    [21]颜婷婷,黄、红麻纤维的木质素结构特征及其脱胶研究,东华大学博士论文.
    [22]赵华燕等,木质素生物合成及其基因工程研究进展,植物生理郁分子生物学学报,2004,30(4):361-370.
    [23]詹怀宇等,湿地松深度脱木素硫酸盐法蒸煮过程中木素结构的变化(I)——纸浆中残余木素结构的变化,造纸科学与技术,2001,20(1):8-16.
    [24]蒋挺大,木质素,第二版,化学工业出版社,北京,2009.
    [25]张健红,芽孢杆菌WSHB04-02发酵法生产碱性果胶酶研究,江南大学硕士论文.
    [26]甄东晓,耐热果胶酸裂解酶编码基因pe19A的克隆与表达,江南大学硕士论文.
    [27]雷永诚,猪胰脂肪酶催化制备光学戊醇的研究,四川大学硕士论文.
    [28]杨茜等,自产碱性果胶酶的酶学性质与精练应用,浙江化工,2009:16-20.
    [29]魏亚娟,细菌氨肽酶的产酶条件优化及应用研究,江南大学硕士论文.
    [30]范俊,PTA生产废水高效生化处理技术的研究,南京工业大学硕士论文.
    [31]张贺迎等,高活力饲用复合酶制剂的制备,河北师范大学学报(自然科学版),2003,27(3):302-303.
    [32]Andreeva Q.A, Burkova L.A, Grebenkin A.N, Grebenkin A.A, IR spectrosocopic study of prepurified flax. Russia joural of APPlied Chemistry,2002,75:1513-1516.
    [33]何建新,高级竹溶解浆粕的制备及其用于合成醋酸纤维素的研究,东华大学博士学位论文.
    [34]杨淑惠,植物纤维化学,第二版,中国轻工业出版社,北京,2001.
    [35]Roy A. K., Sen S. K, Bag S. C., Pandey S. N. Infrared Spectra of jute Stick and Alkali-treated Jute Stick. Journal of Applied Polymer Science,1991,42:2943-2950.
    [36]Sinha E., Rout S. K. Influence of fibre-surface treatrment on structural, thermal and mechanical properties of jute of Materials Science,2008,43:2590-2601.
    [37]Ouajai S., Shanks R. A. Composition Structure and Thermal Degradation of Hemp Cellulose after Chemical Treatments. Polymer Degradation and Stability,2005, 89:327-355.
    [38]夏兆鹏,精细化黄麻纤维制备、纺纱技术及力学性能研究,东华大学博士学位论文.
    [39]喻红芹,亚麻的品质及生物处理的研究,东华大学博士学位论文.
    [1]王德汉等,过氧酸在纸浆中脱木素和漂白的研究,造纸化学,1996,8(2):24-27.
    [2]秦文娟等,过氧酸和DMD的性能及其在纸浆漂白中的应用,纤维素科学与技术,2000,8(1):58-65.
    [3]陈彬译,过氧酸漂白对桉木硫酸盐浆性能的影响,国际造纸,2004,23 (2):13-17.
    [4]曲宏军等,浅析过氧酸的性质及特点,江西化工,2004, 2:45-46.
    [5]Tapani Vuorinen. Chemistry of Pulping and Bleaching:Peracetic acid bleaching [DB/OL]. http://puukemia.tkk.fi/fi/opinnot/kurssit/19-3000/luennot/L04.pdf.
    [6]王德汉等,过氧酸的制备与活性氧的测定,纸和造纸,1996,5:44-45.
    [7]钱学仁等,纸浆绿色漂白技术,化学工业出版社,北京,2008.
    [8]Lilian Borges Brasileiro. A Utilizacao de Peracidos na Delslignificacao e no Branqueamento de Polpas Celulosicas. Quim Nova,2001,24,6:819-820.
    [9]Jaaskelainen A-S, Tapanila T, Poppius-Levlin K. Carbohydrate Reactions in Peroxycaetic Acid Bleaching. J Wood Chem Technol,2000,20,1:43-59.
    [10]詹怀宇,过氧酸的制备机器在纸浆漂白中的应用,造纸化学品,1996, 8(2):1-5,15.
    [11]赵建等,过氧酸预处理时与木素的反应机理,纤维素科学与技术,1998,6(3):59-64.
    [12]Gierer J. Chemistry of Delignification. Part 2. Recation of Ligins During Bleaching. Wood Sci Technol,1986,20 (1):1-30.
    [13]孙宝国等,过醋酸在造纸工业中的应用,造纸科学与技术,2003,22(4):37-39,41.
    [14]Chaivichit P, Chandranupap P. Process Parameters Affecting the Delignification of Eucalyptus Kraft Pulp With Peroxyacetic Acid. Songklanakarin J Sci Technol,2004, 26,6:867-873.
    [15]徐淑莹等,过渡金属离子在过氧酸漂白中的作用及控制,广东造纸,2000,19(6): 12-15.
    [16]Andreeva Q.A, Burkova L.A, Grebenkin A.N, Grebenkin A.A, IR spectrosocopic study of prepurified flax. Russia joural of APPlied Chemistry,2002,75:1513-1516.
    [17]何建新,高级竹溶解浆粕的制备及其用于合成醋酸纤维素的研究,东华大学博士学位论文.
    [18]杨淑惠,植物纤维化学,第二版,中国轻工业出版社,北京,2001.
    [19]Roy A. K., Sen S. K, Bag S. C., Pandey S. N. Infrared Spectra of jute Stick and Alkali-treated Jute Stick. Journal of Applied Polymer Science,1991,42:2943-2950.
    [20]Sinha E., Rout S. K. Influence of fibre-surface treatrment on structural, thermal and mechanical properties of jute of Materials Science,2008,43:2590-2601.
    [21]Ouajai S., Shanks R. A. Composition Structure and Thermal Degradation of Hemp Cellulose afrer Chemical Treatments. Polymer Degradation and Stability,2005, 89:327-355.
    [22]夏兆鹏,精细化黄麻纤维制备、纺纱技术及力学性能研究,东华大学博士学位论文.
    [23]喻红芹,亚麻的品质及生物处理的研究,东华大学博士学位论文.